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Invariant Causal Prediction

Nonlinear Observations

We	prove	that	IRM	and	all	proposed	variants	
can	rarely,	if	ever	be	expected	to	recover	the	

correct	invariant	features.	Thus	they	all								
fail	under	distribution	shif	just	like	ERM.

Q: How can we train a predictor to ignore non-causal features 
whose correlation with the target may not hold at test time?

Assume training data can be partitioned into distinct environments. Each 
environment represents an intervention, inducing a different joint distribution.

Across environments, the causal mechanism  remains 
fixed. Recovering precisely the parents of  ensures that predictions are 
invariant and therefore minimax across all possible interventions.

P(Y ∣ Parents(Y ))
Y

Deep Invariant Feature Learning
Q: How can we accomplish this when the features are latent?

You can skip this 
section if you’re already 

familiar with IRM!

Learn a feature embedder  such that the resulting feature distribution  
induces invariance. Some recent suggestions:

Φ Φ(X )

(IRM): Invariant 

Require optimal regression vector  on 
top of features to be invariant.

𝔼[Y ∣ Φ(X )]
β

(REx): Invariant 

Require equal risk across environments. 

𝕍[Y ∣ Φ(X )]

  
min
Φ,β ∑

e∈E

Re(β ∘ Φ)

s . t . β ∈ argmin
̂β

Re( ̂β ∘ Φ), ∀e ∈ E

  min
Φ,β ∑

e∈E

Re(β ∘ Φ) + λVar[Re(β ∘ Φ)]

A Formal Model of Latent Invariant Features
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Linear Observations

We present the first analysis 
under nonlinear observations 

of the latent variables
 is invariant, capturing 

the intuition behind invariant 
feature learning.

p(y, zc)

Under this model, our goal is to learn a feature embedder  which 
recovers just the invariant features: . We would then 
also learn the regression vector .


We call the predictor  the optimal invariant predictor (OIP).

We assume we observe E environments, with infinite samples.

Let  be the dimensionality of . Typically expect .

Φ*
Φ*(x) = zc

β* = argmin
β

R(β ∘ Φ*)

β* ∘ Φ*

de ze de ≫ E

For conditionally Gaussian features, optimal classifier is . 
So long as this vector is the same for all environments, the solution is feasible 
under the IRM objective.


If : We construct a feasible linear  which recovers  plus an 
additional set of features which depend on the non-invariant latents . 
Provably has lower training risk than the OIP.


If : We prove that any feasible linear  can only depend on . 
Among such , the OIP has lowest training risk.


Corollary: the optimal invariant predictor is the                                  
global minimum of the IRM objective if and only if .

β* = Σ−1(μ1 − μ0)
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We study IRMv1, a regularized form of IRM used in practice which 
penalizes the environmental gradient norm of the classifier.


We construct a predictor  with the following properties:

• Penalty term is exponentially small in dimension . 
• Exactly equivalent to the OIP on all but an exponentially small 

fraction of the training distribution. 
     — polynomial # of samples  indistinguishable!


• On any environment slightly different from the training 
environments, it is exactly equivalent to the ERM-optimal solution on 
all but an exponentially small fraction of the test data. 

Implication: the solution behaves just like ERM at test time! 
Furthermore, results apply to all recently proposed variants.
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