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Brief Review
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Symbolic Model Verifier (SMV)

Ken McMillan, Symbolic Model Checking: An Approach to
the State Explosion Problem, 1993.

Finite-state Systems described in a specialized language
Specifications given as CTL formulas
Internal representation using ROBDDs

Automatically verifies specification or produces a
counterexample

oftware Engineering Institute ‘ CarnegieMellon oz came gie Mellon Un ersity




A Sample SMV Program (short.smv)

MODULE main

VAR
request: boolean;
state: {ready, busy};
ASSIGN
init(state) := ready;
next(state) :=
case
state=ready & request: busy;
TRUE : {ready, busy};
esac;

SPEC AG(request -> AF (state = busy))
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A Three-Bit Counter

MODULE main
VAR
bit@® : counter_cell(TRUE);
bitl : counter_cell(bit@.carry_out); B — -
. . IO 207 | T ——
bit2 : counter_cell(bitl.carry_out); A

(e e e

e e e e

SPEC AG AF bit2.carry out

MODULE counter_cell(carry_in)

VAR
value : boolean;
ASSIGN
init(value) := FALSE; value + carry _in mod 2
next(value) := value xor carry_in;//
DEFINE
carry out := value & carry_in;

=== Software Engineering Institute | CarnegieMellon oz camegieweton unversiy




module instantiations

: val
n out .
n o0 pito
module declaration
: val ‘ val
n n out
[ out | hit1
val
n out
! O i
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Inverter Ring
MODULE main |

VAR r{ >o———| >0——{ >0—
gatel : process inverter(gate3.output);

gate2 : process inverter(gatel.output);
gate3 : process inverter(gate2.output);

I Q

SPEC (AG AF gatel.output) & (AG AF !gatel.output)

MODULE inverter(input)
VAR

output : boolean;
ASSIGN

init(output) := FALSE;

next (output) := linput;

FAIRNESS
running
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Fairness

FAIRNESS Ctlform

e Assumed to be true infinitely often
* Model checker only explores paths satisfying fairness constraint
e Each fairness constraint must be true infinitely often

If there are no fair paths
e All existential formulas are false
e All universal formulas are true

FAIRNESS running
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Can A TRUE Result of Model Checker be Trusted

Antecedent Failure [Beatty & Bryant 1994]

e A temporal formula AG (p = q) suffers an antecedent
failure in model M iff M £ AG (p = q) AND M £ AG (-p)

Vacuity [Beer et al. 1997]

* A temporal formula o is satisfied vacuously by M iff there
exists a sub-formula p of ¢ such that M k ¢[p<—q] for every
other formula g

ee.g., MEAG (r=>AF a) and M AG (r > AF -a) and
AG (r = AF -r) and AG (r = AF FALSE), ...
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Vacuity Detection: Single Occurrence

¢ IS vacuous in M iff there exists an occurrence of a
subformula p such that

e M £ ¢[p < TRUE] and M k ¢[p « FALSE]

/ B
M e AG (req > AF TRUE) M e AG (req => AF FALSE)
M e AG TRUE MeAG -req
\ J
/ B
M e AG (TRUE = AF ack) M e AG (FALSE = AF ack)
M e AG AF ack M e AG TRUE
\ 4
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Detecting Vacuity in Multiple Occurrences: ACTL

An ACTL o is vacuous in M iff there exists an a
subformula p such that

Mk @[p < X] , where x is a non-deterministic variable
Is AG (req = AF req) vacuous? Should it be?

4 )

MEAG (X = AF x) Always vacuous!!!
M AG TRUE
o /
Is AG (req = AX req) vacuous? Should it be?

a N

MEAG (x = AX X) Can be vacuous!!!
can’t reduce
o /
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Run NuSMV

NuSMV [options] inputfile

e -int interactive mode

e-1p list all properties

e-n X check property number X

e -ctt check totality of transition relation
e -01ld compatibility mode

e -ofm file output flattened model
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Using NuSMV in Interactive Mode

Basic Usage
*g0
— prepare model for verification

e check ctlspec
— verify properties

Simulation
epick state [-i] [-r]

— pick initial state for simulation [interactively] or [randomly]
esimulate [-1] [r] s

— simulate the model for ‘s’ steps [interactively] or [randomly]

e show_traces
— show active traces

—== Software Engineering Institute | CarnegieMellon oz camege weion unversiy




Useful Links

NuSMV home page

e http://nusmv.fbk.eu/
NuSMV tutorial

o http://nusmv.fbk.eu/NuSMV/tutorial/v25/tutorial.pdf
NuSMV user manual

e http://nusmv.fbk.eu/NuSMV/userman/v25/nusmv.pdf
NuSMV FAQ

e http://nusmv.fbk.eu/fag.html
NuSMV on Andrew

 /afs/andrew.cmu.edu/usr6/soonhok/public/NuSMV-zchaff-2.5.3-x86 _64-redhat-
linux-gnu/

NuSMV examples
o <NuSMV>/share/nusmv/examples

Ken McMillan, Symbolic Model Checking: An Approach to the State
Explosion Problem, 1993

o http://www.kenmcmil.com/pubs/thesis.pdf
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Today: 3 Examples

Mutual Exclusion

Bus Protocol

Traffic Light Controller

—== Software Engineering Institute | CarnegieMellon oz came T——




Example 1: Mutual Exclusion

Two processes want access to a shared resource
» they go through idle, trying, critical states

Safety (Mutual Exclusion)

* Only one process can be in the critical section at any
given time

—AG ( !(p0 = critical & p1 = critical) )
Liveness (No Starvation)

e [f a process is trying to enter critical section, it eventually
enters it

—AG (p0 = trying -> AF p0 = critical)
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SMV Example: Bus Protocol

Ed Clarke

Daniel Kroening

Carnegie Mellon University
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Overview
Preliminaries: Design goals:
® Single, shared bus ® Collision free operation
® Every node can broadcast on ® Priorities for the nodes
this bus

Similar busses are used in the automotive industry
® CAN
® Byteflight
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Basic Idea

Operation Principle
® Round based algorithm

® First person to start sending
gets the bus

Achieve design goals by:
® Assign unique time to each node

® Guarantees Collision free
> operation

® The node with the lower time gets
priority
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Example

Node 1 ’ , Node 4

Hm, | won't
send
Bus
—ttt+t+—+—t—+—+—+—+—f+—+—+—+>
: time
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Example

Node 2 ’ Node 4

I VVIIl oOCl1 IU

Bus | |
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Bus\

v



Carnegie Mellon

Bus | |

v
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RESET
CLOCK!

Bus | aa|

Start of new | | |
Cyc|e i i i | | | >
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Example

Node 1 ’ , Node 4

Hm, | won'’t
send

Bus | |

v
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SMV Model

Design:
® A state machine controls each node
® Counter keeps track of clock

Counter:

® Reset if someone sends MODULE node(bus_active)
VAR counter: 0 .. 99;

® Increment otherwise
ASSIGN
next(counter):=

case
bus active : 0;
counter < 99: counter + 1;

TRUE: 99;

esac;



Carnegie Mellon

SMV Model

Design:
® A state machine controls each node
® Counter keeps track of the clock

beginning beginning

Sending counter=priority
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SMV Model

MODULE node(priority, bus_active)
VAR
counter: 0 .. 99;
state: { busy, skip, waiting, sending };

ASSIGN
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SMV Model

MODULE main
VAR
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Properties
Desired Properties

® Safety: Only one node uses the bus at a given
time

SPEC AG (node1.is_sending -> (nodeZ2.is_sending & 'node3.is_sending & 'node4.is_sending))
SPEC AG (node2.is_sending -> (Inode1.is_sending & 'node3.is_sending & Inode4.is_sending))
SPEC AG (node3.is_sending -> (Inode1.is_sending & 'node2.is_sending & 'node4.is_sending))
SPEC AG (node4.is_sending -> (Inode1.is_sending & 'node2.is_sending & 'node3.is_sending))
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Properties

Desired Properties

® Liveness: a node that is waiting for the bus will
eventually get it, given that the nodes with
higher priority are fair

FAIRNESS node1.is_skipping
FAIRNESS node1.is_skipping & node2.is_skipping

FAIRNESS node1.is_skipping & nodeZ2.is_skipping & node3.is_skipping

SPEC AG AF bus_active

SPEC AG(node1.is_waiting -
SPEC AG(node2.is_waiting -
SPEC AG(node3.is_waiting -
SPEC AG(node4.is_waiting -

> AF node1.is_sending)
> AF node2.is_sending)
> AF node3.is_sending)
> AF node4.is_sending)



Traffic Light Controller

based on slides by
Himanshu Jain

Carnegie Mellon
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Outline

“* Modeling Traffic Light Controller in SMV

** Properties to Check

* Four different SMV models for traffic light
controller
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Scenario N
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No turning
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Binary N
traffic

lights

)
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Safety N
Property

)

This should not
happen
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Safety
Property

This should not
happen
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Liveness N
Property

—)

When will the
stupid light
become
green again
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Liveness
Property

Traffic in each
direction must be
served
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Let's Model all of this in NuSMV
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SMV N
variables

Three Boolean
variables track the
status of the lights




SMYV variables

Three Boolean
variables sense
the traffic in each
direction

Carnegie _\lvllmé
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Properties 1/2

** Mutual exclusion
+ AG |(West.Go & (North.Go | South.Go))

“ Liveness (e.g., in North direction)
+ AG (North.Sense & INorth.Go -> AF North.Go)

“ Similarly for South and West directions
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Properties 2/2

“*No strict sequencing

* We don’t want the traffic lights to give turns to
each other (if there is no need for it)

* For example, if there is no traffic on west lane, we
do not want West.Go becoming TRUE periodically

‘*We can specify such properties partially
* AG (West.Go ->

A[West.Go U !West.Go & A[!West.Go U South.Go |
North.Gol]])

* See code for other such properties
* We want these properties to FAIL



SMV
modules

North module

Carnegie .\ll‘”(l]é
g4

will control —

South modulef

will control

West module
will control

Main module
* |nitialize variables
e Start s all modules



What if north light
IS always green
and there is always
traffic in north
direction???

Carnegie Mellon
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Fairness Constraints

** What if a light is always green and there is always
traffic in its direction

“* We will avoid such scenarios by means of
fairness constraints

<+ FAIRNESS !(Sense & Go)
<+ FAIRNESS running

*» In any infinite execution, there are infinite number
of states where either the light is red or there is
no traffic in its direction
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Implementations...



Carnegie Mellon

Some more variables

“* To ensure mutual exclusion
* We will have two Boolean variables
* NS_lock: denotes locking of north/south lane
* EW_lock: denotes locking of west lane

+*To remember that there is traffic on a lane

* Boolean variable: North.Req

* If North.Sense becomes TRUE, then North.Req is set to
TRUE

* Similarly, for South.Req and West.Req
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trafficl.smv: main module

MODULE main

VAR
-- Lock for North-South direction
NS lock : boolean;
-- Llock for East-West direction




trafficl.smv: North module | 1;2 '

MODULE North (NS lock, EW lock, FriendGo)

VAR
Go : boolean;
Sense : boolean;

Req : boolean;
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trafficl.smv: North module 2/2

next (NS_lock) :=
case
State = entering & !EW lock : TRUE;
State = exiting & !FriendGo : FALSE;
TRUE: NS_lock;

esac;

init (Go) :
next (Go) :
case
State critical : TRUE;
State = exiting : FALSE;
TRUE : Go;
esac;

FALSE;
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South is symmetric
West is a bit simpler (no East)

Let's run NuSMVIlI
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Mutual Exclusion CEX

. All variables FALSE

. North.Sense =T (North Run)
. North.Sense=F, North.Req =T

. North.State = entering

. NS_lock=T, North.Sense=T,North.State=critical

. South.Sense=T (South Run)
. South.Sense=F, South.Req=T

. South.State = entering

. South.State = critical

10. South.Go = T, South.State = exiting

11. West.Sense=T (West Run)

12. West.Sense=F, West.Req=T

13. West.State=entering

14. NS_lock=F, South.Go=F,South.Req=F, South.State=idle (South Run)
15. EW_lock=T, West.State=critical,West.Sense=T (West Run)
16. North.Go=T, North.Sense=F (North Run)
17. West.Go=T, West.Sense=F (West Run)

OCOoONOOOTPR,WN -
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trafficl.smv: North module 1/2

MODULE North (NS lock, EW lock, FriendGo)
VAR

Go : boolean;

Sense : boolean; init (Go) := FALSE;

Req : boolean; next (Go) :=

State : {idle, entering, critica case
State = critical : TRUE;
State = exiting : FALSE;
TRUE

: Go;

esac;
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traffic2.smv: fix

DEFINE
EnterCritical := State = entering & !'EW lock;

ASSIGN
init (State) := idle;

init (Go) := FALSE;
next (Go) :=
case
EnterCritical : TRUE;
State = exiting : FALSE;
TRUE : Go;
esac;
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Model checking traffic2.smv

“*Mutual exclusion property is satisfied

“*Liveness property for North direction fails
« AG ( (Sense & !Go) -> AF Go) IN North
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CEX for Liveness is a Fair Cycle

1.6
[:::;> North.State = entering
North.EnterCritical = T

all others are idle

U

1.10 <i 1.19
South is given a turn, West.State = idle

but does nothing ﬁ
1.16

1.15 :> North is given a turn,
West.State = critical but can’t get a lock
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Add ‘Turn’ to Ensure Liveness

«* This is in traffic3.smv

*» Use Peterson’s mutual exclusion algorithm

¢ Introduce a variable Turn
* Turn : {nst, wt}

* If | have just exited the critical section, offer Turn to
others
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traffic3.smv: Adding Turn

DEFINE
EnterCritical :=
State = entering & !'EW _lock & (Turn = nst | !OtherReq);

Similar change in West module
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Model check again...

*+*» Mutual still exclusion holds!

*What about liveness properties
* In north direction? HOLDS
* In south direction? HOLDS
* In west direction? FAILS ®
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traffic4d.smv

“* Two extra variables to distinguish between
North and South completion

* North.Done, South.Done

*When North exits critical section
<« North.Done is set to TRUE
<« Similarly for South.Done

+*When West exits

<+ both South.Done and North.Done are set to
FALSE
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traffic4d.smv: North Module

FALSE;

init (Done) :
next (Done) :
case
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Hurray!

*+* Mutual exclusion holds
* Liveness for all three directions holds

“*No Strict sequencing
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Possible extensions

* Allow for north, south, east, and west traffic
»* Allow for cars to turns

“*Replace specific modules by a single generic
one

* Instantiate it four times
* Once for each direction

“* Ensure properties without using fairness
constraints



