Tarski's Fixed-point Lemma

Recall:

- We identify a predicate with the set of states in which the predicate is true.
- Predicates are ordered via set inclusion.
- X is a fixed point of τ iff $\tau(X) = X$.
- A predicate transformer τ is monotonic iff $P \subseteq Q$ implies $\tau(P) \subseteq \tau(Q)$.
- A predicate transformer τ is \cup -continuous iff $P_1 \subseteq P_2 \subseteq \ldots$ implies $\tau(\cup_i P_i) = \cup_i \tau(P_i)$.
- A predicate transformer τ is \cap -continuous iff $P_1 \supseteq P_2 \supseteq \dots$ implies $\tau(\cap_i P_i) = \cap_i \tau(P_i)$.

Lemma. If $p Z [\tau(Z)] = \cap \{Z \mid \tau(Z) = Z\}$ whenever τ is monotonic.

Proof. We in fact prove that $\mathbf{lfp}\,Z\,\big[\tau(Z)\big] = \cap\{Z\mid \tau(Z)\subseteq Z\}$, since it has a simpler proof. Define $L=\{Z\mid \tau(Z)\subseteq Z\}$, we first prove that $\cap L$ is a fixpoint of τ , and we shall proceed by showing that $\tau(\cap L)\subseteq \cap L$ and $\tau(\cap L)\supseteq \cap L$. Recall that $\cap L$ is the greatest lower bound of L. We now reason

$Z \in L$	
\Rightarrow	$\cap L$ lower bound of L
$\cap L \subseteq Z$	
\Rightarrow	au monotonic
$\tau(\cap L) \subseteq \tau(Z)$	
\Rightarrow	$Z \in L \text{ iff } \tau(Z) \subseteq Z$
$\tau(\cap L) \subseteq Z$	
\Rightarrow	$\cap L$ greatest lower bound of L
$\tau(\cap L) \subseteq \cap L$	
\Rightarrow	au monotonic
$\tau(\tau(\cap L)) \subseteq \tau(\cap L)$	
\Rightarrow	definition of L
$\tau(\cap L) \in L$	
\Rightarrow	$\cap L$ lower bound of L
$\boxed{\cap L \subseteq \tau(\cap L)}$	

so we conclude $\cap L = \tau(\cap L)$.

We now prove that $\cap L$ is the least fixpoint. Suppose X is an arbitrary fixpoint of τ , then it is $X \in L$. But $\cap L$ is a lower bound of L, so it must be $\cap L \subseteq X$.

Lemma. If $p[\tau(Z)] = \bigcup_i \tau^i(False)$ whenever τ is \cup -continuous.

Proof. For any predicate P and $i \in \mathbb{N}$, $\tau^i(P)$ is defined inductively as: $\tau^0(P) = P$ and $\tau^i(P) = \tau(\tau^{i-1}(P))$ for i > 0. We first show that $\bigcup_i \tau^i(False)$ is a fixpoint of τ . We reason

$$\begin{split} \tau(\cup_{i=0}^{\infty}\tau^{i}(\mathit{False})) &= \qquad \qquad \tau \cup \text{-continuous} \\ \cup_{i=0}^{\infty}\tau(\tau^{i}(\mathit{False})) &= \qquad \qquad \text{definition of } \tau^{i} \\ \cup_{i=0}^{\infty}\tau^{i+1}(\mathit{False}) &= \qquad \qquad \text{algebra} \\ \cup_{i=1}^{\infty}\tau^{i}(\mathit{False}) &= \qquad \qquad P \cup \emptyset = P \\ \cup_{i=1}^{\infty}\tau^{i}(\mathit{False}) \cup \emptyset &= \qquad \qquad False = \emptyset \text{ and definition of } \tau^{0} \\ \cup_{i=1}^{\infty}\tau^{i}(\mathit{False}) \cup \tau^{0}(\mathit{False}) &= \qquad \qquad \text{algebra} \\ \cup_{i=0}^{\infty}\tau^{i}(\mathit{False}) &= \qquad \qquad \text{algebra} \\ \cup_{i=0}^{\infty}\tau^{i}(\mathit{False}) &= \qquad \qquad \text{algebra} \end{split}$$

and we have showed that $\bigcup_i \tau^i(False)$ is a fixpoint of τ . We now prove that it is the least fixpoint. Suppose X is an arbitrary fixpoint of τ . It must be $False \subseteq X$ and since τ is monotonic we have $\tau(False) \subseteq \tau(X) = X$. By induction one can prove (Exercise) that

$$\forall i \in \mathbb{N} \quad \tau^i(False) \subseteq X$$

which implies that $\bigcup_{i=0}^{\infty} \tau^i(False) \subseteq X$.

Lemma Suppose the set of states is finite. Then $\mathbf{E}[f_1\mathbf{U}f_2]$ is the least fixpoint of the transformer $\tau(Z) = f_2 \vee (f_1 \wedge \mathbf{EX} Z)$.

Proof. The proof strategy, as per Lemma 13 (page 64 of the textbook), is the following:

- 1. prove that τ is monotonic;
- 2. since the state space is finite and τ is monotonic, observe that $\mathbf{lfp} Z \left[\tau(Z) \right] = \bigcup_i \tau^i(False);$

3. prove that $\mathbf{E}[f_1\mathbf{U}f_2] = \bigcup_i \tau^i(False)$, and conclude that $\mathbf{E}[f_1\mathbf{U}f_2] = \mathbf{lfp} Z[\tau(Z)]$.

Here we only prove step 1, since steps 2 and 3 are covered in the textbook. We shall also prove that $\mathbf{E}[f_1\mathbf{U}f_2]$ is a fixpoint of τ , which is needed in step 3 but it is not detailed in the textbook.

We begin with step 1. Lemma 9 (page 64 of the textbook) shows that the transformer $\alpha(Z) = f_1 \wedge \mathbf{EX} Z$ is monotonic. We thus need to prove that $\tau(Z) = f_2 \vee \alpha(Z)$ is monotonic. Let us consider any two predicates $P_1 \subseteq P_2$, then

$$s \in \tau(P_1)$$
 \Leftrightarrow definition of τ , semantics of \vee $s \models f_2$ or $s \in \alpha(P_1)$ \Rightarrow α monotonic, i.e., $\alpha(P_1) \subseteq \alpha(P_2)$ \Leftrightarrow semantics of \vee , definition of τ $s \in \tau(P_2)$

and we have therefore shown that $\tau(P_1) \subseteq \tau(P_2)$.

We now prove that $\mathbf{E}[f_1\mathbf{U}f_2]$ is a fixpoint of τ , i.e., that $\tau(\mathbf{E}[f_1\mathbf{U}f_2]) = \mathbf{E}[f_1\mathbf{U}f_2]$. For a path π we denote by π^i the suffix of π starting at the *i*-th state (the first state has index 0). We reason:

$$s_0 \in \tau(\mathbf{E}[f_1\mathbf{U}f_2]) \Leftrightarrow \qquad \text{definition of } \tau, \text{ semantics of } \wedge, \vee$$

$$s_0 \models f_2 \text{ or } (s_0 \models f_1 \text{ and } s_0 \models \mathbf{EX} \mathbf{E}[f_1\mathbf{U}f_2])$$

$$\Leftrightarrow \qquad \text{semantics of } \mathbf{E}$$

$$s_0 \models f_2 \text{ or } (s_0 \models f_1 \text{ and } \exists \pi = s_0, s_1, \dots \pi \models \mathbf{X} \mathbf{E}[f_1\mathbf{U}f_2])$$

$$\Leftrightarrow \qquad \text{semantics of } \mathbf{X}$$

$$s_0 \models f_2 \text{ or } (s_0 \models f_1 \text{ and } \exists \pi = s_0, s_1, \dots \pi^1 \models \mathbf{E}[f_1\mathbf{U}f_2])$$

$$\Leftrightarrow \qquad \qquad s_1 \text{ is the first state of } \pi^1$$

$$s_0 \models f_2 \text{ or } (s_0 \models f_1 \text{ and } \exists \pi = s_0, s_1, \dots s_1 \models \mathbf{E}[f_1\mathbf{U}f_2])$$

$$\Leftrightarrow \qquad \qquad \text{semantics of } \mathbf{E}$$

$$s_0 \models f_2 \text{ or } (s_0 \models f_1 \text{ and } \exists \pi = s_0, s_1, \dots \exists \sigma = s_1, t_1, t_2, \dots \sigma \models f_1\mathbf{U}f_2)$$

$$\Leftrightarrow \qquad \qquad \text{semantics of } \mathbf{U}$$

$$s_0 \models f_2 \text{ or } (s_0 \models f_1 \text{ and } \exists \pi = s_0, s_1, \dots \exists \sigma = s_1, t_1, t_2, \dots \exists k \geqslant 0 \text{ } (\sigma^k \models f_2 \text{ and } \forall i < k \sigma^i \models f_1))$$

$$\Leftrightarrow \qquad \qquad \qquad \text{logic - eliminate double quantifier}$$

$$s_0 \models f_2 \text{ or } (s_0 \models f_1 \text{ and } \exists \pi = s_0, s_1, \dots \exists k \geqslant 1 \text{ } (\pi^k \models f_2 \text{ and } \forall 1 \leqslant i < k \pi^i \models f_1))$$

$$\Leftrightarrow \qquad \qquad \text{logic - include } s_0 \models f_1 \text{ in existential quantifier}$$

$$s_0 \models f_2 \text{ or } (\exists \pi = s_0, s_1, \dots \exists k \geqslant 1 \ (\pi^k \models f_2 \text{ and } \forall 0 \leqslant i < k \ \pi^i \models f_1))$$

$$\Leftrightarrow \qquad \qquad \text{logic - include } s_0 \models f_2 \text{ in existential quantifier}$$

$$\exists \pi = s_0, s_1, \dots \exists k \geqslant 0 \ (\pi^k \models f_2 \text{ and } \forall 0 \leqslant i < k \ \pi^i \models f_1)$$

$$\Leftrightarrow \qquad \qquad \text{semantics of } \mathbf{U}$$

$$\exists \pi = s_0, s_1, \dots \pi \models f_1 \mathbf{U} f_2$$

$$\Leftrightarrow \qquad \qquad \text{semantics of } \mathbf{E}$$

$$s_0 \in \mathbf{E}[f_1 \mathbf{U} f_2]$$

and we have shown that $\tau(\mathbf{E}[f_1\mathbf{U}f_2]) = \mathbf{E}[f_1\mathbf{U}f_2].$