
Lecture 15: Implementing a Symbolic Model Checker
� Representing Transition Relations

� Implementing Basic CTL Operators

� Fairness Constraints

� Buchi Automata

� Omega Regular Languages

� Checking Language Containment
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How To Build a CTL Model Checker

The following papers describe how to build a Symbolic Model Checker including fairness
constraints:

� J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and J. Hwang. Symbolic model
checking:1020 states and beyond.Information and Computation, 98(2):pages 142–170, 1992.

� J. R. Burch, E. M. Clarke, D. E. Long, K. L. McMillan, and D. L. Dill. Symbolic model
checking for sequential circuit verification.IEEE Transactions on Computer-Aided Design of
Integrated Circuits, 13(4):401–424, 1994.
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Representing Transition Relations

How to represent state-transition graphs withOrdered Binary Decision Diagrams:

Assume that system behavior is determined byn boolean state variablesv1; v2; : : : ; vn.

The Transition relationN will be given as a boolean formula in terms of the state variables:
N(v1; : : : ; vn; v
0

1
; : : : ; v0
n)

wherev1; : : : vn represents the current state andv0
1
; : : : ; v0
n represents the next state.

Now convertN to a OBDD!!
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Symbolic Model Checking

Check takes a CTL formula as its argument and returns the OBDD for the set of states that satisfy
the formula:

If f is an atomic propositionvi, thenCheck(f) is simply the OBDD forvi.

Formulas of the formf _ g and:f are handled using the standard OBDD algorithms for these
connectives.

EX f , E[f U g], andEG f are handled by auxiliary procedures:

Check(EX f) = CheckEX(Check(f))

Check(E[f U g]) = CheckEU(Check(f); Check(g))

Check(EG f) = CheckEG(Check(f))

AX f , A[f U g] andAG f are rewritten in terms of above operators.
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Symbolic Model Checking (Cont.)

CheckEX is simple sinceEX f is true in a state if it has a successor in whichf is true.

CheckEX(f(�v)) = 9�v0
�

f(�v0) ^R(�v; �v0)
�

:

Given OBDDs forf andR, the OBDD for
9�v0
�

f(�v0) ^R(�v; �v0)
�

:

is computed as described in the first lecture.
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Symbolic Model Checking (Cont.)

CheckEU(f(�v); g(�v)) is given by

lfp Z(�v)
�

g(�v) _
�

f(�v) ^ CheckEX(Z(�v))
��

:

The function Lfp is used to compute the sequence of approximationsZ0; Z1; : : : .

This sequence converges toE[f U g] in a finite number of steps.

The OBDD forZi+1 is computed from the OBDDs forf , g, andZi.

Since OBDDs are a canonical form for boolean functions, convergence is easy to detect.

WhenZi = Zi+1, Lfp terminates. The state set forE[f U g] is given by the OBDD forZi.
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Symbolic Model Checking (Cont.)

CheckEG is similar. In this case, the procedure is based on the greatest fixpoint characterization
for the CTL operatorEG:

CheckEG(f(�v)) = gfpZ(�v)
�

f(�v) ^ CheckEX(Z(�v))
�

Given the OBDD forf , the function Gfp is used to compute the OBDD forEG f .
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CTL with Fairness Constraints

A fairness constraintcan be an arbitrary formula of CTL.

LetH = fh1; : : : ; hng be a set of such fairness constraints.

A pathp is fair with respect toH if eachhi 2 H holdsinfinitely oftenon p.

The path quantifiers in CTL formulas are restricted to fair paths.
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EG with Fairness Constraints

Consider the formulaEG f with the set of fairness constraintsH.

This formula will be true at a states if there is a pathp starting ats such that

� f holds globally onp, and

� each formula inH holds infinitely often onp.
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The operator EG (Cont.)

Let S be the largest set of states with the following two properties:

1. all of the states inS satisfyf , and

2. for all fairness constraintshk 2 H and all statess 2 S

� there is a non-empty sequence of states froms to a state inS satisfyinghk, and

� all states in the sequence satisfy the formulaf .

It can be shown that each state inS is the beginning of a path on whichf is always true.

Furthermore, every formula inH holds infinitely often on this path.
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The operator EG (Cont.)

It follows thatEG f can be expressed as a greatest fixed point of a predicate transformer:

EG f = gfpS
�

f ^

n^
k=1

EX(E[f U S ^ hk])
�

This formula can be used to compute the set of states that satisfyEG f .
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Other Operators

Checking the formulasEX f andE[f U g] under fairness constraints is simpler.

The set of all states which are the start of some fair computation is

fair = EG true:

Hence,

EX(f) = EX(f ^ fair);

E[f U g] = E[f U g ^ fair]

Remaining CTL operators can be expressed in terms ofEX, EG, andEU. For example,

A[f U g] � :E[:g U :f ^ :g] ^ :EG:g
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!-automata

There are many types of!-automata. However, we will only consider deterministic Büchi
automata.

A finite Büchi automatonis a 5-tuple

M = hK; p0;�;�; Ai;

where

� K is a finite set ofstates

� p0 2 K is theinitial state

� � is a finitealphabet

� � � K � ��K is thetransition relation

� A � K is theacceptance set.

M is deterministicif for all p; q1; q2 2 K and� 2 �, if hp; �; q1i; hp; �; q2i 2 � thenq1 = q2.
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Language Acceptance

An infinite sequence of statesp0p1p2 : : : 2 K! is apath in M if there exists an infinite sequence

a0a1a2 : : : 2 �! such that8i � 0 : hsi; ai; si+1i 2 �.

Let p = p0p1p2 : : : 2 K! be a path inM . Theinfinitary setof p is the set of states that occur
infintely often onp.

A sequencea0a1a2 : : : 2 �! is acceptedbyM if there is a corresponding pathp = p0p1p2 : : : 2 K!

such that the infinitary set ofp contains at least one element ofA.

The set of sequences accepted by an automatonM is called thelanguage of Mand is
denotedL(M).
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Büchi Automata Examples

The alphabet for these examples is the set� = fp; q; rg. States in the acceptance set are shaded.

� This automaton accepts infinite length strings with the property that every occurrence ofp is
eventually followed by an occurrence ofq.

q, r

p

q

p, r

� This automaton accepts infinite length strings with the property thatp occurs almost always in
the string.

p

p, q, r p

p, q, r

q, r
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Product Construction

LetM andM 0 be two B̈uchi automata over the same alphabet�.

Consider the Kripke structure
K(M;M 0) = (AP;K �K 0; hp0; p
0

0
i; L;R);

where

� AP = fq; q0g is the set of atomic propositions

� hs; s0i j= q iff s 2 A

� hs; s0i j= q0 iff s0 2 A0

� hs; s0iRhr; r0i iff 9a 2 � : hs; a; ri 2 � andhs0; a; ri 2 �0.

16



Checking Containment

It is possible to show that, ifM 0 is deterministic,

L(M) � L(M 0), K(M;M 0) j= A['q ) 'q0]

The above formula is in CTL� but not in CTL. However, it belongs to a class of formulas which can
be checked in polynomial time.

In fact,A['q ) 'q0] is equivalent toAG AF q0 under the fairness constraint “infinitely oftenq”.

Checking this formula with the given fairness constraint can be handled by the technique described
previously.
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