
15-414 HW 2 1

Instructor: Edmund M. Clarke TAs: Soonho Kong, David Henriques

Due date: 09/21/2011 cmu15414ta@gmail.com
Assignment 2

Problem 1

Consider a formula φ = ω1 ∧ · · · ∧ ω6 where

ω1 = (x1 ∨ x3 ∨ x4)
ω2 = (x1 ∨ x3 ∨ ¬x4)
ω3 = (x1 ∨ ¬x3 ∨ x4)
ω4 = (x1 ∨ ¬x3 ∨ ¬x4)
ω5 = (¬x1 ∨ x2)
ω6 = (¬x1 ∨ ¬x2)

Part A. The result of resolving a clause (x1 ∨ · · · ∨ xn ∨ r) with another clause (¬r ∨ y1 ∨ · · · ∨ ym)
on r is the disjunction of the literals in the set {x1, . . . , xn} ∪ {y1, . . . , ym}. Note that the resulting
clause is logically implied by the conjunction of the two original clauses.

1. Let ω10 be the result of resolving ω1 with ω2 on x4. What is ω10?

2. Let ω11 be the result of resolving ω3 with ω4 on x4. What is ω11?

3. (a) On what variable can ω10 and ω11 be resolved?
(b) Let ω12 be the result of this resolution. What is ω12?

4. Let ω13 be the result of resolving ω5 and ω6 on an appropriate literal. What is ω13?

5. Let ω14 be the result of resolving ω12 and ω13 on an appropriate literal. What is ω14?

6. What does the above tell you about the satisfiability of φ? Briefly explain in one or two
sentences.

Part B. Consider a SAT solver as described in the GRASP lecture slides, in particular the slides
titled “Top-level of GRASP-like solver” and “Learning Algorithm”. Suppose that the decision
heuristic is to pick the lowest-numbered unassigned variable and assign it the value false. Consider
executing this SAT solver on the formula φ = ω1 ∧ · · · ∧ ω6. For every conflict encountered, give:

1. the implication graph (using the format given on the slide titled “Implication Graphs”),

2. the initial conflict assignment (from Step 1 on the “Learning Algorithm” slide),

3. the final conflict assignment (from Step 4 of the slide),

4. the learned clause, and

5. the decision level to which to backtrack (if the learned clause is non-empty).

Include decision levels in your conflict assignments; use the format “{x5=1@6, x6=1@6}”.

1

cmu15414ta@gmail.com

15-414 HW 2 2

Problem 2: Pigeonhole Problem

Consider the problem of placing n pigeons in m pigeonholes. If n > m, then at least one pigeonhole
must contain more than one pigeon.

Given n pigeons and m pigeonholes, we wish to write a CNF formula φ such that φ is satisfiable iff
each pigeon can be put in some pigeonhole and each pigeonhole has at most one pigeon. It turns
out that a direct encoding of this pigeonhole problem is quite difficult for SAT solvers when n > m.

Let zp,h be a propositional variable which is true when pigeon p is placed in hole h.

Notation: If S is a set of clauses, we’ll write “
∧
S” to denote the conjunction of these clauses. For

example, (
∧
{C1, C2, C3}) = (C1 ∧ C2 ∧ C3).

Let E be a conjunction of clauses which encode the requirement that each pigeon must be in some
hole, defined as follows:

E =
∧{

(zp,1 ∨ zp,2 ∨ . . . ∨ zp,m)
∣∣ 1 ≤ p ≤ n

}
= (z1,1 ∨ z1,2 ∨ . . . ∨ z1,m) ∧

(z2,1 ∨ z2,2 ∨ . . . ∨ z2,m) ∧
· · · ∧

(zn,1 ∨ zn,2 ∨ . . . ∨ zn,m)

Let Hh be a conjunction of clauses which encode the requirement that hole h cannot have more
than one pigeon, defined as follows:

Hh =
∧{

(¬zi,h ∨ ¬zj,h)
∣∣ 1 ≤ i < j ≤ n

}
The final formula is

φ = E ∧H1 ∧H2 ∧ . . . ∧Hm

To give this problem to a SAT solver that needs integer-numbered variables, we renumber as follows:
zp,h becomes xp∗m+h.

Consider the SAT solver given on Slide 13 (“DPLL Solver”) of the Lecture 2 slides. Assume the
decision heuristic is as follows: Pick the first literal in the first unresolved clause and assign it true.

1. For the case of 4 pigeons and 3 holes, draw the decision tree followed by the SAT solver.
(Only include decision literals, not forced literals.) A conflict should be indicated by a special
leaf node, as in Slide 21. (You may use a simple star to indicate a conflict leaf node.)

2. Given m pigeonholes and m + 1 pigeons, how many conflicts would occur, as a function of
m? (Each time the line “if [] in ClauseList: return False” returns false counts as
one conflict.) Explain your reasoning.

2

15-414 HW 2 3

Problem 3: MiniSAT

Most fast SAT solvers use the DIMACS input format. A CNF formula φ = C1 ∧ . . . ∧ Cm, where
Ci = `i,1 ∧ . . . ∧ `i,ni , is encoded in DIMACS as follows:

p cnf NumVars NumClauses

`1,1 `1,2 . . . `1,n1 0
`2,1 `2,2 . . . `2,n2 0
. . .
`m,1 `m,2 . . . `m,nm 0

Each clause is described in a line terminated by a zero. As an example, the formula
(x1) ∧ (x2 ∨ ¬x3) ∧ (¬x4 ∨ ¬x1) ∧ (¬x1 ∨ ¬x2 ∨ x3 ∨ x4) ∧ (¬x2 ∨ x4) would be encoded as:

p cnf 4 5
1 0
2 -3 0
-4 -1 0
-1 -2 3 4 0
-2 4 0

For this assignment we will use the MiniSat SAT solver, which is one of the fastest SAT solvers
currently available.

You can find a binary executable of the MiniSat solver for Linux in

/afs/andrew.cmu.edu/usr16/wklieber/public/

You can find DIMACS files for the pigeonhole problem at

http://www.cl.cam.ac.uk/~tw333/software/pigeonhole/

Run MiniSAT on pigeon-3.cnf through pigeon-8.cnf (inclusive) and report the number of conflicts
for each file. (The numbers will not be exactly the same as the numbers given by the formula in
your answer to Problem 2, but they shouldn’t differ by more than a factor of 2.)

3

