You can skip this
section if you’re already
familiar with IRM!
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Q: How can we train a predictor to ignore non-causal features
whose correlation with the target may not hold at test time?

Assume training data can be partitioned into distinct environments. Each
environment represents an intervention, inducing a different joint distribution.
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Across environments, the causal mechanism P(Y | Parents(Y)) remains

fixed. Recovering precisely the parents of Y ensures that predictions are
invariant and therefore minimax across all possible interventions.

Deep Invariant Feature Learning

Q: How can we accomplish this when the features are latent?

Learn a feature embedder ® such that the resulting feature distribution ®(X)
induces invariance. Some recent suggestions:

(IRM): Invariant E[Y | ®(X)]

Require optimal regression vector /3 on
top of features to be invariant.
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Require equal risk across environments. P eek

\ J

Pradeep Ravikumar

Machine Learning Department, Carnegie Mellon University

'We prove that IRM and all proposed variants}
| can rarely, if ever be expected to recover the |

correct invariant features. Thus they all

, fail under distribution shift just like ERM. |

A Formal Model of Latent Invariant Features
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: We present the first analysis
i under nonlinear observations
of the latent variables

p(y, z,.) is invariant, capturing
the intuition behind invariant
feature learning.
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Under this model, our goal is to learn a feature embedder ®* which
recovers just the invariant features: ®*(x) = z.. We would then
also learn the regression vector #* = argmin R(ff o ®%).

We call the predictor f* o @* the optimal invariant predictor (OIP).
We assume we observe E environments, with infinite samples.

Let d, be the dimensionality of z,. Typically expect d, > E.
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Linear Observations

For conditionally Gaussian features, optimal classifier is f* = Z_l(,ul — Up)-
So long as this vector is the same for all environments, the solution is feasible
under the IRM objective.

If E < d.: We construct a feasible linear ®@ which recovers z,. plus an

additional set of features which depend on the non-invariant latents z,,.
Provably has lower training risk than the OIP.

If E > d,: We prove that any feasible linear @ can only depend on z...
Among such @, the OIP has lowest training risk.

Corollary: the optimal invariant predictor is the
global minimum of the IRM objective if and only if E > d..

Nonlinear Observations

We study IRMv1, a regularized form of IRM used in practice which
penalizes the environmental gradient norm of the classifier.

We construct a predictor f o« @ with the following properties:

» Penalty term is exponentially small in dimension de.
* Exactly equivalent to the OIP on all but an exponentially small
fraction of the training distribution.
— polynomial # of samples =— indistinguishable!

* On any environment slightly different from the training
environments, it is exactly equivalent to the ERM-optimal solution on
all but an exponentially small fraction of the test data.

Implication: the solution behaves just like ERM at test time!

Furthermore, results apply to all recently proposed variants.
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