Introduction to SMV
Part 2

Arie Gurfinkel (SEI/CMU)

based on material by Prof. Clarke and
others

=== Software Engineering Institute | CarnegicMellon © 2011 Carvgioelln Unhrsy

Brief Review

=== Software Engineering Institute | CarnegicMellon © 2011 Carvgioelln Unhrsy

Symbolic Model Verifier (SMV)

Ken McMillan, Symbolic Model Checking: An Approach to
the State Explosion Problem, 1993.

Finite-state Systems described in a specialized language
Specifications given as CTL formulas
Internal representation using ROBDDs

Automatically verifies specification or produces a
counterexample

oftware Engineering Institute ‘ CarnegieMellon oz came gie Mellon Un ersity

A Sample SMV Program (short.smv)

MODULE main

VAR
request: boolean;
state: {ready, busy};
ASSIGN
init(state) := ready;
next(state) :=
case
state=ready & request: busy;
TRUE : {ready, busy};
esac;

SPEC AG(request -> AF (state = busy))

oftware Engineering Institute ‘ CarnegieMellon 2011 camegic wetion uniersity

A Three-Bit Counter

MODULE main
VAR
bit@® : counter_cell(TRUE);
bitl : counter_cell(bit@.carry_out); B — -
. . IO 207 | T ——
bit2 : counter_cell(bitl.carry_out); A

(e e e

e e e e

SPEC AG AF bit2.carry out

MODULE counter_cell(carry_in)

VAR
value : boolean;
ASSIGN
init(value) := FALSE; value + carry _in mod 2
next(value) := value xor carry_in;//
DEFINE
carry out := value & carry_in;

=== Software Engineering Institute | CarnegieMellon oz camegieweton unversiy

module instantiations

: val
n out .
n o0 pito
module declaration
: val ‘ val
n n out
[out | hit1
val
n out
! O i

—== Software Engineering Institute | CarnegieMellon oz camege weion unversiy

Inverter Ring
MODULE main |

VAR r{ >o———| >0——{ >0—
gatel : process inverter(gate3.output);

gate2 : process inverter(gatel.output);
gate3 : process inverter(gate2.output);

I Q

SPEC (AG AF gatel.output) & (AG AF !gatel.output)

MODULE inverter(input)
VAR

output : boolean;
ASSIGN

init(output) := FALSE;

next (output) := linput;

FAIRNESS
running

=== Software Engineering Institute | CarnegieMellon oz camegieweton unversiy

Fairness

FAIRNESS Ctlform

e Assumed to be true infinitely often
* Model checker only explores paths satisfying fairness constraint
e Each fairness constraint must be true infinitely often

If there are no fair paths
e All existential formulas are false
e All universal formulas are true

FAIRNESS running

Software Engineering Institute ‘ CarnegieMellon ozt camgie weton universiy

Can A TRUE Result of Model Checker be Trusted

Antecedent Failure [Beatty & Bryant 1994]

e A temporal formula AG (p = q) suffers an antecedent
failure in model M iff M £ AG (p = q) AND M £ AG (-p)

Vacuity [Beer et al. 1997]

* A temporal formula o is satisfied vacuously by M iff there
exists a sub-formula p of ¢ such that M k ¢[p<—q] for every
other formula g

ee.g., MEAG (r=>AF a) and M AG (r > AF -a) and
AG (r = AF -r) and AG (r = AF FALSE), ...

=== Software Engineering Institute | CarnegieMellon oz canes T—

Vacuity Detection: Single Occurrence

¢ IS vacuous in M iff there exists an occurrence of a
subformula p such that

e M £ ¢[p < TRUE] and M k ¢[p « FALSE]

/ B
M e AG (req > AF TRUE) M e AG (req => AF FALSE)
M e AG TRUE MeAG -req
\ J
/ B
M e AG (TRUE = AF ack) M e AG (FALSE = AF ack)
M e AG AF ack M e AG TRUE
\ 4

%é Software Engineering Institute | CarnegieMellon -

Detecting Vacuity in Multiple Occurrences: ACTL

An ACTL o is vacuous in M iff there exists an a
subformula p such that

Mk @[p < X] , where x is a non-deterministic variable
Is AG (req = AF req) vacuous? Should it be?

4)

MEAG (X = AF x) Always vacuous!!!
M AG TRUE
o /
Is AG (req = AX req) vacuous? Should it be?

a N

MEAG (x = AX X) Can be vacuous!!!
can’t reduce
o /

Software Engineering Institute ‘ Carnegie Mellon o211 camegie weton universit

Run NuSMV

NuSMV [options] inputfile

e -int interactive mode

e-1p list all properties

e-n X check property number X

e -ctt check totality of transition relation
e -01ld compatibility mode

e -ofm file output flattened model

=== Software Engineering Institute | CarnegieMellon oz cumsgeweion unersty

Using NuSMV in Interactive Mode

Basic Usage
*g0
— prepare model for verification

e check ctlspec
— verify properties

Simulation
epick state [-i] [-r]

— pick initial state for simulation [interactively] or [randomly]
esimulate [-1] [r] s

— simulate the model for ‘s’ steps [interactively] or [randomly]

e show_traces
— show active traces

—== Software Engineering Institute | CarnegieMellon oz camege weion unversiy

Useful Links

NuSMV home page

e http://nusmv.fbk.eu/
NuSMV tutorial

o http://nusmv.fbk.eu/NuSMV/tutorial/v25/tutorial.pdf
NuSMV user manual

e http://nusmv.fbk.eu/NuSMV/userman/v25/nusmv.pdf
NuSMV FAQ

e http://nusmv.fbk.eu/fag.html
NuSMV on Andrew

 /afs/andrew.cmu.edu/usr6/soonhok/public/NuSMV-zchaff-2.5.3-x86 _64-redhat-
linux-gnu/

NuSMV examples
o <NuSMV>/share/nusmv/examples

Ken McMillan, Symbolic Model Checking: An Approach to the State
Explosion Problem, 1993

o http://www.kenmcmil.com/pubs/thesis.pdf

—== Software Engineering Institute | CarnegieMellon oz camege weion unversiy

Today: 3 Examples

Mutual Exclusion

Bus Protocol

Traffic Light Controller

—== Software Engineering Institute | CarnegieMellon oz came T——

Example 1: Mutual Exclusion

Two processes want access to a shared resource
» they go through idle, trying, critical states

Safety (Mutual Exclusion)

* Only one process can be in the critical section at any
given time

—AG (!(p0 = critical & p1 = critical))
Liveness (No Starvation)

e [f a process is trying to enter critical section, it eventually
enters it

—AG (p0 = trying -> AF p0 = critical)

Software Engineering Institute ‘ CarnegieMellon ozt camsgie weton univers

SMV Example: Bus Protocol

Ed Clarke

Daniel Kroening

Carnegie Mellon University

Carnegie Mellon

Carnegie Mellon

Overview
Preliminaries: Design goals:
® Single, shared bus ® Collision free operation
® Every node can broadcast on ® Priorities for the nodes
this bus

Similar busses are used in the automotive industry
® CAN
® Byteflight

Carnegie Mellon

Basic Idea

Operation Principle
® Round based algorithm

® First person to start sending
gets the bus

Achieve design goals by:
® Assign unique time to each node

® Guarantees Collision free
> operation

® The node with the lower time gets
priority

Carnegie Mellon

5664

Bus

v

Carnegie Mellon

Example

Node 1 ’ , Node 4

Hm, | won't
send
Bus
—ttt+t+—+—t—+—+—+—+—f+—+—+—+>
: time

Carnegie Mellon

Example

Node 2 ’ Node 4

I VVIIl oOCl1 IU

Bus | |

Carnegie Mellon

566 ¢

Bus\

v

Carnegie Mellon

Bus | |

v

Carnegie Mellon

Bus | | |

v

Carnegie Mellon

RESET
CLOCK!

Bus | aa|

Start of new | | |
Cyc|e i i i | | | >

Carnegie Mellon

Example

Node 1 ’ , Node 4

Hm, | won'’t
send

Bus | |

v

Carnegie Mellon

SMV Model

Design:
® A state machine controls each node
® Counter keeps track of clock

Counter:

® Reset if someone sends MODULE node(bus_active)
VAR counter: 0 .. 99;

® Increment otherwise
ASSIGN
next(counter):=

case
bus active : 0;
counter < 99: counter + 1;

TRUE: 99;

esac;

Carnegie Mellon

SMV Model

Design:
® A state machine controls each node
® Counter keeps track of the clock

beginning beginning

Sending counter=priority

Carnegie Mellon

SMV Model

MODULE node(priority, bus_active)
VAR
counter: 0 .. 99;
state: { busy, skip, waiting, sending };

ASSIGN

Carnegie Mellon

SMV Model

MODULE main
VAR

Carnegie Mellon

Properties
Desired Properties

® Safety: Only one node uses the bus at a given
time

SPEC AG (node1.is_sending -> (nodeZ2.is_sending & 'node3.is_sending & 'node4.is_sending))
SPEC AG (node2.is_sending -> (Inode1.is_sending & 'node3.is_sending & Inode4.is_sending))
SPEC AG (node3.is_sending -> (Inode1.is_sending & 'node2.is_sending & 'node4.is_sending))
SPEC AG (node4.is_sending -> (Inode1.is_sending & 'node2.is_sending & 'node3.is_sending))

Carnegie Mellon

Properties

Desired Properties

® Liveness: a node that is waiting for the bus will
eventually get it, given that the nodes with
higher priority are fair

FAIRNESS node1.is_skipping
FAIRNESS node1.is_skipping & node2.is_skipping

FAIRNESS node1.is_skipping & nodeZ2.is_skipping & node3.is_skipping

SPEC AG AF bus_active

SPEC AG(node1.is_waiting -
SPEC AG(node2.is_waiting -
SPEC AG(node3.is_waiting -
SPEC AG(node4.is_waiting -

> AF node1.is_sending)
> AF node2.is_sending)
> AF node3.is_sending)
> AF node4.is_sending)

Traffic Light Controller

based on slides by
Himanshu Jain

Carnegie Mellon

Carnegie Mellon

Outline

“* Modeling Traffic Light Controller in SMV

** Properties to Check

* Four different SMV models for traffic light
controller

Carnegie Mellon

Scenario N

!

— W
T

Carnegie Mellon

No turning

Carnegie Mellon

Binary N
traffic

lights

)

Carnegie Mellon

Safety N
Property

)

This should not
happen

Carnegie Mellon

Safety
Property

This should not
happen

Carnegie Mellon

Liveness N
Property

—)

When will the
stupid light
become
green again

Carnegie Mellon

Liveness
Property

Traffic in each
direction must be
served

Carnegie Mellon

Let's Model all of this in NuSMV

Carnegie Mellon
744

SMV N
variables

Three Boolean
variables track the
status of the lights

SMYV variables

Three Boolean
variables sense
the traffic in each
direction

Carnegie _\lvllmé
ya

Carnegie Mellon
46

Properties 1/2

** Mutual exclusion
+ AG |(West.Go & (North.Go | South.Go))

“ Liveness (e.g., in North direction)
+ AG (North.Sense & INorth.Go -> AF North.Go)

“ Similarly for South and West directions

Carnegie Mellon
47

Properties 2/2

“*No strict sequencing

* We don’t want the traffic lights to give turns to
each other (if there is no need for it)

* For example, if there is no traffic on west lane, we
do not want West.Go becoming TRUE periodically

‘*We can specify such properties partially
* AG (West.Go ->

A[West.Go U !West.Go & A[!West.Go U South.Go |
North.Gol]])

* See code for other such properties
* We want these properties to FAIL

SMV
modules

North module

Carnegie .\ll‘”(l]é
g4

will control —

South modulef

will control

West module
will control

Main module
* |nitialize variables
e Start s all modules

What if north light
IS always green
and there is always
traffic in north
direction???

Carnegie Mellon

Carnegie Mellon

Fairness Constraints

** What if a light is always green and there is always
traffic in its direction

“* We will avoid such scenarios by means of
fairness constraints

<+ FAIRNESS !(Sense & Go)
<+ FAIRNESS running

*» In any infinite execution, there are infinite number
of states where either the light is red or there is
no traffic in its direction

Carnegie Mellon

Implementations...

Carnegie Mellon

Some more variables

“* To ensure mutual exclusion
* We will have two Boolean variables
* NS_lock: denotes locking of north/south lane
* EW_lock: denotes locking of west lane

+*To remember that there is traffic on a lane

* Boolean variable: North.Req

* If North.Sense becomes TRUE, then North.Req is set to
TRUE

* Similarly, for South.Req and West.Req

Carnegie Mellon

trafficl.smv: main module

MODULE main

VAR
-- Lock for North-South direction
NS lock : boolean;
-- Llock for East-West direction

trafficl.smv: North module | 1;2 '

MODULE North (NS lock, EW lock, FriendGo)

VAR
Go : boolean;
Sense : boolean;

Req : boolean;

Carnegie Mellon

trafficl.smv: North module 2/2

next (NS_lock) :=
case
State = entering & !EW lock : TRUE;
State = exiting & !FriendGo : FALSE;
TRUE: NS_lock;

esac;

init (Go) :
next (Go) :
case
State critical : TRUE;
State = exiting : FALSE;
TRUE : Go;
esac;

FALSE;

Carnegie Mellon

South is symmetric
West is a bit simpler (no East)

Let's run NuSMVIlI

Carnegie Mellon

Mutual Exclusion CEX

. All variables FALSE

. North.Sense =T (North Run)
. North.Sense=F, North.Req =T

. North.State = entering

. NS_lock=T, North.Sense=T,North.State=critical

. South.Sense=T (South Run)
. South.Sense=F, South.Req=T

. South.State = entering

. South.State = critical

10. South.Go = T, South.State = exiting

11. West.Sense=T (West Run)

12. West.Sense=F, West.Req=T

13. West.State=entering

14. NS_lock=F, South.Go=F,South.Req=F, South.State=idle (South Run)
15. EW_lock=T, West.State=critical,West.Sense=T (West Run)
16. North.Go=T, North.Sense=F (North Run)
17. West.Go=T, West.Sense=F (West Run)

OCOoONOOOTPR,WN -

Carnegie Mellon

trafficl.smv: North module 1/2

MODULE North (NS lock, EW lock, FriendGo)
VAR

Go : boolean;

Sense : boolean; init (Go) := FALSE;

Req : boolean; next (Go) :=

State : {idle, entering, critica case
State = critical : TRUE;
State = exiting : FALSE;
TRUE

: Go;

esac;

Carnegie Mellon

traffic2.smv: fix

DEFINE
EnterCritical := State = entering & !'EW lock;

ASSIGN
init (State) := idle;

init (Go) := FALSE;
next (Go) :=
case
EnterCritical : TRUE;
State = exiting : FALSE;
TRUE : Go;
esac;

Carnegie Mellon

Model checking traffic2.smv

“*Mutual exclusion property is satisfied

“*Liveness property for North direction fails
« AG ((Sense & !Go) -> AF Go) IN North

Carnegie Mellon

CEX for Liveness is a Fair Cycle

1.6
[:::;> North.State = entering
North.EnterCritical = T

all others are idle

U

1.10 <i 1.19
South is given a turn, West.State = idle

but does nothing ﬁ
1.16

1.15 :> North is given a turn,
West.State = critical but can’t get a lock

Carnegie Mellon

Add ‘Turn’ to Ensure Liveness

«* This is in traffic3.smv

*» Use Peterson’s mutual exclusion algorithm

¢ Introduce a variable Turn
* Turn : {nst, wt}

* If | have just exited the critical section, offer Turn to
others

Carnegie Mellon

traffic3.smv: Adding Turn

DEFINE
EnterCritical :=
State = entering & !'EW _lock & (Turn = nst | !OtherReq);

Similar change in West module

Carnegie Mellon

Model check again...

+» Mutual still exclusion holds!

*What about liveness properties
* In north direction? HOLDS
* In south direction? HOLDS
* In west direction? FAILS ®

Carnegie Mellon

traffic4d.smv

“* Two extra variables to distinguish between
North and South completion

* North.Done, South.Done

*When North exits critical section
<« North.Done is set to TRUE
<« Similarly for South.Done

+*When West exits

<+ both South.Done and North.Done are set to
FALSE

Carnegie Mellon

traffic4d.smv: North Module

FALSE;

init (Done) :
next (Done) :
case

Carnegie Mellon

Hurray!

+ Mutual exclusion holds
* Liveness for all three directions holds

“*No Strict sequencing

Carnegie Mellon

Possible extensions

* Allow for north, south, east, and west traffic
»* Allow for cars to turns

“*Replace specific modules by a single generic
one

* Instantiate it four times
* Once for each direction

“* Ensure properties without using fairness
constraints

