
15-414 HW 3 1

Instructors: Edmund M. Clarke, Sagar Chaki, Arie Gurfinkel
TAs: Soonho Kong, David Henriques cmu15414ta@gmail.com

Due date: 10/05/2011
Assignment 3

Problem 1

Consider the Boolean formula f :

(x1 ∨ x2 ∨ x3) ∧ (¬x2 ∨ x4) ∧ (¬x3 ∨ x4)

Part 1. One possible variable ordering for f is x1 < x2 < x3 < x4. How may possible variable
orderings are there for f?

Part 2. Consider two different variable orderings for f , x1 < x2 < x3 < x4 and x4 < x3 < x2 < x1.
Draw the BDDs for f for each of the selected variable orderings. For each BDD node v, label its
outgoing edge to low(v) with “0” and its outgoing edge to high(v) with “1”.

BDD Pseudo-Code Primitives

The following is the pseudo-code for the And operation on BDDs presented in the class. Recall
that we assume a fixed variable ordering that all BDDs must follow.

Bdd AND(Bdd f,Bdd g)

{

if (f == ZERO() || g == ONE())

return f;

if (f == ONE() || g == ZERO())

return g;

if (VAR(f) == VAR(g))

return ITE(VAR(f), AND(LOW(f),LOW(g)), AND(HIGH(f),HIGH(g)));

if (VAR(f) < VAR(g))

return ITE(VAR(f), AND(LOW(f),g), AND(HIGH(f),g));

return ITE(VAR(g), AND(LOW(g),f), AND(HIGH(g),f));

}

The above pseudo-code introduces the following primitives:

• == checks equality between two BDDs.

• ZERO() returns the constant “0” BDD. ONE() returns the constant “1” BDD.

• VAR(f) returns the variable labeling the root of the BDD f.

1

cmu15414ta@gmail.com

15-414 HW 3 2

• LOW(f) and HIGH(f) return the “low” and “high” sub-BDDs of f, respectively.

• For two variables v1 and v2, v1 < v2 iff v1 appears before v2 in the variable ordering.

• ITE(v,f,g) returns the BDD h such that VAR(h) = v, LOW(h) = f, and HIGH(h) = g. In
the special case when f = g, we have ITE(v,f,g) = f.

We will use these primitives in the next problem.

Problem 2

For a BDD f , we write Formula(f) to denote the Boolean formula that f represents. For a Boolean
formula Φ and a variable v, and a Boolean value b, we write Φ[v = b] to mean the Boolean formula
obtained by replacing all occurences of v in Φ with b. For example, suppose Φ = (¬x1 ∨ x2). Then
Φ[x1 = 1] is x2.

Part 1. Using the primitives introduced earlier, write the pseudo-code for the function SUB1 that:

1. takes three arguments – a BDD f, a variable v, and a Boolean value b, and

2. returns the BDD h such that Formula(h) = Formula(f)[v = b].

In other words, your pseudo-code should look like the following:

Bdd SUB1(Bdd f,Var v,Bool b)

{

...

}

Let Φ be a Boolean formula, and Σ be a conjunction of literals. Then Φ � Σ denotes the formula
obtained from Φ as follows:

• for each literal xi appearing in Σ, replace all occurences of xi in Φ with “true”.

• for each literal ¬xi appearing in Σ, replace all occurences of xi in Φ with “false”.

Part 2. Using the primitives introduced earlier, write the pseudo-code for the function SUB2 that:

1. takes two arguments – a BDD f, and a BDD g such that Formula(g) is a conjunction of
literals, and

2. returns the BDD h such that Formula(h) = Formula(f) � Formula(g).

In other words, your pseudo-code should look like the following:

Bdd SUB2(Bdd f,Bdd g)

{

...

}

2

15-414 HW 3 3

Part 3. Using the primitives introduced earlier, write the pseudo-code for the function IMPL that:

1. takes two arguments – a BDD f, and a variable v, and

2. returns “0” if Formula(f)⇒ ¬v

3. returns “1” if Formula(f)⇒ v

4. returns “-1” otherwise.

In other words, your pseudo-code should look like the following:

int IMPL(Bdd f,Var v)

{

...

}

Assume that f is not the “0” BDD. It is OK to add extra helper functions and global variables to
your pseudo-code.

3

