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e Label flipping attack: a train-time attack where training labels are manipulated.

o  Objective is to cause resulting trained classifier to perform poorly.

o E.g., mislabeling spam emails or fake reviews to cause detector to fail in production.

® |In comparison, adversarial examples are test-time attacks.
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Motivation

Provable Defenses

e Recent shift to provable defenses against adversarial perturbations.

o  Certify robustness of each classification.

o  We call such certifications pointwise.
e For train-time attacks, no pointwise-certified defenses exist.

o Pointwise is preferable when we care about each distinct classification (loans, parole grants, etc.)
e We present the first pointwise-certified linear classifier, with no data assumptions.

o Makes a prediction by outputting an expectation over predictions with respect to a distribution over

training labels.



Randomized Smoothing for Test-Time Attacks

Given a classifier f and input x, don’t directly certify f. Certify weighted majority vote of f
applied to x perturbed by noise: g(z) = E.,)[f(z + €)]

Image: Cohen et al. 2019

e Robustness certificate is a function of margin between first and second class.
o This means we need a lower bound on probability assigned to first class pa.



Randomized Smoothing for Test-Time Attacks

“Input” is an image to be classified.

(domain D is combinations of pixels)
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“‘Noise” is pixel perturbations.

Our Key Observation:
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Recast f as the Whole Training Procedure

“Input” is n training points X, labels y test point 2, 1

(D is now training data and test point) Standard Classification
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One Major Caveat

e Previous randomized smoothing applications probabilistically bound integral with sampling.
o Implementing naively would require training thousands of classifiers per test point.
e We develop an algorithm to make classification tractable and guaranteed.

o Certificate applies for any features with no data assumptions.



Binary Classification via Ordinary Least-Squares

Training points: X € R"**
Binary labels: y € {0,1}"

Test point; 2nil € R
Solve: | g=(X'X)"'x"y
Predict: | f(X,y.%p41) = L{zps18 > 1/2}

a=XX"x)")
Xy, zp1) = Ha'y > 1/2}

Equivalently,  Solve:

/—M
Predict:




From Probabilistic to Deterministic

With kernel representation a, we don’t need to even evaluate the classifier.

Recall our smoothed classifier: [g(X, Y, Zni1) = E[f (X, ¥, 2041)] = E[l{aTSf > 1/2}]]

Expectation of an indicator function T ~ }
= >
is the probability it outputs 1: [ 9(X, ¥ Tnir) = P (a Yy = 1/2)

n

This is a sum of independent random T~ . £/2 T

Pla' 'y <1/2) <min<e E|etY:

variables. Apply the Chernoff Bound: ( Y= / ) — t>0 { 11 [ ]
.4 =

This is a one-dimensional optimization,
solvable via Newton’s method.




Experiments: Binary Classification

Hyperparameter (q) represents probability of flipping label under noise distribution.

o Controls tradeoff between accuracy and robustness.

For 68% of test points,

MNIST 1/7, vary q _
Percentage ofSTrainiqg Set our attack using 2000

Y flips was unable to
cause misclassification.
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Multi-Class Classification

Our algorithm derives a guaranteed lower bound on the probability assigned

to a class.
We can repeat for each class, choose the class with the highest lower bound.

This generalizes robust certification to the multi-class case!



Experiments: Multi-Class Classification

Features learned in an unsupervised fashion.

CIFAR10, vary q
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