(ALMOST) PROVABLE ERROR BOUNDS UNDER DISTRIBUTION SHIFT VIA DISAGREEMENT DISCREPANCY

ELAN ROSENFELD

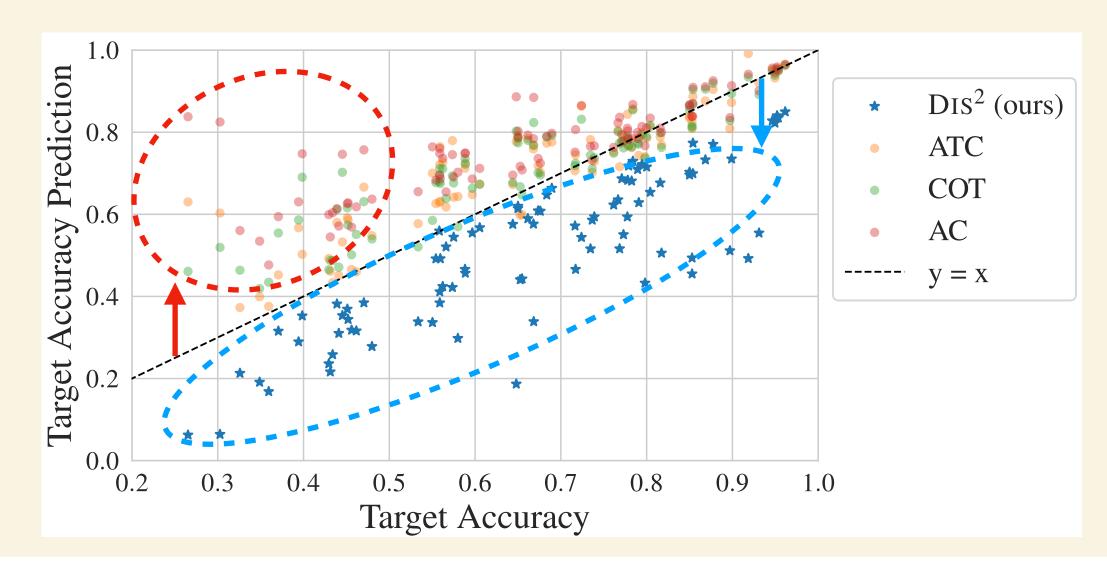
SAURABH GARG

Several methods use unlabeled test data to estimate error under distribution shift. With one minor assumption, we give a guaranteed error upper bound.

Gives valid, non-vacuous error bounds effectively 100% of the time on real data.

Previous methods consistently underestimate error* under shift, especially when the shift is large.

* (i.e., overestimate accuracy)



Our method gives a (probabilistic) upper bound and maintains competitive average prediction accuracy.

The bound is extremely simple.

For classifiers h, h' and source/target distributions S, T, define the **Disagreement Discrepancy** as their disagreement on T minus their disagreement on S:

$$\Delta(h, h') := \epsilon_T(h, h') - \epsilon_S(h, h')$$

Don't know this...

For the true labeling function y^* , $\epsilon_T(h,y^*) = \epsilon_S(h,y^*) + \Delta(h,y^*)$.

Optimize over *critics* h' in hypothesis class \mathcal{H} to find an *upper bound* $\Delta(h, h')$.

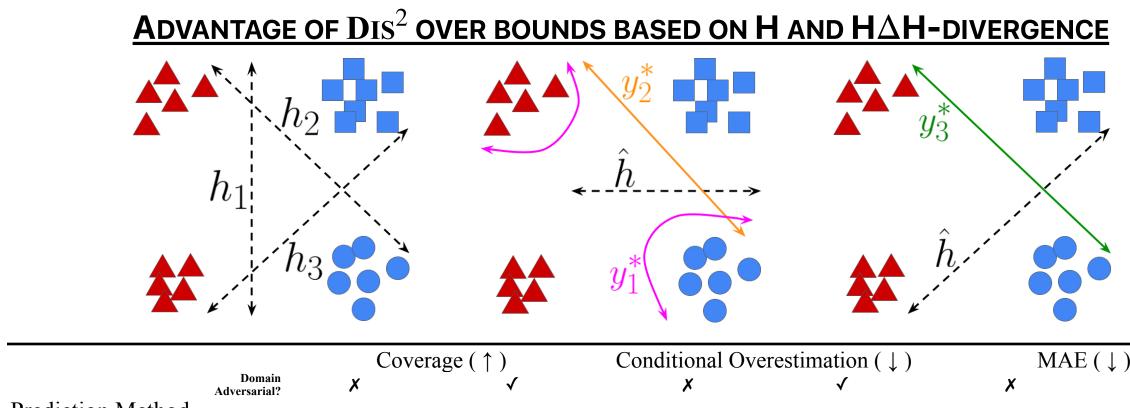
Assumption: Define $h^* := \arg \max \Delta(h, h')$. We assume $\Delta(h, y^*) \leq \Delta(h, h^*)$.

Immediately implies population bound: $\epsilon_T(h, y^*) \leq \epsilon_S(h, y^*) + \Delta(h, h^*)$.

With a bit more work, we arrive at the probabilistic empirical bound:

Theorem: With probability $\geq 1 - \delta$, $\epsilon_T(h, y^*) \le \hat{\epsilon}_S(h, y^*) + \hat{\Delta}(h, h^*) + \sqrt{\frac{(n_S + 4n_T) \log 1/\delta}{2n_S n_T}}$ We choose ${\mathcal H}$ as set of linear classifiers. Why should we expect the assumption to hold?

- 1. Labeling function fixed ahead of time—it is not chosen to maximize $\Delta(h, y^*)$.
- Linear classifier can achieve excellent accuracy even under distribution shift. [1] So y^* is already close to linear.



	Domain Adversarial?	×	√	×	√	×	✓
Prediction Method							
AC	($0.1000 \pm .032$	$0.0333 \pm .023$	$0.1194 \pm .012$	$0.1123 \pm .012$	$0.1091 \pm .011$	$0.1091 \pm .012$
DoC	($0.1667 \pm .040$	$0.0167 \pm .017$	$0.1237 \pm .012$	$0.1096 \pm .012$	$0.1055 \pm .011$	$0.1083 \pm .012$
ATC NE	($0.2889 \pm .048$	$0.1333 \pm .044$	$0.0824 \pm .009$	$0.0969 \pm .012$	$0.0665 \pm .007$	$0.0854 \pm .011$
COT	($0.2554 \pm .047$	$0.1667 \pm .049$	$0.0860 \pm .009$	$0.0948 \pm .011$	$0.0700 \pm .007$	$0.0808 \pm .010$
DIS ²	($0.9889 \pm .011$	$0.7500 \pm .058$	$0.0011 \pm .000$	$0.0475 \pm .007$	$0.1489 \pm .011$	$0.0945 \pm .010$
DIS ² (no δ term)	($0.7556 \pm .048$	$0.4333 \pm .065$	$0.0771 \pm .013$	$0.0892 \pm .011$	$0.0887 \pm .009$	$0.0637 \pm .008$