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1 Introduction

Distribution shift remains a significant obstacle to successful and reliable deployment of machine learning
(ML) systems. Deep neural networks continue to fail in unexpected ways under small input perturbations,
when the data distribution changes, or even when simply being tested on outliers in the heavy tail of natural
inputs. It is tempting to approach this problem with the same strategy which has led to great success for
many other problems in ML: iteration on an appropriately defined benchmark. While this may work for
more traditional “iid” settings, true progress in handling distribution shift comes with the understanding
that benchmarks fundamentally cannot capture all possible variation which may occur in the real world.
Thus, as in the field of cryptography before it, the problem first requires a precise, workable definition: what
does it mean for a distribution to shift?
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There are any number of reasonable definitions for this term. At first, committing to a specific one
may seem like setting our sights too low: ideally, we would like to achieve general robustness to all shifts!
Though an appealing idea, no predictor can achieve good performance on all test distributions simultaneously;
without a precise characterization of a threat model, robustness guarantees are impossible. Furthermore, each
threat model comes with the implicit definition of what cannot change—like the concept of a computationally
bounded adversary, formally defining distribution shift in a particular setting allows us to narrow our focus
by placing constraints on the worst case. Proving that an algorithm or model will remain robust even in the
most unfavorable or unlikely settings is only possible if we first define them.

As they are increasingly deployed in important and sensitive contexts, the predictions of deep neural
networks have a large and growing influence on real-world outcomes. Systematically developing these models
in ways that enable formal guarantees of robustness is the only way to ensure genuine trust in their future
behavior, maximizing their widespread applicability and utility. This thesis proposal surveys my past and
ongoing work towards the development of trustworthy ML models by (i) working to better understand the
effect of heavy tails and distribution shifts, both average- and worst-case; (ii) designing formal, practical
characterizations of their structure; and (iii) developing provably correct and efficient algorithms to handle
them robustly.

2 Robustness to Adversarial Perturbations

This chapter is based on Cohen et al. [2019] and Rosenfeld et al. [2020].

Introduction. One of the most well-known examples of the surprising failure modes of deep neural net-
works is their vulnerability to adversarial examples: small (i.e., human-imperceptible), targeted perturba-
tions to the input which cause the network to output a very confident incorrect prediction [Biggio et al.,
2012, Szegedy et al., 2014]. Not only do such perturbations represent a problematic shift in the distribution
of images, it is also insufficient to improve average robustness because these attacks are created specifically
for the network being evaluated. Many works proposed heuristic methods for training classifiers which were
purportedly robust to such attacks; most were subsequently shown to fail against sufficiently powerful adver-
saries [Carlini and Wagner, 2017, Athalye et al., 2018, Uesato et al., 2018]. In response there began a series
of works on certifiable robustness, designing classifiers whose prediction at any point x is verifiably constant
within some set around x (e.g., Wong and Kolter 2018, Raghunathan et al. 2018). Notably, this does not
ensure the correctness of such predictions, but only that their prediction could not have been changed by a
perturbation from any point within this region.

2.1 Certified Adversarial Robustness via Randomized Smoothing

Unfortunately, these prior approaches are prohibitively expensive, which limits their applicability to modern
deep networks. Instead, we consider an approach which borrows ideas from differential privacy to derive a
scalable alternative. Two previous papers [Lecuyer et al., 2019, Li et al., 2019] showed that an operation
we call randomized smoothing can transform a black-box classifier f into a new “smoothed classifier” g that
is certifiably robust to input perturbations in ℓ2 norm. Let f be a classifier which maps inputs x ∈ Rd to
classes Y. Then the smoothed classifier’s prediction g(x) is defined to be the class most likely to be predicted
by f when the input x is corrupted by isotropic Gaussian noise N (0, σ2I). If the base classifier f is most
likely to classify N (x, σ2I) as x’s correct class, then the smoothed classifier g will be correct at x. But the
smoothed classifier g will also be provably constant within an ℓ2 ball around any input x, with a radius
dependent on the probabilities with which f classifies N (x, σ2I) as each class. The higher the margin, the
larger the radius around x in which g provably maintains that prediction.

Formally, when queried at x, the smoothed classifier g returns

g(x) = argmax
c∈Y

P(f(x+ ε) = c), where ε ∼ N (0, σ2I)

The noise level σ is a hyperparameter of the smoothed classifier g which controls a trade-off between robust-
ness and accuracy. Lecuyer et al. [2019] were the first to apply this idea to certified robustness, although
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it took a somewhat more complex form which injected noise into the internal layers of the network. Li
et al. [2019] analyzed a functional form essentially matching the definition above. However, both of these
guarantees were loose, in the sense that the smoothed classifier g is provably always more robust than the
guarantee indicates. The present work proves the first tight robustness guarantee for randomized smoothing,
enabling much larger radii of certified adversarial robustness.

Main bound. Suppose that when f is evaluated on samples from N (x, σ2I), the most probable class cA
is returned with probability pA, and the “runner-up” class is returned with probability pB . Our main result
is that g is provably robust around x within the ℓ2 radius R = σ

2 (Φ
−1(pA) − Φ−1(pB)), where Φ−1 is the

inverse of the standard Gaussian CDF. This result also holds if we replace pA with a lower bound pA and
we replace pB with an upper bound pB .

Theorem 2.1. Let f : Rd → Y be any deterministic or random function, and let ε ∼ N (0, σ2I). Suppose
cA ∈ Y and pA, pB ∈ [0, 1] satisfy:

P(f(x+ ε) = cA) ≥ pA ≥ pB ≥ max
c̸=cA

P(f(x+ ε) = c). (1)

Then g(x+ δ) = cA for all ∥δ∥2 < R, where R = σ
2 (Φ

−1(pA)− Φ−1(pB)).

Proof outline. The proof begins with the smoothed distribution N (x, σ2I) which is assigned probability
pA by the smoothed f (with runner-up probability pB) and an arbitrary perturbation δ. We then ask: which
base classifier f represents the worst case for this perturbation? That is, what hypothetical function f is
consistent with the observed probabilities E[f(x + ε)] and simultaneously gives the class cA the smallest
probability? A strikingly simple proof—with a similar argument to the Neyman-Pearson Lemma—shows
that this worst-case f is precisely a halfspace with boundary orthogonal to δ, and that the resulting g will
not change for perturbations along this direction up to a distance of R away from x.

As mentioned above, we further prove that our ℓ2 robustness guarantee is tight : if (1) is all that is known
about f , then it is impossible to certify an ℓ2 ball with radius larger than R. In fact, it is impossible to
certify any superset of the ℓ2 ball with radius R:

Theorem 2.2. Assume pA + pB ≤ 1. For any perturbation δ with ∥δ∥2 > R, there exists a base classifier f
consistent with the class probabilities (1) for which g(x+ δ) ̸= cA.

Theorem 2.2 shows that Gaussian smoothing naturally induces ℓ2 robustness: if we make no assumptions
on the base classifier beyond the class probabilities (1), then the set of perturbations to which a Gaussian-
smoothed classifier is provably robust is exactly an ℓ2 ball. The advantage to this guarantee is that it is
completely agnostic to the form of f , which means that it applies to arbitrary architectures and easily scales.
However, if f is a neural network it is not technically possible to evaluate the exact integral E[f(x+ ε)], and
therefore we cannot precisely know g, pA, or pB . Instead, we can derive high probability bounds on these
quantities via Monte Carlo integration—i.e., repeatedly sample ε ∼ N (0, σ2I) and evaluate f(x + ε), then
take the empirical expectation. This is the reason that Theorem 2.1 uses bounds on the class probabilities
rather than the true values.
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Results. Figure 1a plots the certified accuracy of a ResNet-50 [He et al., 2016] on ImageNet [Deng et al.,
2009] attained by smoothing with varying levels of σ. The dashed black line is the empirical upper bound on
the robust accuracy of the base classifier architecture; observe that smoothing improves substantially upon
the robustness of the undefended base classifier architecture. We see that σ controls a trade-off between
robustness and accuracy: greater noise enables larger certified radii but decreases the average accuracy of
the underlying classifier. Figure 1b compares the largest publicly released model from Wong et al. [2018], a
small ResNet, to two randomized smoothing classifiers: one which used the same architecture for its base
classifier, and one which uses a larger 110-layer ResNet. Observe that smoothing with the larger ResNet
substantially outperforms the baseline at all radii, and that smoothing with the small resnet also outperforms
the method of Wong et al. [2018] at all but the smallest radii. This emphasizes the advantage enjoyed by
methods which can be applied to modern deep networks without needing to modify the training procedure.

2.2 Certifying Robustness to Arbitrary Input Perturbations

Introduction. The original instantiation of randomized smoothing convolved the input with pixel-wise
Gaussian noise, inducing robustness to pixel perturbations with bounded ℓ2-norm. Functionally, this ap-
proach is simply convolving a function’s input with noise, thresholding the output, and taking the expec-
tation; the resulting function is then provably Lipschitz [Salman et al., 2020]. Observe that this does not
in any way require that the function is a classifier. More generally, we can apply this idea to any function
with a categorical output. This also means that the input to the function does not need to be an image—
by defining an appropriate metric and noise distribution, we can use more generic randomized smoothing
procedures [Lee et al., 2019, Dvijotham et al., 2020] to certify robustness of black-box functions to arbitrary
input perturbations.

Using this observation for general robustness. An immediate application of this framework is certify-
ing robustness to adversarial attacks on the training data, such as data poisoning. Specifically, the function
to be smoothed will include the entire training procedure of the classifier, meaning it takes as input the
training set in addition to the test input to be classified. Then, analogous to injecting pixel noise at test
time, we can derive robustness guarantees by injecting noise into the training set at train time. As a specific
example, we can add label noise to the training set to give robustness to label-flipping attacks. However, we
still need to evaluate the integral—as our function now includes the training procedure, the previous monte
carlo approximation would entail training a new classifier for each noise sample, which is clearly infeasible.

Instead, we can take advantage of the incredible flexibility of pretrained feature embedders and then
learn to separate the data in feature space via least-squares classification. The advantage of the least-
squares approach is that it reduces the prediction to a linear function of the labels and thus randomizing
over the labels is straightforward. Specifically, letting X ∈ Rn×d be the embedded training points, y the
labels, and xn+1 the embedded test point, note that the least squares prediction would be f(xn+1) =

x⊤
n+1(X

⊤X)−1X⊤y. Therefore, defining α = X
(
XTX

)−1
xT
n+1, the prediction f(xn+1) can be equivalently

expressed as αTy (this is effectively the kernel representation of the linear classifier). Thus, for any test
input xn+1 we can compute α one time and then randomly sample many different sets of labels to tractably
derive a robustness certificate. Even more compelling, due to the linear structure of this prediction, we
can forego sampling entirely and directly bound the tail probabilities using Chernoff bounds. Using binary
classification as an example, because the sampled prediction will be 1 whenever αTy ≥ 1/2 and 0 otherwise,
we can derive analytical upper and lower bounds on the probability of a given label via the Chernoff bound.
Concretely, we can upper bound the probability that the classifier outputs the label 0 by

P (αTy ≤ 1/2) ≤ min
t>0

{
et/2

n∏
i=1

E[e−tαiyi ]

}
, (2)

which can be evaluated easily since each yi is either 0 or 1 with a known probability depending on the noise
distribution. Conversely, the probability that the classifier outputs the label 1 is upper bounded by Eq. (2)
but evaluated at −t. Thus, we can solve the minimization problem unconstrained over t (e.g., with Newton’s
method), and then let the sign of t dictate which label to predict and the value of t determine the bound.
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Results. Fig. 2a depicts the results of our method on CIFAR-10 [Krizhevsky and Hinton, 2009]. We use
advances in unsupervised representation learning [Chen et al., 2020a] to learn high-quality features without
relying on potentially poisoned labels. The hyperparameter q denotes the probability with which each
training label was independently flipped for the noise injection process. As with traditional randomized
smoothing, this presents a robustness/accuracy trade-off. For example, our classifier with q = 0.12 achieves
50% certified accuracy up to 175 labels flips and decays gracefully (random prediction would be infinitely
robust but get only 10% accuracy). Note that this represents the number of label flips separately per
test example—that is, we are certifying robustness to an adversary that could flip the labels of 175 different
training points specifically selected for each test example. Fig. 2b plots our results on Dogfish [Koh and Liang,
2017], a binary classification task constructed from the Dog and Fish synsets of ImageNet. For comparison
we evaluate an empirical upper bound on the accuracy of an undefended network under an influence-based
attack. Here we also see significant certified robustness of this method, enabling better-than-random certified
accuracy for attacks which flip as much as 6% of the training labels for each test point. Furthermore, the
uncertified accuracy of our least-squares classifier remains quite high for both datasets.

3 Learning Robust Classifiers via Invariance

This chapter is based on Rosenfeld et al. [2021], Rosenfeld et al. [2022b], Chen et al. [2022], and Rosenfeld
et al. [2022a].

Introduction. In trying to learn more robust models, a common theme which has repeatedly resurfaced is
that of invariance. Since generalization to all distributions is impossible, clearly there must be some shared
statistical components between the train and test distributions. If we can characterize these components,
it is natural to expect that a predictor which is invariant to everything which is not shared will generalize
broadly. That is, our goal will be to learn a predictor which identifies and uses only information which we
expect will give consistent signal, regardless of distribution, and to intentionally ignore any signal which may
imply different things in different contexts. It is tempting to begin with this intuition and immediately set
out to enforce such an invariance. However, particularly for deep learning, such an approach requires care.
In this section I describe work which formally demonstrates the significant failure modes of a large body of
work in this direction, and I explore how this insight has informed more rigorous approaches to the problem
of invariant generalization.

3.1 A Rigorous Analysis of Invariant Prediction with Latent Features

One strategy which seems promising for achieving robustness is Invariant Causal Prediction (ICP; Peters
et al. 2016), which views the task of OOD generalization through the lens of causality. This framework
assumes that the data are generated according to a Structural Equation Model (SEM; Bollen 2005), which
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consists of a set of structural equations that specify (the distribution over) each variable given its parents.
ICP further assumes that the training data can be partitioned into environments, where each environment
corresponds to interventions on the SEM [Pearl, 2009], but where the equations are unaffected. Since the
causal mechanism of each variable is unchanging (unless it is directly intervened upon), learning mechanisms
that are the same across environments ensures recovery of invariant features which generalize under arbitrary
interventions. This naturally leads to the idea of predicting a target variable using only its direct parents in
the causal DAG, which is minimax-optimal with respect to all possible environments.

Learning and predicting with deep invariant features. With the rise of deep learning, it is natural
to imagine that the complex data typically processed by neural networks follows this causal structure in an
unobserved latent space; the goal is then to learn a deep representation Φ : X → Rd (i.e., a neural feature
embedder), which will uncover these latent features, to be combined with a linear classifier β ∈ Rd. We
refer to this ideal combination as the “optimal invariant predictor”—if such a predictor does exist, the first
step for any proposed method is to establish that it will succeed in learning it. In particular, we focus our
analysis on the seminal Invariant Risk Minimization objective (IRM; Arjovsky et al. 2019).

Applying the core idea of ICP to neural networks, the IRM objective aims to learn a set of features such
that the optimal linear predictor on top of these features is the same for every environment. This follows
naturally from the structure of a causal SEM—with enough variation, only the direct parents of the target
will enable such a predictor—and in fact this was proven to be the correct constraint for observed covariates
by [Peters et al., 2016]. Unfortunately, though intuitive, it is not immediately clear whether such an approach
will still work when the causal factors are latent. Furthermore, until the present work there were no formal
guarantees for the IRM objective and experimental evidence of its success remains non-existent. To gain
a deeper understanding of when this type of approach can or cannot be expected to succeed, we design a
latent variable model of invariant features which carefully formalizes the implicit assumptions of that work.
Under this model, we show that despite being inspired by ICP, the IRM objective can frequently be expected
to perform no better than ERM under large shift, particularly for deep learning. However, we also derive
the first positive results for this algorithm, highlighting some ways in which future methods can provably do
better (including work discussed later in this Section).

ze

y x

zc

e

Figure 3: A DAG depict-
ing our model. Shading indi-
cates the variable is observed.
Equivalently, zc could be con-
sidered to cause y.

A model of latent invariant features. We consider an SEM with ex-
plicit separation of invariant features zc, whose joint distribution with the
label is fixed for all environments, and environmental features ze (“non-
invariant”), whose distribution can vary, thus formalizing the intuition be-
hind invariant prediction techniques such as IRM. We assume that data are
drawn from a set of E training environments E = {e1, e2, . . . , eE} and that
we know from which environment each sample is drawn. For a given en-
vironment e, the data are defined by the following process: first, a label
y ∈ {±1} is drawn according to a fixed probability: y = 1 with probabil-
ity η, and 0 otherwise. Next, both invariant and environmental features are
drawn according to a Gaussian: zc ∼ N (y ·µc, σ

2
cI), ze ∼ N (y ·µe, σ

2
eI), with

µc ∈ Rdc , µe ∈ Rde . Finally, the observation x is generated as via a mixing
function applied to the latent features: x = f(zc, ze). The complete data
generating process is displayed in Fig. 3. We assume infinite samples from
each environment; this allows us to isolate the impact of different environ-
ments, ignoring finite-sample effects within each one. Our only assumption
on f is that it is injective, so that it is in principle possible to recover the
latent features from the observations. We write the joint and marginal distributions as pe(x, y, zc, ze). Note
also that although we have framed the model as y causing zc, the causation can just as easily be viewed in
the other direction: since the zc are latent the only restriction is that they satisfy zc ⊥⊥ ze | y. This means
the latent variables also obey the DAG zc → y → ze ← e with a bottleneck at y, making zc the cause of y
and ze the anticause. Our analysis therefore also considers the task of Causal Representation Learning for
a particular causal structure. We can now precisely identify the specific learning goal of objectives such as
IRM, allowing us to determine when it will succeed.
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Definition 3.1. Under the above model, the optimal invariant predictor is the predictor defined by the
composition of a) the featurizer which recovers the invariant features and b) the classifier which is optimal
with respect to those features:

Φ∗(x) :=

[
I 0
0 0

]
◦ f−1(x) = [zc], β∗ :=

[
βc

β0

]
:=

[
2µc/σ

2
c

log η
1−η

]
.

The IRM objective. Using the causal DAG intuition from ICP, the IRM objective aims to identify the
optimal invariant predictor by solving the constrained optimization problem:

min
Φ,β̂

1

|E|
∑
e∈E
Re(Φ, β̂) s.t. β̂ ∈ argmin

β
Re(Φ, β) ∀e ∈ E , (3)

whereRe denotes the risk of a predictor in environment e (e.g., expected logistic loss). This bilevel program is
highly non-convex and difficult to solve. To find an approximate solution, the authors consider a Langrangian
form, whereby the sub-optimality with respect to the constraint is expressed as the squared norm of the

gradients of each of the inner optimization problems: minΦ,β̂
1
|E|

∑
e∈E

[
Re(Φ, β̂) + λ∥∇β̂Re(Φ, β̂)∥2

]
.

The difficulties of IRM in the linear regime. It remains to establish whether or not the above objective
will result in a more robust predictor. Our first result presents matching upper and lower bounds in the
setting where f is linear: we demonstrate that observing a large number of environments—equal to number
of environmental features de—is necessary and sufficient for generalization in the linear regime.

Theorem 3.2 (Linear case). Assume f is linear. Suppose we observe E training environments. Then the
following hold:

1. Suppose E > de. Consider any linear featurizer Φ which is feasible under the IRM objective, with invariant
optimal classifier β̂ ̸= 0, and write Φ(f(zc, ze)) = Azc+Bze. Then under mild non-degeneracy conditions,

it holds that B = 0. Consequently, β̂ is the optimal classifier for all possible environments.

2. If E ≤ de and the environmental means µe are linearly independent, then there exists a linear Φ—where
Φ(f(zc, ze)) = Azc+Bze with rank(B) = de+1−E—which is feasible under the IRM objective. Further,

both the logistic and 0-1 risks of this Φ and its corresponding optimal β̂ are strictly lower than those of
the optimal invariant predictor.

Theorem 3.2 says that when E ≤ de, the global minimum necessarily uses these non-invariant features
and therefore will not universally generalize to unseen environments. On the other hand, in the (perhaps
unlikely) case that E > de, any feasible solution will generalize, and the optimal invariant predictor has the
minimum (and minimax) risk of all such predictors:

Corollary 3.3. For both logistic and 0-1 loss, the optimal invariant predictor is the global minimum of the
IRM objective if and only if E > de.

The failure of IRM in the non-linear regime. We’ve demonstrated that OOD generalization is difficult
in the linear case, but it is achievable given enough training environments. However, the task becomes
substantially more difficult when observed x is a non-linear function of the latent causal factors. As this
is almost universally presumed to be the case in deep learning, it is just as important to understand how
this objective will perform for non-linear f . Unfortunately, we show that in this setting the global minimum
of the IRM objective generalizes only to test environments that are sufficiently similar to the training
environments. Thus, this objective present no real improvement over ERM under distribution shift. More
precisely, we prove that unless we observe enough environments to “cover” the space of non-invariant features,
a solution that appears to be invariant can still wildly underperform on a new test distribution. We make
use of two constants in the following theorem—the average squared norm of the environmental means,
∥µ∥2 := 1

E

∑
e∈E ∥µe∥2; and the standard deviation of the response variable of the ERM-optimal classifier,

σERM :=
√
∥βc∥2σ2

c + ∥βe;ERM∥2σ2
e .
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Theorem 3.4 (Non-linear case). Suppose we observe E environments E = {e1, . . . , eE}, where σ2
e = 1 ∀e.

Then, for any ϵ > 1, there exists a featurizer Φϵ which, combined with the ERM-optimal classifier β̂ =
[βc, βe;ERM, β0]

T , satisfies the following properties, where we define pϵ := exp{−de min(ϵ− 1, (ϵ− 1)2)/8}:

1. The regularization term of Φϵ, β̂ is bounded as 1
E

∑
e∈E ∥∇β̂Re(Φϵ, β̂)∥2 ∈ O

(
p2ϵ

(
cϵde + ∥µ∥2

))
for some

constant cϵ that depends only on ϵ.

2. Φϵ, β̂ exactly matches the optimal invariant predictor on at least a 1− pϵ fraction of the training set. On
the remaining inputs, it matches the ERM-optimal solution.

Further, for any test distribution, suppose its environmental mean µE+1 is sufficiently far from the training
means: ∀e ∈ E ,miny∈{±1} ∥µE+1 − y · µe∥ ≥ (

√
ϵ + δ)

√
de for some δ > 0, and define q := 2E√

πδ
exp{−δ2}.

Then Φϵ, β̂ is equivalent to the ERM-optimal predictor on at least a 1− q fraction of the test distribution.

The proof proceeds by constructing a “decoy” predictor which is effectively indistinguishable from the
optimal invariant predictor but behaves almost identically to the standard ERM solution. We give a brief
intuition for each of the claims made above:

1. The first claim says that the predictor will have a penalty term which is exponentially small in de. Thus,
in high dimensions, it will appear as a perfectly reasonable solution to the objective.

2. The second claim says that this predictor is identical to the invariant optimal predictor on all but an
exponentially small fraction of the training data; on the remaining fraction, it matches the ERM-optimal
solution, implying that for large enough de, the “decoy” predictor will often be a preferred solution. In
the finite-sample setting, we would need exponentially many samples to even distinguish between the two!

3. The third claim is the crux of the theorem; it says that this predictor will completely fail to use invariant
prediction on most environments. Recall, the intent of IRM is to be robust precisely when ERM breaks
down: when the test distribution differs greatly from the training distribution. If we expect the new
environments to be similar, ERM already ensures reasonable test performance; thus, IRM fundamentally
does not improve over ERM in this regime.

Proof Technique. The general idea of the proof is to construct a feature embedder Φ which perfectly
recovers the zc within the high-density regions of the training data but includes ze everywhere else, and a
classifier β which uses both. Thus this predictor’s behavior on the training data appears to be exactly that of
the optimal invariant predictor, but the fact that the training data has extremely low likelihood everywhere
else obscures the fact that it is no more robust than ERM under shift.

Prior analyses of Domain Generalization. Though a few theoretical results of this flavor already exist
for learning from multiple domains [Blanchard et al., 2011, Muandet et al., 2013], all of them assume a
prior over domains—that is, they assume that the train and test distributions are drawn i.i.d. from a fixed
meta-distribution. In some sense this merely “kicks the can down the road”: it still only gives guarantees
in expectation via concentration. This is not to downplay these works’ contribution: they show enormous
foresight in leveraging variation across distributions to improve generalization. However, we argue that this
approach does not substantially differ from simply minimizing joint empirical risk. Indeed, we observe that
the methods analyzed by those works use essentially that strategy. Instead, our analyses throughout this
section emphasizes robustness without a prior (which has since become the more common usage of the term
“Domain Generalization”). Here it is not sufficient to have good performance on average, nor can we afford
to completely forgo any structural assumptions on how the distribution shifts.

Environment complexity. This work introduced the concept of environment complexity in deep learning,
which measures the error of a predictor or identifiability of relevant latent features as the number of training
environments E grows. This measure has since become a key statistical quantity in the analysis of these
algorithms, serving as a standardized framework for comparison. It has also recently been further explored
in the field of Causal Representation Learning (e.g., Seigal et al. 2022, Buchholz et al. 2023), which is
appropriate as it was inspired by causal discovery via the seminal work of Peters et al. [2016].
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Conclusion. This work represents the first analysis of invariant causal prediction with latent factors and
the first lower bounds for deep DG. The model we devloped has since been used extensively for the devel-
opment of improved DG algorithms based on invariance, along with the notion of environment complexity
which continues to serve as an important quantity for representation learning algorithms.

3.2 Using Models of Distribution Shift to Develop Provably Robust Predictors

3.2.1 Iterative Feature Matching

Designing more general models of latent distribution shift will allow us to study what kinds of approaches
should be expected to work in a given setting and derive precise conditions for them to be provably robust. In
particular, another popular approach to DG is feature matching, which learns useful representations which
also match across the different training distributions. This is typically enforced via a moment-matching
constraint or by penalizing the ability of an adversary to discriminate between domains given the embedded
features. This idea has been revisited many times [Ganin et al., 2016, Sun and Saenko, 2016], with varying
degrees of success, but there was no prior theoretical understanding of why they might work.

Performing a smoothed analysis. To investigate this approach more formally, we begin by studying
a slightly more general model than the one in the previous section: we allow for arbitrary covariances of
the z, but more importantly, we perform a smoothed analysis by modeling the covariance of the ze to be a
random perturbation of an arbitrary (possibly adversarially chosen) PSD matrix. This approach is common
for deriving almost worst-case performance guarantees by showing that the property of being worst-case
is somewhat “brittle”—essentially, it allows us to show that problem instances which suffer worst case
performance are sufficiently rare for our purposes. Specifically, with covariance ze ∼ N (y · µe,Σe), we
suppose that Σe := Σe +GeG

⊤
e , where Σe is an arbitrary PSD matrix and each entry of Ge is drawn from

N (0, 1). This captures more realistic settings where the true data is not chosen to be specifically adversarial
with respect to our particular training samples and algorithm.

In this modified setting, we show that moment-matching can be equivalently viewed as an alternative
algorithm for learning invariant features and it is therefore a promising candidate for robust Domain Gener-
alization via invariant prediction. Furthermore, our analysis highlights the potential of iterative approaches
which commit to a particular representation subspace using only a subset of domains before using the next
subset. The advantage to this approach is that the training domains cannot “collude”: with high probability,
if there is a representation that looks ideal for one subset of domains, it will violate our assumed invariance
on a different subset. Because of this idea, we name the approach Iterative Feature Matching (IFM).

Theoretical results. With our smoothed analysis, we succeed in proving an exponential improvement
upon the previous linear lower bound for identifying the optimal invariant predictor (we also show the
previous lower bounds still apply to IRM and ERM under this new model). Our updated result shows that
with high probability, iteratively matching the feature moments enjoys logarithmic environment complexity:

Theorem 3.5 (IFM upper bound). Under the smoothed model, suppose at each round IFM uses |E| = Ω̃(1)
training environments. Then with probability 1− exp (−Ω(de)) over the randomness in Ge, IFM terminates
in O(log ds) rounds and outputs the optimal invariant predictor.

This result serves as the first formal justification for the observed success of feature matching methods.
Furthermore, we show experimentally that updating prior feature matching methods to use the training
data iteratively as suggested by our analysis leads to substantial gains to empirical environment complexity,
enabling robust generalization with many fewer training domains.

3.2.2 Online Domain Generalization and Subpopulation Shift

Another common way to model shift with multiple training environments is subpopulation/group shift, which
assumes that the test distribution will lie in the convex hull of the train distribution likelihoods [Duchi et al.,
2019, Albuquerque et al., 2020]. Formally, an interpolation of the domains in E is any distribution which
is written pλ :=

∑
e∈E λep

e, where λ ∈ ∆E is a vector of convex coefficients. Such a shift is plausible

9



for many reasonable settings—it captures the existence of fixed subpopulations whose proportions in the
overall distribution change but whose density does not (e.g., hospitals in different locations). Solving for the
minimax-optimal predictor here can be achieved via mirror descent [Nemirovski et al., 2009, Sagawa et al.,
2020]. However, this solution is simply equivalent to the predictor which achieves the best worst-population
performance. This means such an approach cannot account for distributions over distributions, where the
proportions may be random, nor can it account for changing proportions over time, which commonly occurs
in the real world.

It therefore seems helpful lift this problem to an online game, with the goal of ensuring asymptotic
robustness which accounts for shifting or random subpopulations. Here we imagine a player deploying
classifiers on each timestep t, followed by an adversary presenting a new distribution in the convex hull of
populations—the goal of the player is to minimize cumulative regret, defined as the total excess risk suffered
over the best fixed predictor in hindsight. By analyzing the statistical and computational properties of this
task, we can better understand the nuances of generalization under subpopulation shift. It will also help us
develop strategies which are provably robust over long time-horizons.

Results. In our work exploring this idea [?], we begin by studying the value of this game Vt, defined as the
fixed hindsight regret suffered in t rounds under perfect play by both player and adversary. Our first result
shows that the structure of subpopulation shift leads to a value which is equivalent to that of online convex
optimization. The precise quantity depends on several model-specific constants which are unimportant for
the present exposition, so we absorb them into a generic constant C.

Theorem 3.6. For all t ∈ N it holds that Vt > C log t.

Note that this O(log t) rate is achieved by the well-known algorithm Follow-The-Leader (FTL), which just
plays the minimizer of the sum of all previously seen functions [Hazan et al., 2007]. Observe that this strategy
is precisely ERM! In other words, ERM is provably minimax-optimal for long-term regret minimization under
subpopulation shift. On a positive note, this implies that if the goal is long-term robustness to subpopulation
shift, our existing approach with appropriate regularization is optimal. However, existing methods frequently
do not succeed in such settings, which suggests that subpopulation shift may be an inadequate model of
distribution shift even when it seems intuitively appropriate. The second observation we make is that
Theorem 3.6 also implies a (big-O) lower bound on the additional regret suffered per round—that is, our
analysis uncovers a fundamental barrier to single-round regret as a function of the number of environments
already observed. Furthermore, this bound is tight:

Corollary 3.7. Suppose we’ve seen E environments. Then the additional regret suffered due to one more
round is Ω

(
1
E

)
. This lower bound is attained by ERM.

3.2.3 Domain-Adjusted Regression

Our earlier study of causality-inspired models of distribution shift targeted full invariance, under the expec-
tation that an adversary could induce a shift via arbitrary interventions. However, it seems unrealistic to
expect changes to such a degree in reality, which means that true minimaxity is overly conservative. Instead,
we shift our attention to a more realistic latent shift with large but bounded magnitude.

To succeed in this setting, we reframe the problem of DG by thinking of each training domain as a distinct
transformation from a shared canonical representation space. In this framing, we can “adjust” each domain
in order to undo these transformations, aligning the representations to learn a single robust predictor in this
unified space. Thus we name this method Domain-Adjusted Regression (DARE). The advantage here is that
this adjustment can uncover representations which previously varied—and would therefore be discarded—
but are now shared among domains and can improve performance. Though there are many possibilities for
such an alignment, we study the case of whitening. Formally, given observations x from distributions pe

with mean µe and covariance Σe, the DARE objective solves

min
β

∑
e∈E

Epe [ℓ(βTΣ−1/2
e x, y)] subject to softmax

(
βTΣ−1/2

e µe

)
=

1

k
1. ∀e ∈ E . (4)
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Analysis. To study the quantifiable benefits of this pre-stage alignment, we consider a model of distribution
shift which faithfully captures this idea: ε = ε0 + be, y = 1{β∗T ε + η ≥ 0}, x = Aeε. Here, ε0 ∼ pe(ε0),
which we allow to be any domain-specific distribution; we assume only that its mean is zero (such that
E[ε] = be) and that its covariance exists. We fix β∗ ∈ Rd for all domains and model η as logistic noise.
Finally, Ae ∈ Rd×d, be ∈ Rd are domain-specific. Under this model, we are able to show that the solution
to DARE is minimax over the set of bounded shifts. This bound is quantified as the magnitude B ∈ R of
test variation which can occur in latent subspaces in which such variation does not occur in the training
distributions. Such a bound is clearly necessary: if a particular statistical relationship is invariant during
training but can change arbitrarily at test time, generalization is impossible. In essence, prior analyses
considered only B = 0 and B =∞—our work relaxes this to allow for the entire interval:

Theorem 3.8 (DARE risk and minimaxity). For any ρ ≥ 0, denote the set of possible test environments
Aρ which contains all parameters (A′

e, b
′
e) subject to the “new variation” magnitude bound B a bound on the

mean: ∥b′e∥ ≤ ρ. Let β̂ be the solution to the DARE objective. Then,

sup
(A′

e,b
′
e)∈Aρ

Re′(β̂) = (1 + ρ2)(∥β∗∥2 + 2B∥β∗
Π̂
∥∥β∗

I−Π̂
∥). (5)

Furthermore, the DARE solution is minimax: β̂ ∈ argminβ∈Rd sup(A′
e,b

′
e)∈Aρ

Re′(β).

4 Understanding Heavy-Tailed Data in the Real World, and How
to Use it

This chapter is based on Rosenfeld et al. [2022a], Rosenfeld and Garg [2023], and Rosenfeld and Risteski
[2023].

Introduction. Though inspired by our understanding of what causes real-world shift (e.g., causal inter-
ventions or subpopulation shift), the methods in the previous section use no information about the test
distribution we will actually be evaluated on. Instead, many of them generically assume a “meta-model” of
shift which describes the limits of data variation and then infer these limits from the training data. Though
this approach makes formal guarantees much more tractable, it can also sometimes detach the subsequent
analysis from practical implications. To keep these efforts grounded, it is therefore also important to work
to understand heavy tails and distribution shift as they occur in natural data. Such exploration leads to
robustness guarantees of a less abstract nature; it also helps us to understand the nature of real-world shift,
giving actionable insight towards the best way to reason about it and address it in practice.

4.1 Relaxing the Access Model

Introduction. The above works primarily emphasize minimaxity, aiming to learn a single robust predictor
which must generalize equally well to all shifts of a given structure. Though this is a well-studied statistical
framework, it is both incredibly restrictive and not entirely realistic. First, it requires ignoring all non-
invariant sources of information, even those which would be helpful in almost all settings of practical interest.
This is because of the “technically possible” worst case where using this information could in principle be
harmful, even if such a case is extremely unlikely to occur. In other words, though robust, minimaxity is
highly sub-optimal on average in most settings. Furthermore, these approaches are based on the premise
that one has no knowledge whatsoever of the test environment before deploying the learned predictor. In
practice, this is often not the case—at the bare minimum, simply using the predictor requires access to
unlabeled inputs from the test distribution.

A natural next question is whether we can relax this restrictive access model, robustly (and provably)
improve our predictor with this data. Notably, it is often unrealistic to expect to be able retrain or finetune
a large neural network deployed in the wild; sometimes it is completely impossible (e.g., when the model
is too large to evaluate locally or proprietary so the embeddings come from an API). Though methods like
self-training [Chen et al., 2020b] or “test-time training” [Wang et al., 2020] show promise for adapting to new
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distributions with only unlabeled data, they cannot be used in such settings. Thus, we focus on methods
which can efficiently leverage test data to the extent possible without expensive training.

4.1.1 Standard Finetuning Already Learns Features Sufficient for Robust Prediction

In Rosenfeld et al. [2022a], we first ask: to what degree do we need to modify existing embedding backbones at
all? It is commonly assumed that the lack of robustness in neural networks arises from the use of “shortcuts”
or “spurious features” and that the only way to correct this is to train the network with a modified objective
which penalizes the dependence on such features. Indeed, this is the intent of many of the invariance based
approaches described above. However, these objectives are difficult to tune and optimize and expensive to
iterate. This motivates us to study whether the observed failures under shift are primarily because of (i)
learning the “wrong” features or (ii) failing to robustly predict using the features we have.

We begin with a simple experiment (Fig. 4) to try to distinguish between these two possibilities: we fine-
tune a deep network with standard training on several domain generalization benchmarks from DomainBed
[Gulrajani and Lopez-Paz, 2021]. After training, we freeze the features and separately retrain just the last
linear layer. Crucially, when doing this, we give it an unreasonable advantage by optimizing on both the
train and test domains—henceforth we refer to this as “cheating”. Since we use just a linear classifier, this
process establishes a lower bound on what performance we could plausibly achieve using standard features,
with access to data from the target distribution. We then separately cheat while training the full network
end-to-end, simulating the idealized setting with no distribution shift.
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Figure 4: Comparing standard training performance on several datasets from the DomainBed benchmark to
potential performance were we allowed to retrain the linear head with access to test domain data. Simply
retraining the last linear layer substantially improves over the baseline and is usually almost as good as
retraining the whole network end-to-end.

Surprisingly, we find that simple (cheating) logistic regression on features learned via standard finetuning
results in enormous improvements over current state of the art, on the order of 10-15%. In fact, it usually
performs comparably to the full cheating method—which trains the network end-to-end with test domain
access—sometimes even outperforming it. Put another way, cheating while training the entire network rarely
does significantly better than cheating while retraining just the last linear layer. This suggests that finetuning
modern deep architectures with established training and regularization practices may be “good enough” for
learning features which generalize out-of-distribution and that the current bottleneck lies primarily in learning
a simple, robust predictor.

4.1.2 Using Unlabeled Data to Provably Adapt Just-in-Time or Bound Test Error

An obvious implication of the previous finding is that with a small amount of labeled test data, simply
retraining the last layer on this data will significantly improve on current methods and is likely to be
preferable to retraining the entire network. However, it is equally important to note that this observation
can be used even without labeled test data. To explore this, we first consider a simple extension of our DARE
objective to the task of unsupervised domain adaptation “just-in-time”. Here, our method uses unlabeled
test data to rapidly estimate a better adjustment for the test domain without any form of retraining. This
results in quantifiable benefits to sample complexity under a simple Gaussian model:
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Theorem 4.1. Suppose we observe ns = Ω(m(ΣS)d
2) samples in Rd from source distribution N (µS ,ΣS)

and nT = Ω(m(ΣT )d
2) samples from target distribution N (µT ,ΣT ). Next we solve the unconstrained DARE

objective over the source data and predict β̂T Σ̂
−1/2
T x on the target data. Then with probability at least

1− 3d−1, the excess squared risk of our predictor on this new environment is bounded as

RT = O
(
d2∥µT ∥2

(
m(ΣS)

nS
+

m(ΣT )

nT

))
.

Bounding test error. Next, we consider the possibility that knowledge of the existence of a robust linear
classifier can benefit us, even if we have no way of identifying it. In Rosenfeld and Garg [2023] we show
how it can lead to (almost) provable bounds on the test error of deep neural networks under distribution
shift. Previous algorithms for estimating error with unlabeled data focus only on the average case; while
they achieve good accuracy, they consistently underestimate error, particularly on the heavy tail of large
distribution shift—this is precisely when an accurate estimation is most important. We instead aim to derive
reliable (conservative) test error bounds. Notably, all previous bounds of this kind are vacuous when applied
to deep neural networks, but we also observe that they typically rely on uniform convergence. On the other
hand, our experimental finding above highlights the fact that real-world distribution shift is never
truly worst-case, suggesting that uniform convergence results may not be necessary in practice. This is
because we know that a linear classifier exists which gets very high accuracy on both distributions, so if all
linear functions which agree with the training labels would imply our classifier has low error on the target
data, we should consider it more likely that our classifier indeed has low error than that the true labeling
function is worst-case. We formalize this notion into a simple, intuitive assumption, from which we then
derive a test error bound using unlabeled data.
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Figure 5: Comparison of our method Dis2, which uses unlabeled data to provide non-vacuous error bounds
under shift, to prior methods for error estimation [Garg et al., 2022, Lu et al., 2023]. Though slightly more
accurate on average, they consistently overestimate accuracy, particularly when the distribution shift is large.

We omit the precise form of the bound for space, but Fig. 5 depicts its performance. We see that unlike
the prior SOTA, it is consistently conservative in that it never overestimates test accuracy; i.e., it gives a
reliable error upper bound. Furthermore, its average accuracy is extremely competitive with these baselines.

4.2 Exploring the Effect of Outliers on Neural Network Optimization

In my most recent work [Rosenfeld and Risteski, 2023], I shift focus from distribution shift to a related
question: how do heavy tails in the training data affect the behavior (e.g. generalization) of a learned
model? During this exploration, I uncovered the surprisingly large influence of paired groups of outliers
on the training dynamics of neural networks (and, consequently, the learned model). These groups are
characterized by the inclusion of one or more large magnitude features that dominate the network’s output,
providing large, consistent, and opposing gradients; because of this structure, we refer to them as Opposing
Signals. Many of these features are largely irrelevant to the target task but, crucially, they do meaningfully
correlate with it. In fact, in many cases these features perfectly encapsulate the classic statistical conundrum
of “correlation vs. causation” which plays a large role in our understanding of the failure of deep networks
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to generalize. For example, a bright blue sky background does not determine the label of a CIFAR image,
but it does most often occur in images of planes. Other features are relevant, such as the presence of wheels
and headlights on trucks and cars, or whether punctuation comes before after the end of a quotation.
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Figure 6: We plot the overall loss of a ResNet-18 trained with GD on CIFAR-10, plus the losses of a small
but representative subset of outlier groups. These groups have consistent opposing signals (e.g., wheels
and headlights sometimes means car and sometimes truck). Throughout training, losses on these groups
oscillate with growing amplitude—this oscillation has an obvious correspondence to the short term spikes in
overall training loss and, in particular, appear to be the direct cause of the “edge-of-stability” phenomenon.

Fig. 6 depicts the training loss of a ResNet-18 trained with full-batch gradient descent on CIFAR-10,
along with a few dominant outlier groups and their respective losses. Though this proposal omits the
details of the precise dynamics which lead to the depicted behavior, we emphasize the natural opposing
structure of the visualized outliers, as well as the enormous influence they appear to have on the overall
train loss—in particular, they appear to be the direct cause of the “edge-of-stability” phenomenon [Cohen
et al., 2021]. In the paper we present extensive experimental results further exploring this finding, and we
identify possible connections to a wide variety of other observations, including grokking, simplicity bias, and
the effectiveness of training techniques such as Adam, and Sharpness-Aware Minimization. We conjecture
that further exploration of these opposing signals will give a much deeper understanding of how training
data (and outliers in particular) influence the optimization and learned behavior of neural networks. In the
long run we expect this to enable improved methods for robust training of deep networks.

5 Future Work

5.1 Finishing Work on Robust One-Shot Strategic Classification

I am close to completing a new work on strategic classification when the agents’ cost function is unknown
[Rosenfeld and Rosenfeld, 2023]. While prior works study this setting through the lens of online learning, the
repeated deployment of predictors this requires is infeasible in many settings. Furthermore, these analyses
come only with asymptotic regret bounds; this somewhat abstract quantity does not account for real short-
term costs. Thus we argue the importance for one-shot strategic classification, which requires committing
to a single robust classifier, once. Instead, we assume an uncertainty set over cost functions and derive
efficient algorithms which provably converge to the minimax-optimal predictor under strategic repsonse. It
remains to prove a final lower bound and write the rest of the paper—I anticipate completing this by the
late October/early November, to be submitted for publication shortly after.

5.2 Further Use of Unlabeled Data for “Just-in-Time” Adaptation

I am currently working with two other students to understand the effect of BatchNorm (BN) [Ioffe and
Szegedy, 2015] on the performance of neural networks under distribution shift. Prior work [Nado et al., 2020]
has shown that simply allowing BN to use the test data statistics can improve performance substantially—
this is functionally similar to unsupervised adaptation with DARE. We have observed empirically that (i)
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this effect is much more pronounced for synthetic shifts such as blurring or noise, and (ii) the benefit of this
modification can be achieved (or sometimes surpassed) by updating the statistics of only a single layer. As
synthetic benchmarks have limited value for practical purposes, we are currently investigating what kind of
modifications would be necessary for this approach to work on realistic distribution shift, what conditions
would enable provable guarantees, and what our current findings may imply about how real-world distribution
shift differs from synthetic benchmarks. I plan to continue working on this through the fall, and I expect we
will be able to modify this method to address realistic shift by early next semester.

5.3 Improving on Domain-Adversarial Representations with a Corrected Loss

In Rosenfeld and Garg [2023] we observed that existing methods which optimize disagreement use incorrect
proxy losses which do not capture the true objective of interest; replacing these with a theoretically justified
loss led to substantial downstream improvements. I have recently begun advising another student on a project
which investigates how this observation can be applied to other adversarial objectives. These objectives
similarly use an ill-suited loss and our initial experiments indicate that these methods can be made much
more effective and robust to hyperparameter selection by making a similar correction. I plan to complete
this project by the middle of next semester.

5.4 Identifying and Addressing Meaningful Threat Models for LLMs

I have recently begun to study what kinds of guarantees are feasible for massive, complex models such as
LLMs. It would ideally be possible to treat these models as we do cyberpysical systems [Platzer, 2010],
giving guarantees on the boundaries of their reachable states according to a set of rules which govern their
complex dynamics. Our limited understanding of their inner workings, combined with the massive space of
possible behaviors, makes this problem exceedingly complex.

A current goal of mine which is a bit more tractable is to derive conditions which will allow a practitioner
to verify that in the course of both normal and adversarial interactions, an LLM will never output a specific
phrase which appears in its training set—such a guarantee would make great progress towards LLMs with
discretion which can be trained on sensitive data yet trusted to interact with agents who should not have
access to it. Though ensuring this in general may not be possible, an alternative is to guarantee an upper
bound on the excess probability that an LLM will do this over a baseline model which does not observe this
phrase during training. I have made some exciting initial progress towards training methods which enable
such guarantees, though the settings of normal and adversarial interactions require separate treatments. I
plan to continue to work towards this goal; though this idea is still in its early stages, I expect to have
preliminary experimental results by the end of the semester and I intend to complete this project before
graduating next semester.

I am also exploring new ideas for a collaborative project along similar lines, thought with more of a focus
on adversarial prompts. We will further flesh this direction out in the coming months but we don’t have
anything concrete as of now.

5.5 Better Understanding the Downstream Effects of Outliers with Opposing
Signals

I am very excited about my most recent work which identifies a possible common factor underlying sev-
eral prior observations of neural network training dynamics—this finding offers a new lens through which
to study modern stochastic optimization and understand how different training choices affect optimization
and generalization. I have some concrete initial ideas for demonstrating how, under certain conditions, this
observation would provably explain the improved generalization capabilities of Sharpness-Aware Minimiza-
tion [Foret et al., 2021] and how this might inform development of future algorithmic improvements. I will
continue to develop this idea through this semester, with the goal of completing it before I graduate next
semester. Furthermore, this finding arose from my investigation into a new approach to deriving generaliza-
tion bounds for neural networks. I am looking forward to exploring this direction further—though I don’t
have anything too concrete, I have several ideas for followup experiments and with luck it may give rise to
additional results of a similar nature.
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