
Lecture 4: Symbolic Model Checking with BDDs

Edmund M. Clarke, Jr.
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA 15213

Temporal Logic Model Checking

Specification Language: A propositional temporal logic.

Verification Procedure: Exhaustive search of the state space of the concurrent system
to determine truth of specification.

• E. M. Clarke and E. A. Emerson. Synthesis of synchronizationskeletons for
branching time temporal logic. InLogic of programs: workshop, Yorktown Heights,
NY, May 1981, volume 131 ofLecture Notes in Computer Science. Springer-Verlag,
1981.

• J.P. Quielle and J. Sifakis. Specification and verification of concurrent systems in
CESAR. InProceedings of the Fifth International Symposium in Programming,
volume 137 ofLecture Notes in Computer Science. Springer-Verlag, 1981.

Why Model Checking?

Advantages:

• No proofs!!!

• Fast

• Counterexamples

• No problem with partial specifications

• Logics can easily express many concurrency properties

Main Disadvantage:State Explosion Problem

• Too many processes

• In digital hardware terms: too many latches

Much progress recently!!

Temporal Logic

a b

b c c

a b

a b

c

c c

b c

State Transition Graph or
Kripke Model

(Unwind State Graph to obtain Infinite Tree)

Infinite Computation Tree

Computation Tree Logics

Formulas are constructed frompath quantifiersandtemporal operators:

1. Path quantifier:

• A—“for every path”

• E—“there exists a path”

2. Temporal Operator:

• Xp—p holdsnexttime.
• Fp—p holds sometime in thefuture

• Gp—p holdsglobally in the future

• pUq—p holdsuntil q holds

The Logic CTL

In CTL each temporal operator must be immediately preceeded by a path quantifier.

The four most widely used CTL operators are illustrated below. Each computation tree
has initial states0 as its root.

g

.

.

.
.
.
.

.

.

.
.
.
.

g

g

g

g

g g g

.

.

.
.
.
.

.

.

.
.
.
.

g

g

M, s0 |= AG g M, s0 |= AF g

g

.

.

.
.
.
.

.

.

.
.
.
.

g

.

.

.
.
.
.

.

.

.
.
.
.

g

g

M, s0 |= EF g M, s0 |= EG g

Typical CTL Formulas

• EF(Started ∧ ¬Ready): it is possible to get to a state whereStarted holds but
Ready does not hold.

• AG(Req ⇒ AFAck): if a Request occurs, then it will be eventuallyAcknowledged.

• AG(AF DeviceEnabled): DeviceEnabled holds infinitely often on every
computation path.

• AG(EF Restart): from any state it is possible to get to theRestart state.

Model Checking Problem

Let M be the state–transition graph obtained from the concurrentsystem.

Let f be the specification expressed in temporal logic.

Find all statess of M such that

M, s |= f

and check if initial states are among these.

Efficient model checking algorithms exist for CTL.

• E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-state
concurrent systems using temporal logic specifications.ACM Trans. Programming
Languages and Systems, 8(2):pages 244–263, 1986.

Explicit Traversal

Preprocessor Model Checker

(EMC)

CTL formulas

State Transition Graph

10 to 10 states4 5

True or Counterexample

Symbolic Model Checking

Method used by most “industrial strength” model checkers:

• usesboolean encodingfor state machine and sets of states.

• can handle much larger designs –hundreds of state variables.

• BDDstraditionally used to represent boolean functions.

Symbolic Model Checking with BDDs

Ken McMillan implemented a version of the CTL model checkingalgorithm using
Binary Decision Diagramsin 1987.

Carl Pixley independently developed a similar algorithm, as did the French
researchers, Coudert and Madre.

BDDs enabled handling much larger concurrent systems. (usually, anorder of
magnitude increasein hardware latches!)

• J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and J. Hwang. Symbolic
model checking:1020 states and beyond.Information and Computation,
98(2):pages 142–170, 1992.

• K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.

Fixpoint Algorithms

EF p = p ∨ EX EF p

p

p

Fixpoint Algorithms (cont.)

Key properties ofEF p:

1. EF p = p ∨ EX EF p

2. U = p ∨ EX U impliesEF p ⊆ U

We writeEF p = Lfp U.p ∨ EX U .

How to computeEF p:

U0 = False
U1 = p ∨ EX U0

U2 = p ∨ EX U1

U3 = p ∨ EX U2

...

M, s0 |= EF p?

s

p

0

U0 = ∅

M, s0 |= EF p?

s

p

0

U1 = p ∨ EX U0

M, s0 |= EF p?

s

p

0

U2 = p ∨ EX U1

M, s0 |= EF p?

s

p

0

U3 = p ∨ EX U2

Ordered Binary Decision Trees and Diagrams

Ordered Binary Decision Treefor the two-bit comparator, given by the formula

f(a1, a2, b1, b2) = (a1 ↔ b1) ∧ (a2 ↔ b2),

is shown in the figure below:

b

a
2

1
b

a
2

bb

a
2

1
b

a
2

b b

a
2

1
b

a
2

bb

a
2

1
b

a
2

b
2 2 2 2 2 2 2 2

a 2
a 2

a
2

a
2

b
1

b
1

a
1

1 0 0 0 0 0 0 0 0 0 0 1

0

0

0

0 1

1

10

1

1

1

101

0

0

0

000

1

1

11

10

1 1 0 0

1 0 0 1

From Binary Decision Trees to Diagrams

An Ordered Binary Decision Diagram (OBDD)is an ordered decision tree where

• All isomorphic subtrees are combined, and

• All nodes with isomorphic children are eliminated.

Given a parameter ordering, OBDD is unique up to isomorphism.

• R. E. Bryant. Graph-based algorithms for boolean function manipulation.IEEE
Transactions on Computers, C-35(8):677–691, 1986.

OBDD for Comparator Example

If we use the orderinga1 < b1 < a2 < b2 for the comparator function, we obtain the
OBDD below:

0

0

0

0

1

1

1

1

b
1

a
1

b1

a
2

b
2

b
2

1

0

1 0

0

1

Variable Ordering Problem

The size of an OBDD depends critically on the variable ordering.

If we use the orderinga1 < a2 < b1 < b2 for the comparator function, we get the
OBDD below:

a
1

a
2

b b

a
2

b b1 1 1 1

b b
2 2

1

0

0

1

1

10

0

0

1

0

11

1

0

0

1

0

1

1

0

a 2

a1

Variable Ordering Problem (Cont.)

For ann-bit comparator:

• if we use the orderinga1 < b1 < . . . < an < bn, the number of vertices will be
3n + 2.

• if we use the orderinga1 < . . . < an < b1 . . . < bn, the number of vertices is
3 · 2n − 1.

Moreover, there are boolean functions that have exponential size OBDDs for any
variable ordering.

An example is the middle output (nth output) of a combinational circuit to multiply
two n bit integers.

Logical operations on OBDD’s

• Logical negation: ¬f(a, b, c, d)

Replace each leaf by its negation

• Logical conjunction: f(a, b, c, d) ∧ g(a, b, c, d)

– UseShannon’s expansionas follows,

f · g = ā · (f |ā · g|ā) + a · (f |a · g|a)

to break problem intotwo subproblems. Solve subproblems recursively.
– Always combine isomorphic subtreesandeliminate redundant nodes.

– Hash table stores previously computed subproblems

– Number of subproblems bounded by|f | · |g|.

Logical operations (cont.)

• Boolean quantification: ∃a : f(a, b, c, d)

– By definition,
∃a : f = f |ā ∨ f |a

– f(a, b, c, d)|ā: replace alla nodes by left sub-tree.

– f(a, b, c, d)|a: replace alla nodes by right sub-tree.

Using the above operations, we can build up OBDD’s for complex boolean functions
from simpler ones.

Symbolic Model Checking Algorithm

How to represent state-transition graphs withOrdered Binary Decision Diagrams:

Assume that system behavior is determined byn boolean state variablesv1, v2, . . . , vn.

The Transition relationT will be given as a boolean formula in terms of the state
variables:

T (v1, . . . , vn, v
′
1
, . . . , v′n)

wherev1, . . . vn represents thecurrent stateandv′1, . . . , v
′
n represents thenext state.

Now convertT to a OBDD!!

Symbolic Model Checking (cont.)

Representing transition relations symbolically:

a a, b

Boolean formula for transition relation:

(a ∧ ¬b ∧ a′ ∧ b′)
∨ (a ∧ b ∧ a′ ∧ b′)
∨ (a ∧ b ∧ a′ ∧ ¬b′)

Now, represent as an OBDD!

Symbolic Model Checking (cont.)

Considerf = EX p.

Now, introduce state variables and transition relation:

f(v̄) = ∃v̄′[T (v̄, v̄′) ∧ p(v̄′)]

Compute OBDD forrelational producton right side of formula.

Symbolic Model Checking (cont.)

How to evaluate fixpoint formulas using OBDDs:

EF p = Lfp U. p ∨ EX U

Introduce state variables:

EF p = Lfp U. p(v̄) ∨ ∃v̄′ [T (v̄, v̄′) ∧ U (v̄′)]

Now, compute the sequence

U0(v̄), U1(v̄), U2(v̄), . . .

until convergence.

Convergence can be detected since the sets of statesUi(v̄) are represented as OBDDs.

Notable Examples

The following examples illustrate the power of model checking to handle industrial
size problems.

They come from many sources, not just my research group.

• Edmund M. Clarke, Jeannette M. Wing, et al. Formal methods: State of the art and
future directions.ACM Computing Surveys, 28(4):626–643, December 1996.

Notable Examples–IEEE Futurebus+

• In 1992 Clarke and his students at CMU used SMV to verify thecache coherence
protocolin theIEEE Futurebus+ Standard.

• They constructed a precise model of the protocol and attempted to show that it
satisfied a formal specification of cache coherence.

• They found a number of previously undetected errors in the design of the protocol.

• This was the first time that formal methods have been used to find errors in an IEEE
standard.

• Although development started in 1988, all previous attempts to validate Futurebus+
were based on informal techniques.

Notable Examples–HDLC

• A High-level Data Link Controller (HDLC)was being designed at AT&T in Madrid.

• In 1996 researchers at Bell Labs offered to check some properties of the design. The
design was almost finished, so no errors were expected.

• Within five hours, six properties were specified and five were verified, using the
FormalCheck verifier.

• The sixth property failed, uncovering a bug that would have reduced throughput or
caused lost transmissions.

• The error was corrected in a few minutes and formally verified.

Notable Examples–PowerPC 620 Microprocessor

• Richard Raimi and Jim Learat Somerset used Motorola’s Verdict model checker to
debug ahardware laboratory failure.

• Initial silicon of PowerPC 620 microprocessor crashed during boot of an operating
system.

• With run time in seconds, Verdict produced example ofBIU deadlock causing the
failure.

• Paper on this published at 1997 IEEE International Test Conference.

Future Research Directions

Additional work needed onclassical model checking:

• Abstraction,

• Compositional Reasoning,

• Symmetry, and

• Parameterized Designs.

