
1

Chaff:
Engineering an Efficient SAT Solver

Matthew W.Moskewicz,
Concor F. Madigan, Ying Zhao, Lintao Zhang,

Sharad Malik
Princeton University

Slides: Tamir Heyman
Some are from Malik’s presentation

Last modified by Will Klieber on Sep 7, 2011

2

Boolean Algebra Notation

� “+” denotes logical OR (“∨”).

� “ ·” denotes logical AND (“∧”).

� Overbar or postfix “ ’ ” denotes negation.

� Example:
“(A ∨ (¬B ∧ C))” corresponds to
“(A + (B’ · C))”.

3

Chaff Philosophy

� Make the core operations fast

� profiling driven, most time-consuming parts:

� Boolean Constraint Propagation (BCP) and Decision

� Emphasis on coding efficiency

� Emphasis on optimizing data cache behavior

� Search space pruning:

� conflict resolution and learning

4

Chaff’s Main Procedures

� Efficient BCP

� Two watched literals

� Fast backtracking

� Efficient decision heuristic

� Localizes search space

� Restarts

� Increases robustness

5

Implication

� What “causes” an implication?

� When can it occur?

� All literals in a clause but one are assigned
False.

6

Implication example

� The clause (v1 + v2 + v3) implies
values only in the following cases.

� In case (F + F + v3)
� implies v3=T

� In case (F + v2 + F)
� implies v2=T

� In case (v1 + F + F)
� implies v1=T

7

Implication for N-literal clause

� Implication occurs after N-1
assignments to False to its literals.

� We can ignore the first N-2
assignments to this clause.

� The first N-2 assignments won’t have
any effect on the BCP.

8

Watched Literals

� Each clause has two watched literals.

� Ignore any assignments to the other
literals in the clause.

� BCP maintains the following invariant:

� By the end of BCP, one of the watched literals
is true or both are unassigned.

� (Can watch a false literal only if other watch is true.)

� Guaranteed to find all implications found by
normal unit prop.

9

BCP with watched Literals

� Identifying conflict clauses

� Identifying unit clauses

� Identifying associated implications

� Maintaining “BCP Invariant”

10

Example (1/13)

v2 + v3 + v1 + v4
v1 + v2 + v3’
v1 + v2’
v1’+ v4

(v1’) means (¬v1)

Input formula has the following clauses:

11

Example (2/13)

v2v2 + v3v3 + v1 + v4

v1v1 + v2v2 + v3’
v1 + v2’
v1’+ v4

Watched literals

Initially, we identify any two literals in each clause as the watched ones

(v1’) means (¬v1)

12

Example (3/13)

v2v2 + v3v3 + v1 + v4

v1v1 + v2v2 + v3’
v1 + v2’
v1’+ v4

Stack:(v1=F)

Assume we decide to set v1 the value F

13

Example (4/13)

v2v2 + v3v3 + v1 + v4

v1v1 + v2v2 + v3’
v1 + v2’
v1’+ v4

• Ignore clauses with a watched literal whose value is T.

•(Such clauses are already satisified.)

Stack:(v1=F)

14

Example (5/13)

v2v2 + v3v3 + v1 + v4

v1v1 + v2v2 + v3’
v1 + v2’
v1’+ v4

• Ignore clauses where neither watched literal value changes

Stack:(v1=F)

15

Example (6/13)

v2v2 + v3v3 + v1 + v4

v1v1 + v2v2 + v3’
v1 + v2’
v1’+ v4

• Examine clauses with a watched literal whose value is F

Stack:(v1=F)

16

Example (7/13)

v2v2 + v3v3 + v1 + v4

v1v1 + v2v2 + v3’
v1 + v2’
v1’+ v4

v2v2 + v3v3 + v1 + v4

v1v1 + v2v2 + v3’
v1 + v2’
v1’+ v4

17

Example (7/13)

Stack:(v1=F)

• In the second clause, replace the watched literal v1 with v3’

v2v2 + v3v3 + v1 + v4

v1v1 + v2v2 + v3’
v1 + v2’
v1’+ v4

Stack:(v1=F)

v2v2 + v3v3 + v1 + v4

v1v1 + v2v2 + v3’
v1 + v2’
v1’+ v4

18

Example (8/13)

v2v2 + v3v3 + v1 + v4
v1 + v2v2 + v3’
v1 + v2’
v1’+ v4

Stack:(v1=F)

• The third clause is a unit and implies v2=F
• We record the new implication, and add it to a
queue of assignments to process.

v2v2 + v3v3 + v1 + v4

v1v1 + v2v2 + v3’
v1 + v2’
v1’+ v4

Stack:(v1=F)
Pending: (v2=F)

19

Example (9/13)

v2 + v3 + v1 + v4
v1 + v2 + v3’
v1 + v2’
v1’+ v4

Stack:(v1=F, v2=F)

• Next, we process v2.
• We only examine the first 2 clauses

v2 + v3 + v1 + v4
v1 + v2 + v3’
v1 + v2’
v1’+ v4

Stack:(v1=F, v2=F)
Pending: (v3=F)

20

Example (10/13)

v2 + v3 + v1 + v4
v1 + v2 + v3’
v1 + v2’
v1’+ v4

Stack:(v1=F, v2=F)

• In the first clause, we replace v2 with v4
• The second clause is a unit and implies v3=F
• We record the new implication, and add it to the queue

v2 + v3 + v1 + v4
v1 + v2 + v3’
v1 + v2’
v1’+ v4

Stack:(v1=F, v2=F)
Pending: (v3=F)

21

Example (11/13)

v2 + v3 + v1 + v4
v1 + v2 + v3’
v1 + v2’
v1’+ v4

Stack:(v1=F, v2=F, v3=F)

• Next, we process v3’. We only examine the first clause.

v2 + v3 + v1 + v4
v1 + v2 + v3’
v1 + v2’
v1’+ v4

Stack:(v1=F, v2=F, v3=F)
Pending: ()

22

Example (12/13)

v2 + v3 + v1 + v4
v1 + v2 + v3’
v1 + v2’
v1’+ v4

Stack:(v1=F, v2=F, v3=F)

• The first clause is a unit and implies v4=T.
• We record the new implication, and add it to the queue.

v2 + v3 + v1 + v4
v1 + v2 + v3’
v1 + v2’
v1’+ v4

Stack:(v1=F, v2=F, v3=F)
Pending: (v4=T)

23

Example (13/13)

Stack:(v1=F, v2=F, v3=F, v4=T)

• There are no pending assignments, and no conflict
• Therefore, BCP terminates and so does the SAT solver

v2 + v3 + v1 + v4
v1 + v2 + v3’
v1 + v2’
v1’+ v4

24

Identify conflicts

Stack:(v1=F, v2=F, v3=F)

• What if the first clause does not have v4?
• When processing v3’, we examine the first clause.
• This time, there is no alternative literal to watch.
• BCP returns a conflict

v2 + v3 + v1
v1 + v2 + v3’
v1 + v2’
v1’+ v4

25

Backtrack

Stack:()

• We do not need to move any watched literal

v2 + v3 + v1
v1 + v2 + v3’
v1 + v2’
v1’+ v4

26

BCP Summary

� During forward progress (decisions,
implications)
� Examine clauses where watched literal is set to F

� Ignore clauses with assignments of literals to T

� Ignore clauses with assignments to non-watched
literals

27

Backtrack Summary

� Unwind Assignment Stack

� No action is applied to the watched
literals

� Overall

� Minimize clause access

28

Chaff Decision Heuristic VSIDS

� Variable State Independent Decaying Sum

� Rank variables based on literal count in the initial
clause database.

� Only increment counts as new clauses are added.

� Periodically, divide all counts by a constant.

29

VSIDS Example (1/2)

Initial data base

x1 + x4
x1 + x3’ + x8’

x1 + x8 + x12

x2 + x11

x7’ + x3’ + x9

x7’ + x8 + x9’

x7 + x8 + x10’

Scores:

4: x8
3: x1,x7
2: x3

1: x2,x4,x9,x10,x11,x12

New clause added

x1 + x4
x1 + x3’ + x8’

x1 + x8 + x12

x2 + x11

x7’ + x3’ + x9

x7’ + x8 + x9’

x7 + x8 + x10’
x7 + x10 + x12’

Scores:
4: x8,x7
3: x1

2: x3,x10,x12

1: x2,x4,x9,x11
watch what happens to x8, x7 and x1

30

VSIDS Example (2/2)

Counters divided by 2

x1 + x4
x1 + x3’ + x8’

x1 + x8 + x12

x2 + x11

x7’ + x3’ + x9

x7’ + x8 + x9’

x7 + x8 + x10’
x7 + x10 + x12’

Scores:
2: x8,x7
1: x3,x10,x12,x1

0: x2,x4,x9,x11

New clause added

x1 + x4
x1 + x3’ + x8’

x1 + x8 + x12

x2 + x11

x7’ + x3’ + x9

x7’ + x8 + x9’

x7 + x8 + x10’
x7 + x10 + x12’

x12’ + x10

Scores:
2: x8,x7,x12,x10

1: x3,x1

0: x2,x4,x9,x11
watch what happens to x8, x10

31

VSIDS - Summary

� Quasi-static:
� Static because it is independent of variable values

� Not static because it gradually changes as new
clauses are added

� Decay causes bias toward *recent* conflicts.

� Use heap to find an unassigned variable
with the highest ranking

32

Interplay of BCP and the
Decision Heuristic

� This is only an intuitive description …
� Reality depends heavily on specific instances

� Take some variable ranking
� Assume several decisions are made

� Say v2=T, v7=F, v9=T, v1=T (and any
implications thereof)

33

Interplay of BCP and the
Decision Heuristic (cont’)

� Then a conflict is encountered and forces v2=F

� The next decisions may still be v7=F, v9=T, v1=T

� VSIDS variable ranks change slowly…

� But the BCP engine has recently processed these
assignments …

� so these variables are unlikely to still be watched.

34

Interplay of BCP and the
Decision Heuristic (cont’)

� In a more general sense

� The more “active” a variable is, the
more likely it is to *not* be watched.

� Because BCP is likely to replace it

35

Interplay of Learning and the
Decision Heuristic

� Again, this is an intuitive description …

� Learned clauses capture relationships
between variables

� Decision heuristic influences which
variables appear in learned clauses
� Decisions →implications →conflicts →learned
clause

36

Interplay of Learning and the
Decision Heuristic (cont’)

� Important for decisions to keep the
search strongly localized
� Especially when there are 100k variables!

� In VSIDS, learned clauses bias
decision strategy

� Focusing in a smaller set of variables

37

Restart

� Abandon the current search tree and
reconstruct a new one

� Helps reduce runtime variance between
instances- adds to robustness of the solver

� The clauses learned prior to the restart are
still there after the restart and can help
pruning the search space

38

Timeline

1986

BDD

≈ 100 var

1992

GSAT

≈ 300 var

1996

Stålmarck

≈ 1000 var

1996

GRASP

≈1k var

1960

DP

≈10 var

1988

SOCRATES

≈ 3k var

1994

Hannibal

≈ 3k var

1962

DLL

≈ 10 var

2001

Chaff

≈10k var

1996

SATO

≈1k var

