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Instructor: Edmund M. Clarke TAs: Soonho Kong, David Henriques

Due date: 10/26/2011 cmu15414ta@gmail.com

Assignment 4

1 Monotonicity, Continuity, and Fixed Points

(a) Show that a monotonic function τ : P(S)→ P(S) is
⋃

-continuous if S is a finite set.

(b) Show that a monotonic function τ : P(S)→ P(S) has the greatest fixed point

gfp Z [τ(Z)] = ∪{Z | τ(Z) = Z}.

(c) Extra Credit: Show an infinite set S and a monotonic function τ : P(S) → P(S)
which is not

⋃
-continuous.

2 Semantics of Temporal Logic

(a) The “weak until” operator W has similar semantics to the “strong until” operator U
except that g1W g2 doesn’t require g2 to ever hold true if g1 is globally true:

π |= g1W g2 ⇔ for all j ≥ 0, if πj |= ¬g1 then there exists a k ≤ j such πk |= g2

Show that W can be expressed in terms of the existing temporal operators:

1. Express π |= g1W g2 in terms of the existing temporal operators (F, G, U).
You may check your answer by consulting the Wikipedia page on Linear Temporal
Logic.

2. Prove your expression in part (a) means the same as π |= g1W g2 provided
π |= F g2.

3. Prove your expression in part (a) means the same as π |= g1W g2 provided
π |= ¬F g2.

(b) Write an expression equivalent to AGEF p without using any of the operators {A,F,G}.
(Hint: use the identities on page 9 of lecture 11 slides)

(c) Prove that AGF p is equivalent to AGAF p.

(d) Show that A[f U g] ≡ ¬E[¬g U ¬f ∧ ¬g] ∧ ¬EG ¬g

Hints:

1. Note that ¬Ex = A¬x and A(x ∧ y) = (Ax) ∧ (A y).

2. Rewrite [f U g] as [(f W g) ∧ F g].

3. Show that (π |= ¬(fW g)) ≡ (π |= ¬g U ¬f ∧ ¬g).

(e) This is a problem given in Huth and Ryan’s book. Consider the model M in Figure 1.
Check whether M, s0 |= φ and M, s2 |= φ hold for the CTL formula φ:
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Figure 1: A model with four states

1. AF q

2. AG(EF (p ∨ r))
3. EX(EX r)

4. AG(AF q)

3 CTL Model Checking and Fixed Points

Remark: In class, some of the operators were introduced as abbreviations for sequences of other operators.

In this exercise, for the sake of brevity, we will use the semantics presented in the book, page 29, which gives

semantics directly to all operators. It is a good (non-mandatory) exercise to show the equivalence between

these direct semantics and the semantics inherited from abbreviation.

Alternative representations

Two formulae are said to be equivalent in CTL if they have the same semantics. For example, in
class, we have made the following claim, which we now prove

EF p ≡ p ∨EXEF p

Proof: (⇒) Assume M, s |= EF p, then there is a path π = π0 · π1 · π2... s.t. π0 = s, which means
there exists a k ≥ 0 s.t. M,πk |= p which means p ∈ L(πk). If several k have this property, take
the smaller one. There are two cases:

k = 0 Then, since π0 = s, M, s |= p ∨EXEF p holds since M, s |= p because p ∈ L(s)

k > 0 Then we have to show M, s |= EXEF p, which means we have to find a path π̇ s.t. π̇0 = s
and M, π̇1 |= EF p with. Take π̇ to be π. We now have to check if M,π1 |= EF p, which
means we have to find a path π̈ s.t. π̈0 = π1 and s. t. there is k̈ ≥ 0 for which M, π̈k̈ |= p.
Take π̈ to be π1 · π2..., which is π except for the first state. Notice that πi = π̈i−1. Obviously
π̈0 = π1 and we know M,πk |= p, therefore M, π̈k̈ |= p for k̈ = k − 1 ≥ 0.
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(⇐) Assume M, s |= p ∨EXEF p. Then either M, s |= p or M, s |= EXEF p.

In the former case, M, s |= EF p by taking any path starting with s and taking k = 0.

In the latter case, there is a path π s.t. π0 = s and s.t. M,π1 |= EF p. This, in turn, means that
there is a path π̇ s.t. π̇0 = π1 and k̇ ≥ 0 s.t M, π̇k |= p. Consider the path π̈ = π0 · π̇0 · π̇1..., which
is π̇ prefixed by π0. π̈0 = s and for k̈ = k̇ + 1, M, π̈k̈ |= p, which means M, s |= EF p.

(a) Prove the following equivalencies

EG p ≡ p ∧EXEG p

AF p ≡ p ∨AXAF p

Hint: You may want to use contrapositive reasoning for the second proof.

Remark: Other CTL constructs can be similarly represented in this way.

Formulae as sets of states

The problem of model checking for CTL can be stated as “given a Kripke structure M , a state s
and a CTL formula ϕ, is it true that M, s |= ϕ?”. An equivalent formulation is “given a Kripke
structure M , and a CTL formula ϕ, determine the set {s ∈ S : M, s |= ϕ}” (think for a moment
why these formulations are equivalent). In order to address the latter question, it will be useful to
think of temporal formulae as functions from states to states.

For example, suppose your formula ϕ is EXψ for some (possibly complicated) formula ψ. Assuming
ψ(S) returns the set of states that satisfy ψ, we can easily compute the set of states that have a
predecessor in ψ[S]. We are essentially looking at EX as a function EX : 2S → 2S s.t. EX[Q] =
{s ∈ Q : state s has a transition to at least one state in Q}. Given state Q, this set is easy to
compute.

More formally, if ϕ is:

p p(Q) = {s ∈ S : p ∈ L(s)};
¬ψ (¬ψ)[Q] = S − ψ[Q];
ψ1 ∨ ψ2 (ψ1 ∨ ψ2)[Q] = ψ1[Q] ∪ ψ2[Q];
ψ1 ∧ ψ2 (ψ1 ∧ ψ2)[Q] = ψ1[Q] ∩ ψ2[Q];
EXψ EXψ[Q] = {s ∈ S : state s has a transition to at least one state in ψ[Q]};
AXψ AXψ[Q] = {s ∈ S : all transitions form state s lead to states in ψ[Q]};
EFψ EFψ[Q] = {s ∈ S : there is a path departing from s that eventually reaches a state in ψ[Q]};
AFψ AFψ[Q] = {s ∈ S : all paths departing from s eventually reach a state in ψ[Q]};
EGψ EGψ[Q] = {s ∈ F : there is a path departing from s that never leaves states in ψ[Q]};
AGψ AFψ[Q] = {s ∈ S : all states in all paths departing from s never leave ψ[Q]};

If we have efficient ways of computing all these functions, we have a recursive procedure for model
checking (just compute ϕ[S]). Notice that p does not care about its input because in practice, it
will always recieve S as input.

It is easy to find efficient implementations for the first six connectives. Unfortunately, naive algo-
rithms for the remaining connectives are not very efficient. We will see in the next section how to

3



15-414 HW 4 4

use the fixed point theorems we learned in class to solve this problem.

(b) Assume ϕ is a CTL formula and that you are explicitly given a Kripke structure as a
transition graph with N states {1, ..., N} and a transition matrix1 M .

Write down the pseudocode for EXϕ[S] assuming that you have a function isPhiSatisfied
s.t. isPhiSatisfied(i) = 1 if ϕ is satisfied in state i and isPhiSatisfied(i) = 0 otherwise.

Write down the pseudocode for AXϕ[S] assuming that you have a function isPhiSatisfied
s.t. isPhiSatisfied(i) = 1 if ϕ is satisfied in state i and isPhiSatisfied(i) = 0 otherwise.

For this problem, you may use standard mathematical notation for sets and set opera-
tions ({x, y, ..},∪,∩,−, etc...). Both functions should have roughly the same efficiency.

Connectives and fixed points

We will now find a way to efficiently implement EF,AF,EG and AG. In order to do that, we will
use the alternative representation from the first part of this exercise. This may seem counterintuitive
because the alternative expression seems more complicated than the usual representation, but as
we will see, it will prove to be very useful. We will use EF as a case study.

First notice that, since the formulae are equivalent, the set of states that satisfies them must be
the same

EFϕ[S] = (ϕ[S] ∨EXEFϕ)[S]

Now notice that EF appears on both sides of the equation:

EFϕ[S] = (ϕ ∨EXEFϕ)[S] = ϕ[S] ∪EX[EFϕ[S]]

This motivates us to write the right hand side as a function τ : 2S → 2S

τ(X) = ϕ[S] ∪EX[X]

because we now know that EFϕ[S] is a fixed point of this equation:

τ(EFϕ[S]) = ϕ[S] ∪EX[EFϕ[S]] = EFϕ[S]

Unfortunately, EFϕ[S] it is not the only fixed point of the equation.

(c) Below is a Kripke strucutre with the states that satisfy EF p[S] shaded. This set of
states is a fixed point of τ(X) = p[S] ∪EX[X].

1A transition matrix for a graph with N vertices is a N ×N matrix s.t. M [i, j] = 1 if there is a transition from
state i to state j and M [i, j] = 0 otherwise.
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p

p

Find and shade in the states of another fixed point of τ in the same Kripke structure.

The good news, however, is that EFϕ[S] is the least fixed point of τ ! (see pages 63, 64 and 65 of
the book for a proof of this claim). Why is this good news, you ask?

Well, it is easy to see that τ is monotonic. Since the set of states is finite, by problem 1(a) of this
homework, τ is also ∪-continuous. We have seen in class an efficient way of computing the least
fixed point of τ by using Tarksi’s Lemma. We just need to iterate τ(∅), τ(τ(∅)), ... until we reach
a fixed point. This procedure allows us to efficiently get the set of sates that satisfies EFϕ[S]
provided we have (recursively) computed ϕ[S].

The other connectives also have fixed point representations that can be computed in similar ways;
sometimes we have to use greatest fixed points instead of least fixed points, but the underlying
principle is the same. Refer to chapter 6 of the book for examples.

Remark: For the sake of brevity, we left the until operators out of this discussion. They work
exactly as the others but take longer to explain, that’s the only reason why they’ve been left out.
You can find them in the book or discuss them with the TAs if you are curious about them.

And that’s it, now you know how to model check efficiently. Congratulations!

(d) Be the model checker!

Consider the following Kripke strucutre. Model check the formula EXAF p in it. Make
sure to show all iterations of the fixpoint algorithm!

p

p
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Hint : remember that AF p ≡ p ∨AXAF p.
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