Problem 1
Consider the Boolean formula \(f \):

\[
(x_1 \lor x_2 \lor x_3) \land (\neg x_2 \lor x_4) \land (\neg x_3 \lor x_4)
\]

Part 1. One possible variable ordering for \(f \) is \(x_1 < x_2 < x_3 < x_4 \). How many possible variable orderings are there for \(f \)?

Part 2. Consider two different variable orderings for \(f \), \(x_1 < x_2 < x_3 < x_4 \) and \(x_4 < x_3 < x_2 < x_1 \). Draw the BDDs for \(f \) for each of the selected variable orderings. For each BDD node \(v \), label its outgoing edge to low(\(v \)) with “0” and its outgoing edge to high(\(v \)) with “1”.

BDD Pseudo-Code Primitives
The following is the pseudo-code for the \texttt{AND} operation on BDDs presented in the class. Recall that we assume a fixed variable ordering that all BDDs must follow.

\[
\text{Bdd} \text{ AND(Bdd} f, \text{Bdd} g)\
\{
\text{ if (} f \text{ == ZERO()} \text{ ||} g \text{ == ONE()} \text{)} \\
\quad \text{ return } f; \\
\text{ if (} f \text{ == ONE()} \text{ ||} g \text{ == ZERO()} \text{)} \\
\quad \text{ return } g; \\
\text{ if (} \text{VAR}(f) \text{ == VAR}(g) \text{)} \\
\quad \text{ return ITE(VAR}(f), \text{AND(LOW}(f),\text{LOW}(g)), \text{AND(HIGH}(f),\text{HIGH}(g))); \\
\text{ if (} \text{VAR}(f) \text{ < VAR}(g) \text{)} \\
\quad \text{ return ITE(VAR}(f), \text{AND(LOW}(f),g), \text{AND(HIGH}(f),g)); \\
\text{ return ITE(VAR}(g), \text{AND(LOW}(g),f), \text{AND(HIGH}(g),f)); \\
\}\n\]

The above pseudo-code introduces the following primitives:

- \texttt{==} checks equality between two BDDs.
- \texttt{ZERO()} returns the constant “0” BDD. \texttt{ONE()} returns the constant “1” BDD.
- \texttt{VAR(f)} returns the variable labeling the root of the BDD \(f \).
• LOW(f) and HIGH(f) return the “low” and “high” sub-BDDs of f, respectively.

• For two variables v1 and v2, v1 < v2 iff v1 appears before v2 in the variable ordering.

• ITE(v,f,g) returns the BDD h such that \(\text{VAR}(h) = v \), LOW(h) = f, and HIGH(h) = g. In the special case when f = g, we have ITE(v,f,g) = f.

We will use these primitives in the next problem.

Problem 2

For a BDD f, we write Formula(f) to denote the Boolean formula that f represents. For a Boolean formula \(\Phi \) and a variable v, and a Boolean value b, we write \(\Phi[v = b] \) to mean the Boolean formula obtained by replacing all occurrences of v in \(\Phi \) with b. For example, suppose \(\Phi = (\neg x_1 \lor x_2) \). Then \(\Phi[x_1 = 1] \) is \(x_2 \).

Part 1. Using the primitives introduced earlier, write the pseudo-code for the function SUB1 that:

1. takes three arguments – a BDD f, a variable v, and a Boolean value b, and
2. returns the BDD h such that Formula(h) = Formula(f)[v = b].

In other words, your pseudo-code should look like the following:

```plaintext
Bdd SUB1(Bdd f, Var v, Bool b)
{
    ...
}
```

Let \(\Phi \) be a Boolean formula, and \(\Sigma \) be a conjunction of literals. Then \(\Phi \diamond \Sigma \) denotes the formula obtained from \(\Phi \) as follows:

- for each literal \(x_i \) appearing in \(\Sigma \), replace all occurrences of \(x_i \) in \(\Phi \) with “true”.
- for each literal \(\neg x_i \) appearing in \(\Sigma \), replace all occurrences of \(x_i \) in \(\Phi \) with “false”.

Part 2. Using the primitives introduced earlier, write the pseudo-code for the function SUB2 that:

1. takes two arguments – a BDD f, and a BDD g such that Formula(g) is a conjunction of literals, and
2. returns the BDD h such that Formula(h) = Formula(f) \(\diamond \) Formula(g).

In other words, your pseudo-code should look like the following:

```plaintext
Bdd SUB2(Bdd f, Bdd g)
{
    ...
}
```
Part 3. Using the primitives introduced earlier, write the pseudo-code for the function \texttt{IMPL} that:

1. takes two arguments – a BDD f, and a variable v, and
2. returns “0” if $\text{Formula}(f) \Rightarrow \neg v$
3. returns “1” if $\text{Formula}(f) \Rightarrow v$
4. returns “-1” otherwise.

In other words, your pseudo-code should look like the following:

```c
int IMPL(Bdd f,Var v) {
    ...
}
```

Assume that f is not the “0” BDD. It is OK to add extra helper functions and global variables to your pseudo-code.