
Tarski’s Fixed-point Lemma

Recall:

• We identify a predicate with the set of states in which the predicate is true.

• Predicates are ordered via set inclusion.

• X is a fixed point of τ iff τ(X) = X.

• A predicate transformer τ is monotonic iff P ⊆ Q implies τ(P ) ⊆ τ(Q).

• A predicate transformer τ is ∪-continuous iff P1 ⊆ P2 ⊆ . . . implies τ(∪iPi) = ∪iτ(Pi).

• A predicate transformer τ is ∩-continuous iff P1 ⊇ P2 ⊇ . . . implies τ(∩iPi) = ∩iτ(Pi).

Lemma. lfpZ
[
τ(Z)

]
= ∩{Z | τ(Z) = Z} whenever τ is monotonic.

Proof. We in fact prove that lfpZ
[
τ(Z)

]
= ∩{Z | τ(Z) ⊆ Z}, since it has a simpler proof.

Define L = {Z | τ(Z) ⊆ Z}, we first prove that ∩L is a fixpoint of τ , and we shall proceed
by showing that τ(∩L) ⊆ ∩L and τ(∩L) ⊇ ∩L. Recall that ∩L is the greatest lower bound
of L. We now reason

Z ∈ L

⇒ ∩L lower bound of L

∩L ⊆ Z

⇒ τ monotonic

τ(∩L) ⊆ τ(Z)

⇒ Z ∈ L iff τ(Z) ⊆ Z

τ(∩L) ⊆ Z

⇒ ∩L greatest lower bound of L

τ(∩L) ⊆ ∩L

⇒ τ monotonic

τ(τ(∩L)) ⊆ τ(∩L)

⇒ definition of L

τ(∩L) ∈ L

⇒ ∩L lower bound of L

∩L ⊆ τ(∩L)
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so we conclude ∩L = τ(∩L).

We now prove that ∩L is the least fixpoint. Suppose X is an arbitrary fixpoint of τ , then it
is X ∈ L. But ∩L is a lower bound of L, so it must be ∩L ⊆ X.

Lemma. lfpZ
[
τ(Z)

]
= ∪iτ

i(False) whenever τ is ∪-continuous.

Proof. For any predicate P and i ∈ N, τ i(P ) is defined inductively as: τ 0(P ) = P and
τ i(P ) = τ(τ i−1(P )) for i > 0. We first show that ∪iτ

i(False) is a fixpoint of τ . We reason

τ(∪∞i=0τ
i(False))

= τ ∪-continuous

∪∞i=0τ(τ i(False))

= definition of τ i

∪∞i=0τ
i+1(False)

= algebra

∪∞i=1τ
i(False)

= P ∪ ∅ = P

∪∞i=1τ
i(False) ∪ ∅

= False = ∅ and definition of τ0

∪∞i=1τ
i(False) ∪ τ 0(False)

= algebra

∪∞i=0τ
i(False)

and we have showed that ∪iτ
i(False) is a fixpoint of τ . We now prove that it is the least

fixpoint. Suppose X is an arbitrary fixpoint of τ . It must be False ⊆ X and since τ is
monotonic we have τ(False) ⊆ τ(X) = X. By induction one can prove (Exercise) that

∀i ∈ N τ i(False) ⊆ X

which implies that ∪∞i=0τ
i(False) ⊆ X.

Lemma Suppose the set of states is finite. Then E[f1Uf2] is the least fixpoint of the
transformer τ(Z) = f2 ∨ (f1 ∧ EXZ).

Proof. The proof strategy, as per Lemma 13 (page 64 of the textbook), is the following:

1. prove that τ is monotonic;

2. since the state space is finite and τ is monotonic, observe that lfpZ
[
τ(Z)

]
= ∪iτ

i(False);
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3. prove that E[f1Uf2] = ∪iτ
i(False), and conclude that E[f1Uf2] = lfpZ

[
τ(Z)

]
.

Here we only prove step 1, since steps 2 and 3 are covered in the textbook. We shall also
prove that E[f1Uf2] is a fixpoint of τ , which is needed in step 3 but it is not detailed in the
textbook.

We begin with step 1. Lemma 9 (page 64 of the textbook) shows that the transformer
α(Z) = f1∧EXZ is monotonic. We thus need to prove that τ(Z) = f2∨α(Z) is monotonic.
Let us consider any two predicates P1 ⊆ P2, then

s ∈ τ(P1)

⇔ definition of τ , semantics of ∨

s |= f2 or s ∈ α(P1)

⇒ α monotonic, i.e., α(P1) ⊆ α(P2)

s |= f2 or s ∈ α(P2)

⇔ semantics of ∨, definition of τ

s ∈ τ(P2)

and we have therefore shown that τ(P1) ⊆ τ(P2).

We now prove that E[f1Uf2] is a fixpoint of τ , i.e., that τ(E[f1Uf2]) = E[f1Uf2]. For a
path π we denote by πi the suffix of π starting at the i-th state (the first state has index 0).
We reason:

s0 ∈ τ(E[f1Uf2])

⇔ definition of τ , semantics of ∧,∨

s0 |= f2 or (s0 |= f1 and s0 |= EX E[f1Uf2])

⇔ semantics of E

s0 |= f2 or (s0 |= f1 and ∃π = s0, s1, . . . π |= X E[f1Uf2])

⇔ semantics of X

s0 |= f2 or (s0 |= f1 and ∃π = s0, s1, . . . π1 |= E[f1Uf2])

⇔ s1 is the first state of π1

s0 |= f2 or (s0 |= f1 and ∃π = s0, s1, . . . s1 |= E[f1Uf2])

⇔ semantics of E

s0 |= f2 or (s0 |= f1 and ∃π = s0, s1, . . . ∃σ = s1, t1, t2, . . . σ |= f1Uf2)

⇔ semantics of U

s0 |= f2 or (s0 |= f1 and ∃π = s0, s1, . . . ∃σ = s1, t1, t2, . . . ∃k > 0 (σk |= f2 and ∀i < k σi |= f1))

⇔ logic - eliminate double quantifier

s0 |= f2 or (s0 |= f1 and ∃π = s0, s1, . . . ∃k > 1 (πk |= f2 and ∀ 1 6 i < k πi |= f1))
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⇔ logic - include s0 |= f1 in existential quantifier

s0 |= f2 or (∃π = s0, s1, . . . ∃k > 1 (πk |= f2 and ∀ 0 6 i < k πi |= f1))

⇔ logic - include s0 |= f2 in existential quantifier

∃π = s0, s1, . . . ∃k > 0 (πk |= f2 and ∀ 0 6 i < k πi |= f1)

⇔ semantics of U

∃π = s0, s1, . . . π |= f1Uf2

⇔ semantics of E

s0 ∈ E[f1Uf2]

and we have shown that τ(E[f1Uf2]) = E[f1Uf2].
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