
SIDE: The Summarization IDE
Elijah Mayfield

Carolyn Penstein Rosé

Fall 2010

SIDE: The Summarization IDE

© 2010 Carnegie Mellon University

User Manual

Co-authors can be contacted at the following addresses:

Elijah Mayfield: elijah@cmu.edu

Carolyn Rosé: cprose@cs.cmu.edu

Work related to this project was funded through the Pittsburgh Science of Learning Center, the Office
of Naval Research Cognitive and Neural Sciences Division, the National Science Foundation, Carnegie
Mellon University, and others. Special thanks to Moonyoung Kang, Sourish Chaudhuri, Yi-Chia Wang,
Mahesh Joshi, and Eric Rosé for collaboration and contributions to past versions of SIDE.

SIDE is released under the GPL version 3. The GNU General Public License is a free, copyleft license for
software and other kinds of works. This manual is released until the GFDL version 1.3. The GNU Free
Documentation License is a form of copyleft intended for use on a manual, textbook or other document to
assure everyone the effective freedom to copy and redistribute it, with or without modifications, either com-
mercially or non-commercially. These licenses are available in full at http://www.gnu.org/licenses/.

iii	 |  Table of Contents

Table of Contents

1	 SIDE: The Summarization Integrated Development Environment	 1

2	 Installation and Setup	 3

3	 Using SIDE: Text Annotation	 5

Lesson 1: Converting your data to SIDE’s format for the first time 7

Lesson 2: Analyzing annotated data within SIDE’s interface 8

Lesson 3: Creating a new annotation scheme for your data 10

4	 Using SIDE: Machine Learning	 11

Lesson 4: Building a feature table to represent your data set 11

Lesson 5: Training an automatic classifier using machine learning. 13

Lesson 6: Performing error analysis on your trained model 14

Lesson 7: Defining more complex features for your data by hand 16

Lesson 8: Automatically annotating your data with your model. 20

5	 Using SIDE: Summarization	 21

Lesson 9: Defining a recipe for summarization of your data. 21

Lesson 10: Generating an extractive summary using a recipe 22

6	 Extending SIDE: Writing Plugins	 23

1	 | 

1	 SIDE: The Summarization
Integrated Development Environment

SIDE, the Summarization IDE, was developed as an
infrastructure for facilitating researchers in the task of
getting a quick sense of text data. The use of machine
learning models can facilitate study of a large set of
data by highlighting key features and differentiating
the significant factors from noise. However, this work
of understanding the data being studied can not and
should not be a fully automatic process. It is more de-
sirable to have a human researcher in the loop, receiv-
ing filtered information about the data they are work-
ing with, and using human judgment to make the
final decision about how to utilize this information.

The SIDE framework offers flexibility in the specifi-
cation of which features to take note of, as well as how
to search for these features in data, how to analyze
an automated model for errors, and how to deliver
this information to a user in a structured way. The
combination of all of these tasks in a single suite of
applications makes SIDE a valuable research tool as
well as a utility for supporting institutional practice.

As we have stated earlier, SIDE is an application
that makes use of machine learning. This functional-
ity is provided by the Weka toolkit. It is important
to understand what machine learning algorithms
do. These algorithms are designed to induce rules
based on patterns found in structured data repre-
sentations. A researcher has two types of options
in customizing the behavior of a machine learning
algorithm. One is to manipulate the structured rep-
resentation of the text being studied, and the other
is to manipulate the selection of the machine learn-
ing algorithm. These two choices are not entirely

independent of one another. An insightful machine
learning practitioner will think about how the repre-
sentation of their data will interact with the proper-
ties of the algorithm they select. Interested readers
are encouraged to read Witten & Frank’s (2005)
book, which provides a comprehensive introduction
to the practical side of the field of machine learning.

Example Applications
As a scenario, consider a course where students are
heavily involved in on-line discussions as part of
their participation in the course. Instructors likely
do not have time to keep up with all of the corre-
spondence contributed on the course discussion
board. One such example is an on-line environment
for Civics education where students participate in
debates over time about bills that they propose in
what amounts to a “virtual legislature.” A time se-
ries displays student posting behavior over the course
of an academic year in terms of both the number
of posts and the level of argumentation quality au-
tomatically detected in those messages. From this
visualization, one observation is that the frequency
of student posts increases over the course of the se-
mester. It is also clear that the proportion of high
quality argumentation, indicated in green, does not
consistently increase over the course of the semester.
Weeks where the proportion of messages with high
quality argumentation is highest seem to be weeks
where there is a larger than average frequency of
posting, potentially indicative of weeks where there
is more intensive debate. Instructors using a visual-

2	 | 

ization like this would be able to determine which
weeks students were not particularly engaged in
the discussion. It would also help the instructor to
identify weeks where the argumentation quality is
lower than desired in order to offer suggestions or
other support to elevate the level of intensity in the
discussion in order to provide students with better
opportunities to hone their argumentation skills.

Another similar scenario where reports based on
analyses of behavior in a discussion forum can be
useful is in project based courses where students
do a lot of their group work outside of the direct
supervision of the instructor. Insights about the
well-being of student groups can be gleaned from
some byproducts of group work, such as the mes-
sages left in a groupware environment used to co-
ordinate the group work. Prior work has shown that
machine learning models can make predictions with

reasonable accuracy of how the instructor would
rate the extent to which students have contributed
productively to their group that week (with a cor-
relation of R=0.63 in comparison with instructor
assigned productivity grades). Such an interface
could display trends in student participation over
time to aid instructors in identifying students who
may need more attention and prodding to inten-
sify their contributions to their respective groups.

Visualizations are not the only type of summary
that may be useful to instructors. With respect to
the example in Figure 1, rather than knowing what
proportion of messages exhibited high levels of ar-
gumentation quality, the instructor may want to see
particularly good examples of argumentation qual-
ity to draw attention to as an example for struggling
students. Alternatively, an instructor may want to
glean a list of questions posed by students during a
collaborative learning discussion in order to gauge
which topics are confusing for students. Another
possibility would be to monitor discussions related
to negotiations over issues, such as design discus-
sions where trade-offs such as power output versus
environmental friendliness are being made with re-
spect to the design of a power plant. In that case,
it might be interesting to classify conversational
contributions as indicating a bias towards envi-
ronmental friendliness, or alternatively high power
output, so that it is possible to display how prefer-
ences ebb and flow in the course of the discussion.

Figure 0: A simple time series visualization in SIDE.

3	 | 

Checking your Java VM
In order to use SIDE, your computer must have a Java
Virtual Machine installed with support for at least Java
6. As Java is platform independent, this means that al-
most any system should be capable of running SIDE;
however, you must first ensure that you have the ap-
propriate JVM installed. Below you will find instruc-
tions for checking your JVM on Windows XP, Mac
OS X v10.5, and Fedora Core 11 Linux. Other oper-
ating systems should follow a similar general process.

Windows XP
♦♦ Click ‘Start’ then ‘Run’.

♦♦ In the Run dialog, type ‘cmd’ and click OK.

♦♦ Type ‘java -version’ and press Enter. If an appro-
priate version of Java is installed on your com-
puter, you will receive a response which includes,
somewhere in the text, “java version 1.6.0” If your
computer gives a similar response to this, you
may proceed to installing SIDE. Otherwise, skip
to the next section, “Installing the Java 6 VM”

Windows 7
♦♦ Open the start menu, then search for ‘cmd’.

♦♦ Click the ‘cmd’ icon.

♦♦ Type ‘java -version’ and press Enter. If an appro-
priate version of Java is installed on your com-

puter, you will receive a response which includes,
somewhere in the text, “java version 1.6.0” If your
computer gives a similar response to this, you
may proceed to installing SIDE. Otherwise, skip
to the next section, “Installing the Java 6 VM”

Mac OS X v10.6
♦♦ Open Finder.

♦♦ Click ‘Applications’ then ‘Utilities’.

♦♦ Double-click ‘Terminal’.

♦♦ Type ‘java -version’ and press Enter. If an appro-
priate version of Java is installed on your com-
puter, you will receive a response which includes,
somewhere in the text, “java version 1.6.0” If your
computer gives a similar response to this, you
may proceed to installing SIDE. Otherwise, skip
to the next section, “Installing the Java 6 VM.”

Fedora Core 11 Linux
♦♦ Click ‘Applications’ then ‘Administration’.

♦♦ Click ‘Terminal’.

♦♦ Type ‘java -version’ and press Enter. If an appro-
priate version of Java is installed on your com-
puter, you will receive a response which includes,
somewhere in the text, “java version 1.6.0” If your
computer gives a similar response to this, you
may proceed to installing SIDE. Otherwise, skip
to the next section, “Installing the Java 6 VM.”

2	 Installation and Setup

4	 | 

Installing the Java 6 VM
If you are using a computer running Mac OS X, then
you can install the Java 6 VM through the ‘Software
Update’ utility. Open this program by clicking on the
Apple icon in the top left corner and running select-
ing the ‘Software Update’ option. Install ‘jre 6’ with the
highest update version available for your computer.

If you are using a computer running Windows, Linux, or
any other operating system, you will need to download
the appropriate file directly from Sun’s official website:

http://java.sun.com/javase/downloads

Once you select the appropriate file here, you
should open it and follow the instructions it gives.

Installing and running SIDE
Now that Java 6 is installed on your comput-
er, you can start using SIDE. All the files that
you will need for basic use are available in a sin-
gle package located at the following website:

http://www.cs.cmu.edu/~cprose/SIDE.html

Save the file to your desktop for easy ac-
cess. Now extract the package to a folder, us-
ing whatever archive manager you prefer.
The resulting folder should be named ‘SIDE’.

To run SIDE, open this folder. Depending on the op-
erating system you are using, you will need to follow
different steps to run SIDE. Once you have completed
these steps, SIDE will be running and you can continue
to the next chapter to begin to learn to use the software.

Windows XP
♦♦ Open the SIDE folder.

♦♦ Double-click the ‘run’ icon.

♦♦ SIDE will start after a short delay.

Windows 7
♦♦ Open the start menu and search for ‘cmd’.

♦♦ Click the ‘cmd’ icon.

♦♦ Type “cd Desktop\SIDE” to navigate from your
home folder to the location where SIDE was ex-
tracted. If you saved this folder somewhere else,
you will have to navigate to it yourself.

♦♦ Type “./run.bat”

♦♦ SIDE will start after a short delay.

Mac OS X v10.6
♦♦ Open Finder.

♦♦ Click ‘Applications’ then ‘Utilities’.

♦♦ Double-click ‘Terminal’.

♦♦ Type “cd Desktop/SIDE” to navigate from your
home folder to the location where SIDE was ex-
tracted. If you saved this folder somewhere else,
you will have to navigate to it yourself.

♦♦ Type “./run.sh”

♦♦ SIDE will start after a short delay.

Fedora Core 11 Linux
♦♦ Click ‘Applications’ then ‘Administration’.

♦♦ Click ‘Terminal’.

♦♦ Type “cd Desktop/SIDE” to navigate from your
home folder to the location where SIDE was ex-
tracted. If you saved this folder somewhere else,
you will have to navigate to it yourself.

♦♦ Type “./run.sh”

♦♦ SIDE will start after a short delay.

5	 | 

retrieving certain portions of the argument that might
be of interest. For example, perhaps only the supporting
arguments are of interest. It would not be possible to
summarize the argument by pulling out these portions
without first imposing the structure on the text that
distinguishes between those three types of sentences.

Conceptually, then, the use of SIDE has two main
parts. The first part is to construct filters that can im-
pose structure on the texts that are to be summarized,
and the second part is constructing specifications of
summaries that refer to that structure and extract sub-
sets of text or display visualizations of that structure.

To train the system and create a model, the user first
has to define a filter. Filters are trained using machine
learning technology. As we have stated previously,
two customization options are available to analysts.

The first is the selection of the machine learning algo-
rithm that will be used. Dozens of options are made avail-
able through the Weka toolkit, but some are more com-
monly used than others. The three options that are most
recommended to analysts starting out with machine
learning are Naïve Bayes, which is a probabilistic model;
SMO, which is Weka’s implementation of Support Vec-
tor Machines; and J48, which is one of Weka’s imple-
mentation of a Decision Tree learner. SMO is considered
state-of-the-art for text classification, so we expect that
analysts will frequently find that to be the best choice.

The remaining customization options affect the design
of the attribute space. The standard attribute space is set
up with one attribute per unique feature - the value corre-
sponds to the number of time that feature occurs in a text.

Before stepping through how to use the SIDE GUI,
it may be helpful to think at a high level about the
process. First note that when using SIDE, we think in
terms of producing summaries or reports about docu-
ments. Often the term “document” conjures up im-
ages of newspaper articles or reports, but even discus-
sions or individual contributions to discussions can be
documents. For our purposes, typical documents will
be those that come up in instructional contexts such
as answers to open response questions, logs from on-
line discussions, email messages from students, posts
to course discussion boards, and so forth. Therefore, a
document can be a single sentence, a single word, or
an entire essay, depending on the nature of your data.

SIDE was designed with the idea that documents,
whether they are logs of chat discussions, sets of posts
to a discussion board, or notes taken in a course, can be
considered relatively unstructured. Nevertheless, when
one thinks about their interpretation of a document,
or how they would use the information found within
a document, then a structure emerges. For example, an
argument written in a paper often begins with a thesis
statement, followed by supporting points, and finally a
conclusion. A reader can identify with this structure even
if there is nothing in the layout of the text that indicates
that certain sentences within the argument have a dif-
ferent status from the others. Subtle cues in the language
can be used to identify those distinct roles that sentences
might play. Thus, machine learning models can be used
to assign status tags to individual sentences and thus
impose a structure on what initially looked at the surface
to be unstructured. That structure can then be used in

3	 Using SIDE: Text Annotation

6	 | 

SIDE comes packaged by default to search for standard
features from Natural Language Processing, integrating
an older package called TagHelper Tools. The follow-
ing types of features can be extracted automatically:

♦♦ Unigrams and bigrams. A unigram is a single word,
and a bigram is a pair of words that appear next to
one another. Unigrams are the most typical type of
text feature. Bigrams may carry more information.
They capture certain lexical distinctions such as
the difference in the meaning of the word ‘inter-
nal’ between “internal attribution” and “internal
combustion.”

♦♦ POS bigrams. Part-of-speech bigrams are similar
to the features discussed above, except that instead
of words, they represent grammatical categories.
They can be used as proxies for aspects of syntac-
tic structure. Thus, they may be able to capture
some stylistic information such as the distinction
between “the answer, which is...” and “which is
the answer.” They may also be used as a primitive
proxy for grammaticality - certain patterns of part-
of-speech tags will be very rare in grammatical
sentences, while others will be very frequent.

♦♦ Treat Features as Binary. This is a setting which
applies to the features above. In some cases, it may
be useful to count the number of occurrences of
each word in a document; however, in most cases
machine learning has been shown to be more
effective if a bag-of-words model checks only for
the presence of a word (1 or 0). This option toggles
between those two settings.

♦♦ Line Length. This feature simply describes the
number of words in a document. This may be use-
ful in conversational data, where short lines should
be treated differently from long, extended state-
ments.

♦♦ Contains Non-Stop Word. This flag can identify
whether a statement contains at least some con-

tentful word. It is a boolean value set to either 0 if
all words are filtered out from the stop words list
(described below) or 1 if a word exists in the docu-
ment that is not on that list.

♦♦ Stop words. This flag can weed out whether a
contribution is contentful or not, which can be
useful when processing chat data rather than
newsgroup style data. For example, making a
distinction between contributions like “ok sure” and
“the attribution is internal and stable.” Often the
categories that are appropriate for non-contentful
contributions are distinct from those that apply to
contentful ones, so this can be a useful distinguish-
ing characteristic.

♦♦ Stemming. Stemming is a technique for remov-
ing inflections from words in order to allow some
forms of generalization across lexical items, for
example the words stable, stability, and stabilization
all have the same lexical root.

Once the reader has grasped these concepts, then
it is not much of a stretch to consider that defin-
ing a filter has four steps: creating annotated files
with user-defined annotations, choosing features to
use for machine learning, choosing evaluation met-
rics, and choosing a classifier to train the system.
Without a foundation of concepts in machine learn-
ing, these notions will likely sound very foreign.

Figure 2 shows the arrangement of buttons on the
SIDE main menu, which follows the logical process
of using SIDE. The first button allows the user to in-
put files, either pre-annotated or plain text, and con-
vert them to the internal format, referred to as UIMA.
The Segmentation & Annotation interface enables
users to define coding schemes that can be applied ei-
ther by hand, using the Annotation interface, to place
a structure on a document, or automatically, with a
filter that can be defined using the Feature Table &
Model Building interface. Structured files that result
from annotation, either by hand or automatically, can
be summarized. The Summary Panel allows the user

7	 | 

to define how a summary can be built by specifying
filters that will be used to apply structure to a docu-
ment first, and then either specifying how visualizations
can display patterns of annotations, or annotations
can be used to find desired portions of a document.

For a running example, this tutorial will use example
conversations from the AMI Meeting Corpus. A few of
these files are available in our distribution of SIDE, in-
cluding all of those used in this manual. The entirety of
the corpus is available online for free. In these conversa-
tions, four participants discuss the design of a new TV re-
mote control. The versions we distribute come annotated
for dialogue act tagging and extractive summarization.

Lesson 1: Converting your data to SIDE’s format for the first time

Figure 2: The UIMA conversion window in SIDE.

In order to provide maximum clarity for how to per-
form a particular task, these lessons will be giving
very basic, step-by-step instructions on how to per-
form a task. While doing this, it is important not to
lose sight of the big picture. You should not consider
this process as merely a set of steps to be repeated, but
an interactive, flexible, adapting understanding of the
nature of your data. Before you can do this, however,
you need to understand the basics of the user interface.

To convert a CSV file into UIMA format:
1.	 Open the CSV file you will be converting and ex-

amine it in a program such as Microsoft Excel. The
files we will be using is located at SIDE/data/ami/

2.	 Make a note of which column stores the actual
text data that you are importing. In this file, it is
“text”. You will need this information later.

3.	 Open SIDE, or if SIDE is already running, navi-
gate to the launch panel.

4.	 Click the ‘Convert to UIMA’ button, the first but-
ton on this list.

5.	 In the ‘document reader plugins’ dropdown menu,
make sure that the sample plugin ‘CSVFileReader’

Figure 1: The launch panel and main menu of SIDE

8	 | 

is selected (see figure 3).

6.	 Click the ‘select files’ button (see figure 3).

7.	 In the file browser that appears, select the files that
you want to import.

8.	 Once a file is chosen, both the ‘open file list’ and
‘save file list’ text areas are filled automatically.

9.	 Ensure that the ‘File contains text data’ checkbox
is checked. This should be the default setting. This
informs SIDE where to look when building a
feature table representation of your data.

10.	 Check the ‘name of text column’ field to make sure
that it matches the header for your text column. In
this case, the default (“text”) is correct (see figure 3).

11.	 Click the ‘convert files’ button (see figure 3) at the
bottom of the window to produce your UIMA
document. This may take some time, especially
for CSV files with many different columns (each
annotation is processed separately).

12.	 Once the ‘convert succeeded’ dialog appears, close
the Convert to UIMA window to return to the
launch panel.

Why did my file conversion fail?
The most common source of problems in using SIDE is
the initial conversion of the file. Don’t worry if you’ve en-
countered problems! There are three likely sources of errors.

1.	 UIMA is designed to handle text data in ASCII

formatting only. Because of this, any characters
encoded in Unicode formats (such as Chinese
characters) need to be removed from your docu-
ment prior to conversion. In the future, we will
build a way of handling Unicode charaters into
SIDE, but in the current release, conversion of a
Unicode file will fail. Many text editors contain an
option to “zap gremlins” which will remove these
intruding characters for you automatically.

2.	 SIDE requires that every entry in your data has a
value for every column. If there are some cells in
your table which are blank, SIDE’s conversion will
fail. A simple solution to this problem is to simply
fill in those spaces with a label “Unknown” or
“Blank” before using the file in SIDE.

3.	 Remember that in .csv files, commas separate
columns. However, in text content, commas are
often included in the transcription. Ensure that
your text column is quoted if it contains commas,
or the conversion will fail.

Can I use non-text data sets in SIDE?
Yes. In order to use a non-text dataset with SIDE to
make use of its error analysis or defined feature function-
ality, simply uncheck the ‘File contains text data’ check-
box. In other windows, the text content of your files will
show up as meaningless numbers. This can be safely ig-
nored, and it will not be processed by the machine learn-
ing algorithms later on in the process of using SIDE.

Lesson 2: Analyzing annotated data within SIDE’s interface
Our example files are meeting transcripts from the
AMI Meeting Corpus. They are distributed with
SIDE with three annotations intact, though many
more exist in the full version of the corpus. This in-
cludes the “Speaker” annotation (who contributed
each line)as well as two annotation schemes. These
annotation schemes are “DialogAct” - which divides

statements into one of four high-level categories
(“Task,” “Elicit,” “Minor,” and “Other”) representing
the contribution of the statement to the dialogue as
a whole - and “Summary” - which labels individual
lines based on whether they are important enough to
be included in a conversation summary (with a simple
“Yes”/”No” distinction). We can analyze this informa-

9	 | 

tion visually before performing any machine learning.
In fact, doing so will be beneficial to our results, in all
likelihood, as it will allow us to get a feel for the data
that we will be working with, and understand what a
meaningful feature space might look like intuitively.

To analyze segmented and annotated text:
1.	 Open SIDE, or if SIDE is already running,

navigate to the launch panel.

2.	 Click the ‘Segmentation & Annotation’ button.

3.	 Click the ‘load file’ button in the top left corner
of the window that appears.

4.	 Select the file that you want to examine - in our
case, ES-2012a.csv.xmi and click ‘ok’.

5.	 The data that we are examining will now appear
in the main panel.

6.	 Open the drop-down box below the ‘load file’
button. Switch between the different annotation
schemes and see that the main panel will adjust
to match your selection.

7.	 Look at the list on the left hand side of the win-
dow. These labels are color-coded to match the
segments in the main panel.

8.	 To change the color of an annotation, click the
small color box on the left-hand list.

9.	 Once you have selected a suitable color from
this box, click ‘ok’ and the annotations will
change colors immediately.

10.	 Click ‘save’ in the bottom left corner to store the
new colors you have selected in the UIMA file.

11.	 Look above the data panel, and see the two tabs

labelled ‘annotation’ and ‘visualization’. Click
‘visualization’ to switch to a different panel.

To analyze text using visualization:
12.	 Open the ‘visualization plugins’ dropdown and

see that there are three available by default.

Note: Two of these visualization plugins rely on
your data to have timestamps in one column. As
our test data does not, we will only be able to ex-
periment with the third, the pie chart visualization.

13.	 Click ‘PieChartVisualization’ to switch views.

14.	 Select one of your annotations in the dropdown
menu on the far left hand side. This will show
you the relative frequency of each label type.

15.	 Return to the ‘annotation’ tab. Close the Seg-
mentation & Annotation window to return to
the launch panel.

Figure 3: The Segmentation & Annotation window in SIDE

10	 | 

Lesson 3: Creating a new annotation scheme for your data
In this lesson, we’ll add a new annotation scheme to
represent a new type of information we’re interested
in predicting or using as evidence.

To add an annotation scheme for a UIMA file:
1.	 Open SIDE, or if SIDE is already running,

navigate to the launch panel.

2.	 Click the ‘Segmentation & Annotation’ button.

3.	 Click the ‘load file’ button in the top left corner.

4.	 In the file browser, select the file to edit. We will
again be using ES-2012a.csv.xmi.

5.	 Once the data loads, click the ‘new annotation
scheme’ button. A popup window will appear.

6.	 Select the segmentation type that you want. It is
likely that you will want “native” which pre-
serves the segmentation from your CSV file.

7.	 Give your new annotation scheme a name. This
should represent the feature you are labeling.

8.	 Click ‘segment’ to create this annotation
scheme. You will notice that there are no label
options, and all segments are now unlabeled.

9.	 Now we need to define labels. Click ‘add label’
twice to make new label types.

10.	 Change the text in these labels to match what
you want to label.

11.	 Click the color boxes to the left of the labels to
change the color appearing in the main panel.

12.	 Right click a segment in the Annotation panel and
click ‘set label.’ This will open a popup window.

13.	 From the scroll menu, select the radio button
next to the annotation matching this segment.
Click ‘ok’ to apply the label to this segment.

14.	 You can annotate multiple segments at a time by

Figure 4: Creating an annotation scheme in SIDE.

holding down shift (for contiguous sections) or
control (for dispersed segments) and right click-
ing once to label all selected segments.

15.	 You can right click and select ‘select unannotated
segments’ to select all unlabeled segments at once.
‘Select all segments’ behaves in a similar way.

16.	 You can right click the incorrectly annotated
segment and select ‘clear annotation’ to remove
annotation from that segment.

17.	 If you choose to remove an annotation type
from a scheme altogether, you can click ‘Re-
move’ on the list of labels to remove annotations
from any segment that were labeled that way.

18.	 To save the annotations that you have made,
click ‘save’ in the bottom left corner.

19.	 You may also want to re-export your annota-
tions back to CSV; you can do this by clicking
the ‘export to CSV’ button.

20.	 Close the ‘Segmentation & Annotation’ panel
once you are finished annotating.

11	 | 

4	 Using SIDE: Machine Learning

Lesson 4: Building a feature table to represent your data set
To predict an annotation using machine learning,
a document must first be converted into a form
that is understandable by the algorithms that
SIDE uses. This means that the document must
be equivalent to a vector of features, each one of
which has a single value associated with it.

What this means in a natural language processing
scenario is usually that a model will be con-
structed in the “bag of words” fashion, where each
feature in the vector corresponds to the presence
of a word or sequence of words. This is the type of
feature table that the default TagHelperExtractor
we use in this example will create.

In order to improve performance from a baseline,
the feature table representation is one of the first
places that a research should consider. Later les-
sons will teach you the basics necessary for error
analysis (lesson 6), feature construction (lesson
7), and including your own code in SIDE’s plugin
framework (Chapter 6). For now, we will use the
simpler representation available from the TagHel-
perExtractor.

To build a feature table for training a classifier:
1.	 Open SIDE, or if SIDE is already running,

navigate to the launch panel.

2.	 Click the ‘Feature Table & Model Building’
button.

3.	 Click ‘add’ in the top left corner to open a file

chooser popup window.

4.	 Select files you want to extract features from
- you can select multiple files at once by
holding control or shift. Click ‘ok’ once you
have chosen all files from which you want to
extract features. We will use ES-2012a.csv.
xmi.

5.	 Select which annotation you want to learn to
predict in the ‘annotation’ dropdown menu.

6.	 Choose which features you would like to ex-
tract using the ‘feature extractor plugins’ list.
Check the ‘TagHelperExtractor’ box.

7.	 Right click the ‘TagHelperExtractor’ label to

Figure 5: Building a feature table in SIDE.

12	 | 

results of this table for future use within SIDE.

13.	 At this time, leave the window open and pro-
ceed to Lesson 5.

To edit a feature table manually once it has been
created:
14.	 If there are features that you believe are hurt-

ing performance of your classifier, you can
uncheck them from the right-hand window.

15.	 Then, in the ‘use filtered list below as table’
text box, give this filtered list a new name
and click ‘create.’ The feature table with the
changes you have made will be available to
you in the list on the bottom left corner.

Other options associated with feature tables in SIDE:
16.	 Right click the table name you just created in

the ‘feature table’ list and choose the ‘export
using’ option, then select HTML Feature
Table or ARFF Feature Table options. These
options will let you view the feature table in a
web browser or in the Weka machine learning
environment.

17.	 If you would like to load a table that was
previously saved, such as the XML file you
just created in step 15, you can right click
the ‘feature table’ list and select ‘load feature
table.’ This will open a dialog for loading
tables into SIDE.

18.	 The ‘Empty’ feature extractor will allow you to
create an empty feature table with no features
extracted. This is useful for working with non-
text datasets. Then, in the Machine Learning
panel (see lesson 5), you can select the ‘Use
Metafeatures’ checkbox to use the other col-
umns in your dataset as features.

19.	 To remove the feature tables that you’ve al-
ready created, you can click the ‘clear’ button.

open a configuration popup window. Here you
are able to select which features to extract. We
will be extracting a simple unigram model, so
select ‘unigram’ and ‘treat features as binary’
and click ‘ok.’

8.	 If you wish to filter out features which do
not occur frequently, check the ‘remove rare
features’ checkbox. Then, type a number into
the textbox that appears. This will require that
feature to occur in at least that many docu-
ments in order to be included in your feature
table.

9.	 Choose a name for this feature set, and type it
into the ‘new feature table name’ text area.

10.	 Click the ‘create feature table’ button and
the features you chose will be extracted. Be
patient - this may take a few minutes for a
large dataset.

11.	 The ‘feature table description’ panel will now
show a checklist containing the names of the
features you extracted.

12.	 Right click a third time and select ‘save’ to open
a file chooser dialog where you can save the

Figure 6: Exporting a feature table for use outside of SIDE.

13	 | 

Lesson 5: Training an automatic classifier using machine learning
To train a classifier on your feature table:
1.	 Before beginning this lesson, complete Lesson 4,

or make sure the ‘Feature Table & Model Build-
ing’ window is open with a feature table loaded in
the ‘feature table’ list.

2.	 At the top of the window, switch to the ‘Machine
Learning’ tab.

3.	 In the top left corner, click the ‘Choose’ button
to select the machine learning algorithm you
would like to use. This will open a tree-structured
window.

4.	 The three algorithms you will most likely want to
choose between will be NaiveBayes (in the ‘bayes’
folder), SMO (in the ‘functions’ folder), and J48 (in
the ‘trees’ folder).

5.	 Open the ‘feature table’ dropdown menu and select
the table (see Lesson 4) to use.

6.	 You can choose whether to perform cross-valida-
tion and select the number of folds in the ‘cross-
validation’ field; it is set to do so by default.

Note: If you do not use cross-validation, you will
not be able to perform error analysis (lesson 6).

7.	 You must choose a segmenter from the ‘default
segmenter’ dropdown. However, your choice is not
important unless you are performing summariza-
tion. For machine learning, this option is ignored.

8.	 If you wish to use the other annotations on your
dataset as features for machine learning, select the
‘Use metafeatures’ checkbox. This is important if
you are using a non-text dataset, for which these
extra columns will be your only features.

Note: If you use metafeatures, then all future data
that you wish to annotate using this model must have
those same exact metafeatures available to the model.

9.	 Give a name to the model you want to build in the
‘New model name’ field.

10.	 Click the ‘train model’ button to build a model.

Note: Machine learning can be slow! This is especially true
of large data sets or feature tables, or complex algorithms.

11.	 Once your model is built, information about your
model will appear on the right window.

12.	 To focus on specific information about your
model, such as the weights themselves (for an
SVM-style model) or the confusion matrix (for
preliminary error analysis), click the dropdown
menu on the top of the right window.

To save/load models for repeated use of a classifier:
13.	 Right-click the model name in the ‘list of models’

menu and choose ‘save.’

14.	 To load a classifier that was previously saved, you
can right-click in the ‘list of models’ and select
‘load training result.’

15.	 At this time, leave the window open and proceed
to Lesson 6.

Figure 7: Training a classifier using machine learning in SIDE.

14	 | 

Lesson 6: Performing error analysis on an annotation model
In an insightful process of applied machine learn-
ing, a practictioner will design an approach that takes
into account what is known about the structure of the
data that is being modeled. However, typically, that
knowledge is incomplete, and thus, there is always a
good chance that the decisions that are made along
the way are suboptimal. When the approach is evalu-
ated, it is possible to determine based on the propor-
tion and types of errors whether the performance is
acceptable for the application or not. And if it s not,
then the practitioner should engage in an error anal-
ysis process to determine what went wrong and what
could be done to better model the structure in the data.

Two common ways to approach an error analysis are
top down, starting with the learned model, or bot-
tom up, starting with the confusion matrix. In the
first case, the model is examined to find the attributes
that are treated as most important in the model.
These are the attributes that have the biggest influ-
ence on the predictions made by the learned model,
and thus these attributes provide a good starting
point. In the second case, the bottom-up case, one
first examines the confusion matrix to identify large
off-diagonal cells, which represent common con-
fusions. Consider the sets in a confusion matrix:

The error analysis is then the process of determining
how examples in set C could have been associated
closely enough with examples in set A to be classified
as such by your machine learning model. This can be
done by identifying attributes that most strongly dif-
ferentiate sets C and D (a horizontal comparison),
and attributes that are most similar between sets
A and C (a vertical comparison). The same pro-
cess applies for the error in set B or any error cell.

To study a machine learning model at a high level:
1.	 Before beginning this lesson, complete Les-

son 5 or make sure the ‘Feature Table & Model
Building’ window is open with a trained model
loaded in the ‘Machine Learning’ tab.

2.	 The dropdown menu at the top of the training
results page has many options for examination.
Open it and click the ‘model’ option. This will give
you the model that your classifier is actually using.

Note: Throughout the process described below, it
is important to keep coming back to this model.
If you make conclusions based on differences in
the data, those conclusions must also be backed
up by the actual decision making structure of your
model. For instance, a decision tree must actu-
ally make use of a feature at some point reasonably
high up in the tree in order for that feature to be
important. A linear SVM model must be giving
weight to a feature in order for that feature to af-
fect the classification of a document. And so on.

3.	 Now click the ‘Summary’ option. This page gives
a lot of information about our classifier based on
cross-validation, including total accuracy, Kappa

CLASSIFIED AS -> YES NO

 ACTUALLY YES (set a) (set b)

ACTUALLY NO (set c) (set d)

Figure 8: High level classifier information in SIDE

15	 | 

accuracy, and other statistics.

4.	 Finally, click the ‘Confusion Matrix’ option.
This gives us a brief summary of the results and
sources of error. We will look at this matrix in
much greater detail now.

To explore a confusion matrix in detail:
5.	 Switch to the ‘Feature Analyzer’ tab by clicking

it at the top of the screen.

6.	 Select the model you want to analyze in the
‘model’ dropdown menu in the top left corner.

7.	 By default, all segments that were evaluated in
cross-validation display in the bottom-right
scrolling list, and the confusion matrix appears
in the middle of the page.

Note: This process requires you to keep track of a
lot of information about what categories differ-
ent sets of data fall into and what these categories
mean. As you work, the labels on this window will
change to give you some reminders. For instance,
the left-hand panel gives the predicted and ac-
tual labels of the segments in the cell you have
highlighted, while the right-hand panel is labeled
with the name of the correctly classified category
you are comparing against. Click a cell that is not
along the diagonal of correct cells in the confusion
matrix at the top of the page. This will fill the bot-
tom left scrolling list with the contents of that cell.

8.	 Open the ‘comparison’ dropdown menu and see
that you have three options - full, horizontal,
and vertical comparison. By default, ‘Full Com-
parison’ is selected and shows all segments in the
right-hand list. Click ‘Horizontal Comparison.’

9.	 Now that you have selected a comparison type,
open the ‘highlighted feature’ dropdown menu.
The contents are sorted by degree of difference
between the segments that were incorrectly
labeled and the segments that were correct. This
means that elements at the top of the list are

more likely to be predictive of why a machine
learning algorithm is making mistakes.

10.	 Select a feature from the ‘highlighted feature’
list. A second confusion matrix will appear
below the menu.

11.	 Study the second confusion matrix. For each
cell, this gives the average value of the high-
lighted feature among members of that cell,
with standard deviation given in parentheses.

12.	 Now switch to ‘Vertical comparison’ and reopen
the ‘highlighted feature’ dropdown menu. You
will see that the features have now been auto-
matically resorted to show similarity between
the two cells. In this case, because the cells
represent different actual labels, this will again
show a possible reason why the classifier made
a mistake.

13.	 You may have noticed that the ‘hide empty fea-
tures’ box is checked by default. This option can
be unchecked if you are interested in features
which do not appear in the documents in the
cells you are comparing.

14.	 To see the entirety of a document’s text, hover
over the ‘Text’ column and it will appear as
mouseover text.

Figure 9: Error analysis interface in SIDE.

16	 | 

sis interface for these problems is different, be-
cause there is no concept of a “confusion matrix.”
Instead, we can consider two different types of er-
rors - overestimation and underestimation, where
the predicted value is higher or lower than the
actual result, respectively. In fact, that is exactly
what the numeric error analysis interface does.

17.	 When using the numeric interface, there is a
slider visible to the user. This slider allows you to
customize the margin of “correct” answers.

18.	 Select “percent” or “absolute” to determine
whether you want the error tolerance to be
measured as an absolute value (for instance,
a prediction within 2.0 of your actual value is
acceptable) or as a percentage (for instance, a
tolerance of up to 10% error).

19.	 Moving the slider from side to side will change
the accepted tolerance. Note that this can be
slow to respond as it is recalculating categoriza-
tion for all instances in real time.

20.	 The confusion matrices underneath the slider
are now comprised of only three cells, rather
than a matrix. Thus, there is no longer an option
of either horizontal or vertical comparison. You
can still select one category of error, but it will
always be compared based on its differences
from the correctly classified instances.

15.	 If you are interested in experimenting with your
data outside of SIDE, you can click the ‘Export
to CSV’ buttons to export the tables in their
respective windows to an external CSV format.

16.	 Continue to experiment with different cells and
different comparisons to get a better under-
standing of the ways in which your model failed.
Once you are done, you can close the ‘Feature
Table & Model Building’ window.

To study a numeric prediction result:
SIDE does offer support for numeric prediction,
such as linear regression tasks. The error analy-

Figure 10: Numeric error analysis in SIDE.

Lesson 7: Defining more complex features of your data by hand
Once you have identified different types of errors
that have occurred in your data, it is likely that you
will want to attempt to improve your performance
based on these insights. There are a few different ways
of doing this. The most straightforward is to change
the algorithm that you are using, either moving to
an entirely new algorithm or altering parameters of
the current algorithm. However, there is a great deal
that can be done in the feature table representation
while keeping the same algorithm for learning. The

feature table can be modified by removing items
which are giving incorrect evidence, filtering down
the features in a table, as discussed in lesson 4. You
can also write entirely new plugins which offer ad-
ditional functionality over what SIDE already gives
you, as will be discussed in Chapter 6. However, the
DefinedFeatureExtractor gives another option for
users. This interface can be daunting at first, but it
gives a great deal of flexibility in terms of what in-
formation you would like to include in a new feature.

17	 | 

The features that we will be constructing can be com-
prised of a variety of structures. The first ones that we
will discuss are boolean features. These are boolean
trees that evaluate to 1 as a feature if the statement that
is described by the tree is true, and 0 if it is not true.

These features can contain important contextual in-
formation. For instance, consider a feature such as:

(XOR diminished ambitious)

This feature may make a distinction between subtleties
in a movie review, for instance, in the following extract:

.

To define a boolean feature based on word n-grams:
1.	 Ensure that SIDE is running and that you are in

the ‘Feature Table & Model Building’ window.

2.	 Click ‘add’ to choose the file or files to build
features from.

3.	 Select which annotation you want to learn to
predict in the ‘annotation’ dropdown menu.

4.	 Check the ‘DefinedFeatureExtractor’ option in
the ‘feature extractor plugins’ menu. Then, right
click on it to open the feature definition window.

5.	 The top segment of the window will be open to
the ‘Word N-Gram’ tab by default. This gives
you three columns of n-grams which appear in
your document.

6.	 To change the length of n-grams in one of these
lists, change the number in the ‘NGrams of
length:’ text box and click ‘Load’ to refresh.

this is a promising premise, and mr. taylor’s
film could have gone any number of ambitious
ways from this point [...however] this is not a
film which has the wherewithal to kill off its
leading star in the opening ten minutes. the
entire sequence is, then, clearly an exercise for
character exposition, with attempts at humour
terribly diminished by utter predictability

7.	 To filter the lists of n-grams to a specific word
or set of words, type the word you are searching
for in the ‘Filter’ text box and click “Filter Lists”
or press Enter.

8.	 To search for stemmed n-grams instead of
surface n-grams, click the “Turn stemming on”
button; to change back, click the same button.

9.	 To add one of these n-grams as a leaf node for a
boolean feature, double click it in the list. It will
be added to the list of features in the middle of
the window.

10.	 Double-click a feature in the middle list. This
will open up a popup window showing the in-
stances in which this feature occurs in your data.

11.	 Once you have added a feature to the middle
window, click it and the text area to its right will
fill with information about the predictiveness of
the feature. The information given is precision,
recall, and f-score. These are useful indicators of
the specificity and generalizability of a feature.

12.	 To combine features using a boolean operator,
select them all in the middle window by click-

Figure 11: N-Gram Defined Features creation window.

18	 | 

ing them while holding down Shift or Control.

13.	 Once all the features that you want to use are
highlighted, click one of the boolean operators
(AND, OR, XOR, NOT) and a new feature
will be created that is a combination of those
features with that operator.

To define a sequencing-based feature:
If your data set is conversational, that is, each
document is meant to follow the previous docu-
ment temporally, then it may be interesting to
note sequences of words occuring throughout
the conversation, and the order in which they
occur. You may want to look for patterns which
will give a feature representation of these se-
quencing criteria. The Sequencing button next
to the boolean buttons gives you that option.

14.	 To create a sequencing feature, highlight exactly
two features in the middle window. Then click
the ‘Sequencing’ button and a popup window
appears.

15.	 To change the window in which you will look
for a past feature, change the ‘within X turns’

dropdown menu’s setting. Options available to
you are from 0 (meaning that the words must
occur in the same document) to 5.

16.	 To change the direction that a feature is look-
ing, the second dropdown menu lets you choose
whether to look for the additional feature
before, after, or both before and after the current
document. This dropdown menu will change
that window.

17.	 To change the ordering of the two features (that
is, to look for the second feature listed rather
than the first, thereby looking contextually for
the first feature rather than the second), click
the ‘swap searches’ button.

18.	 Once you have defined the sequencing criterion
you are interested in, click ‘ok’ to add this new
feature candidate to the middle window.

To search within a document using regular expressions:
 Some features that you may be interested in are
features which are more complex than n-grams
but which are still contained within a single docu-
ment. For this purpose you are able to create regu-
lar expressions which will create a feature based on
whether that regex matches the text of each docu-
ment individually. The syntax of these regular ex-
pressions matches that of the Java Pattern class,
and includes operators such as *, +, ?, and char-
acter classes such as \w, \s, etc. More information
on how to use regular expressions is available at:

download.oracle.com/javase/tutorial/essential/regex/

19.	 To search for a pattern more complex than an
n-gram within a document, switch to the ‘Regex
Search’ tab at the top of the window.

20.	 Enter your regular expression into the ‘Search
for:’ text box, following Java regex syntax.

21.	 To only find whole words that match your regex
(rather than finding subsequences within words),

Figure 12: Regular expression and sequencing based feature creation.

19	 | 

check the ‘Match whole words only’ checkbox.

22.	 If you want your search to be case-sensitive,
click the ‘Make search case-sensitive’ checkbox.

23.	 To create a feature based on your regular expres-
sion, click the ‘Add Search’ button.

To use information from other annotations of your data:
It will occasionally be useful to search for spe-
cific information about your data based on other
annotations of the data. Note that this will re-
quire all of your data from this point forward
to be annotated with exactly the same layers if
you use these features, just as using metafea-
tures in general requires, which is restrictive for
fully automatic systems. Currently, these pri-
or annotations are slow to evaluate in SIDE.
We intend to improve efficiency in the future.

24.	 Switch to the ‘Prior Annotations’ tab at the top
of the window.

25.	 Select the annotation that you are interested in
from the left list, which will produce the set of
labels from that annotation.

26.	 Select the label that you want to search for from
the right list by double clicking on it.

27.	 If you want to know simply whether the label
of the current segment is the same or differ-
ent from the previous segment, you can choose
those options from the right list as well.

Note: In order to use the prior annotation feature, the
segmentation of those annotations must be the same
as the annotation that you are trying to automate.
Thus, you cannot have a document-level segmenta-
tion for the annotation you are predicting while us-
ing features based on a sentence-level segmentation.

To finalize the set of features to add to your feature space:
The set of features that you have in the middle
window will be comprised of partial or incomplete

Figure 13: Prior annotation features, and matching instances window.

features; it is through constructing combinations
of these features that you gain information. Obvi-
ously, you don’t want to add all of the intermediate
steps to your feature space. Thus, there is a separate
step to create the final set of features to be added.

28.	 Highlight the feature or features that you want
to add to your final feature space in the middle
window by clicking on them with Shift and
Control.

29.	 Click the ‘Convert to Features’ button. The
highlighted features will be shifted to the bot-
tom window.

30.	 To correct mistakes in the bottom list, press the
‘Delete Selected Feature’ button to delete the
currently highlighted feature, or press the ‘Clear
Feature List’ button to clear the list. The features
in the middle window will remain.

31.	 When you have finalized your list of features to
add to your feature space, click ‘ok’ at the bottom
of the window.

20	 | 

Lesson 8: Automatically annotating your data with your model
To automatically annotate a UIMA file:
1.	 Before beginning this lesson, make sure you

have loaded a model in the ‘Feature Table &
Model Building’ window.

2.	 Click the ‘Segmentation & Annotation’ button.

3.	 Click the ‘load file’ button and select a file to
annotate automatically.

4.	 Open a file which does not currently have the
annotation that you are interested in.

5.	 If there are no current annotations of the text, the
right side of the screen will be blank. If this is the
case, you must first segment the text by clicking
the ‘new annotation scheme’ button. This will
open a popup; choose ‘native’ segmentation.

6.	 In the ‘model’ dropdown menu in the bottom
left, select the model to use for annotation.

7.	 In the ‘segmentation:’ dropdown, ensure that
‘use current segmentation’ is checked.

8.	 Give the new scheme a meaningful name in the
‘annotation name’ text area.

9.	 Click the ‘annotate using model’ button. This

Figure 14: Automatic annotation of text using a trained classifier.

may take awhile, particularly for large files.

10.	 Once this finishes, the new annotation scheme
will be in view automatically. Note the new item
in the interface, a partially filled bar on the right
side of each segment. This shows the classifier’s
confidence in each prediction.

11.	 Click ‘save’ in the bottom left of the window if
you wish to use this annotation in the future.

21	 | 

To write a recipe for summarization:
1.	 Before beginning this lesson, complete Lesson

5, or make sure SIDE is opened to the launch
panel and you have loaded a model in the ‘Fea-
ture Table & Model Building’ window.

2.	 Click the ‘Summary Panel’ button.

3.	 In the ‘Expression builder’ menu, click the black
triangle and select ‘is’ and then the model that
you want to get a label from.

4.	 Click the ‘...’ button in this recipe and select
the label that you want to use as a filter for this
summary.

5.	 If you would like to include more categories,
you can click the green ‘+’ icon to include bool-

Lesson 9: Defining a recipe for summarization of your data

At this point, you have a filter that can be used to
segment and annotate files. Once a file has gone
through this process, that imposed structure can be
used in the process of generating a summary so that
you can retrieve just those parts of the document
that are relevant for the summary that you want.

The first step is to define the selection criteria,
which will be used to extract a subset of segments
from the text. The simplest model of this criteria
is annotated in the AMI meeting corpus data that
SIDE comes with. It contains a layer with a Yes/
No annotation, ‘Summary’ where the segments that
should be included in a summary are marked as

‘Yes.’ There is ample room for adding additional lay-
ers, however, by automatically identifying segments
based on topic or rhetorical structure, for instance.

The selection criteria is specified in terms of annota-
tions that have been defined. If you refer to a filter
in the selection criteria, that filter will be applied
to the text. Then the conditions placed on the filter
will be applied. What that means is that you can
indicate that a subset of the annotations that can be
applied to the filter indicate that the corresponding
segments should be selected. Using a combination
of boolean operators, you can create arbitrarily com-
plex selection criteria involving multiple filters.

5	 Using SIDE: Summarization

Figure 15: Defining a summary recipe in SIDE.

22	 | 

in its original order or by highest rank, check or
uncheck the ‘restore original order?’ checkbox.

10.	 Fill in the ‘Recipe name’ text area with a name.

11.	 Click the ‘create recipe’ button and the recipe
object will be generated for your use.

To save/load models for repeated use of a classifier:
12.	 To save this recipe for future use, right click its

name in the ‘summary recipe’ list and select ‘save.’

13.	 Right-clicking in the ‘summary recipe’ list and
selecting ‘load recipe’ will allow you to use an
existing recipe.

14.	 At this time, click the ‘summary’ tab at the top
of this window and proceed to Lesson 9.

Lesson 10: Generating a summarization of a text using a recipe
To generate a summary:
1.	 Before beginning this lesson, complete Lesson

8, or make sure you have loaded a summary
recipe in the ‘Summary Panel’ window.

2.	 Click ‘add’ to choose which data to summarize.

3.	 In the ‘segmentation’ menu, choose the segmen-
tation option that you want to use; if you want
to use segments as defined in your original file,
choose ‘native’ as your segmentation option.

4.	 Select in the ‘summary recipe’ menu which
recipe you will use for summarization.

5.	 Name your summary in the ‘summary name’ field.

6.	 Click ‘create summary object’ to add a summary
object to the ‘summary’ list in the bottom left
corner of the panel.

7.	 Click ‘summarize’ to automatically annotate
your document using the model in the recipe,
and give a list of the segments that you chose in
your recipe as the most important. These results

will be shown in the main panel of this window.

8.	 Choose a visualization plugin and click the ‘vi-
sualize’ button to produce a graphical summary
of your data.

9.	 The summary is also produced in plaintext in
the terminal window where SIDE was opened.

Figure 16: Generating a summary automatically in SIDE.

ean operators to additional filters.

6.	 Select the built-in TF/IDF plugin from the
‘Evaluation Metric’ dropdown menu for the
segments that best fit the conditions you have
specified in your recipe.

7.	 Select from the ‘Order’ dropdown the type of
results you wish to receive.

8.	 In the ‘where n=’ text area enter the number
of results you wish to receive, or the percent of
items in the set if you wish to receive a variable
number based on the size of the document.

Note: When entering percentages, input the num-
ber as a decimal; for instance, type “0.35” for 35%.

9.	 To choose whether to order the resulting summary

23	 | 

6	 Extending SIDE: Writing Plugins

SIDE is designed to be a fully extendable framework
for machine learning and summarization. Thus, for each
of the major functionalitys of the program, there is a
common interface that must be implemented, which
has an expected output. Listed below are those plugin
interfaces, along with brief descriptions of how they are
used within the SIDE workflow:

♦♦ MLAPlugin: This interface builds a classification
model, given a feature table representing a set of
documents. A plugin implementing MLAPlugin
must be able to build a model based on a feature
table of training data, and apply that model to
predict the labels of a given unlabeled dataset. SIDE
comes with the WekaPlugin implementing this
interface by default.

♦♦ FEPlugin: This interface takes as input a list of
documents and converts those documents to a fea-
ture table. A plugin implementing FEPlugin must
be able to take as input a list of strings and convert
them to a map of feature names to numbers. SIDE
comes with the TagHelperExtractor and Defined-
FeatureExtractor implementing this interface by
deault.

♦♦ FeatureTableConsumer: This interface converts a
feature table to some external representation of your
data, which can be used by other programs. SIDE
comes with consumers which convert feature tables
to HTML and ARFF formats.

♦♦ DocumentReaderPlugin: This interface converts
external documents into the UIMA format that
SIDE uses internally to store documents. A plugin

implementing this interface must be able to produce
.xmi UIMA files from some file input. SIDE comes
with document readers which read plaintext, CSV,
and DeXML files by default.

♦♦ EMPlugin: These plugins must produce an ordered
list of documents based on some evaluation metric.
This is used for summarization, where a way of
determining which segments to include must exist.
SIDE comes with a length counter and a TF/IDF
plugin by default.

♦♦ SegmenterPlugin: This plugin must be able to take
as input a string containing all the text of a data set,
and produce a list of indices at which to split this
text into segments. In addition to native segmenta-
tion (each line of each file is one segment), SIDE
comes with DocumentSegmenters (each file is
one segment), SentenceSegmenter (using a trained
English sentence identifier), and WordSegmenter
(where each word is treated as a separate segment).

♦♦ VisualizationPlugin: This plugin must be able to
take as input a list of documents that have been au-
tomatically classified by some model, and produces
a Java Swing component which represents that data
in some visual way. SIDE comes with the PieChart,
TimeSeries, and Periodic visualizations by default.

♦♦ FeatureAnalysisPlugin: This plugin takes as input
a list of documents that have been automatically
classified by some model, and produces a Java Swing
component which provides some insight into the
behavior of that model. SIDE comes with the Side-
BySideErrorAnalysis plugin by default.

24	 | 

Language Technologies Institute, School of Computer Science, Carnegie Mellon University - www.lti.cs.cmu.edu

