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How much paired data and 
compute is required to learn 
well-aligned multimodal 
representations?

Motivations

Main Findings

Prior Work

• Latest advances driven by massive compute on ever-growing 
modality-coupled datasets [1, 2]


• But we often have unimodal encoders already trained! How to use 
them efficiently?


• The training sets are also very noisy. Can we do better with smaller, 
curated datasets?

•We show that frozen pretrained 
encoders can be closely aligned with a 
small auxiliary MLP (4-6 layers). This 
approach is cheaper to train, more 
sample efficient, and less prone to 
overfitting on small datasets. 

• Using ImageNet-Captions,[4] we achieve 
better downstream performance on a 
variety of tasks with two orders of 
magnitude less training time and data.
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Popular approach is to 
use Contrastive 
Language-Image 
Pretraining (CLIP). [1]

Recent work [3] aligns a text 
encoder to a frozen, 
pretrained image encoder 
for better performance.

We consider a natural 
extension: freezing both 
encoders and training a 
small MLP.

Results
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• APE achieves higher zero-shot accuracy with fewer iterations across a wide range 
of training set sizes.


• Though both methods use the full encoder, APE trains ~75% fewer parameters and 
does not backdrop through the text encoder, requiring less memory.

Multimodal Learning
Given paired images and captions, goal is to learn a joint image and 
text embedder such that representations are semantically aligned.


Alignment is tested with zero-shot classification accuracy: 
embed each class name with the text encoder and classify each 
image according to which class embedding is closest.
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Figure 1. Summary of our approach. While standard image models jointly train an image feature extractor and a linear classifier to predict
some label, CLIP jointly trains an image encoder and a text encoder to predict the correct pairings of a batch of (image, text) training
examples. At test time the learned text encoder synthesizes a zero-shot linear classifier by embedding the names or descriptions of the
target dataset’s classes.

classification datasets by scoring target classes based on
their dictionary of learned visual n-grams and predicting the
one with the highest score. Adopting more recent architec-
tures and pre-training approaches, VirTex (Desai & Johnson,
2020), ICMLM (Bulent Sariyildiz et al., 2020), and Con-
VIRT (Zhang et al., 2020) have recently demonstrated the
potential of transformer-based language modeling, masked
language modeling, and contrastive objectives to learn im-
age representations from text.

While exciting as proofs of concept, using natural language
supervision for image representation learning is still rare.
This is likely because demonstrated performance on com-
mon benchmarks is much lower than alternative approaches.
For example, Li et al. (2017) reach only 11.5% accuracy
on ImageNet in a zero-shot setting. This is well below the
88.4% accuracy of the current state of the art (Xie et al.,
2020). It is even below the 50% accuracy of classic com-
puter vision approaches (Deng et al., 2012). Instead, more
narrowly scoped but well-targeted uses of weak supervision
have improved performance. Mahajan et al. (2018) showed
that predicting ImageNet-related hashtags on Instagram im-
ages is an effective pre-training task. When fine-tuned to
ImageNet these pre-trained models increased accuracy by
over 5% and improved the overall state of the art at the time.
Kolesnikov et al. (2019) and Dosovitskiy et al. (2020) have
also demonstrated large gains on a broader set of transfer
benchmarks by pre-training models to predict the classes of
the noisily labeled JFT-300M dataset.

This line of work represents the current pragmatic middle
ground between learning from a limited amount of super-
vised “gold-labels” and learning from practically unlimited
amounts of raw text. However, it is not without compro-

mises. Both works carefully design, and in the process limit,
their supervision to 1000 and 18291 classes respectively.
Natural language is able to express, and therefore supervise,
a much wider set of visual concepts through its general-
ity. Both approaches also use static softmax classifiers to
perform prediction and lack a mechanism for dynamic out-
puts. This severely curtails their flexibility and limits their
“zero-shot” capabilities.

A crucial difference between these weakly supervised mod-
els and recent explorations of learning image representations
directly from natural language is scale. While Mahajan et al.
(2018) and Kolesnikov et al. (2019) trained their models for
accelerator years on millions to billions of images, VirTex,
ICMLM, and ConVIRT trained for accelerator days on one
to two hundred thousand images. In this work, we close
this gap and study the behaviors of image classifiers trained
with natural language supervision at large scale. Enabled
by the large amounts of publicly available data of this form
on the internet, we create a new dataset of 400 million (im-
age, text) pairs and demonstrate that a simplified version of
ConVIRT trained from scratch, which we call CLIP, for Con-
trastive Language-Image Pre-training, is an efficient method
of learning from natural language supervision. We study
the scalability of CLIP by training a series of eight models
spanning almost 2 orders of magnitude of compute and ob-
serve that transfer performance is a smoothly predictable
function of compute (Hestness et al., 2017; Kaplan et al.,
2020). We find that CLIP, similar to the GPT family, learns
to perform a wide set of tasks during pre-training including
OCR, geo-localization, action recognition, and many others.
We measure this by benchmarking the zero-shot transfer
performance of CLIP on over 30 existing datasets and find

(Image from [1])

Using Small, Curated Datasets

•Prior work scales up collection of noisy, task-agnostic 
paired data


•We ask: how valuable is curation of smaller datasets 
which are more relevant to the downstream task?


•We show that a much smaller dataset can achieve better 
downstream performance with substantially shorter 
training times.

With Abundant Training / Compute

0 50 100 150 200

0.4

0.5

0.6

0.7
ImageNet 0-shot

0 50 100 150 200

0.3

0.4

0.5
Average over 5 shifts

LiT (337M, 100.00%)

APE (75M, 22.41%)

APE (34M, 10.27%)

APE (25M, 7.47%)

Token Embeddings (50M, 15.00%)

Image-text pairs seen (M)

A
cc

ur
ac

y

Aligned on CC12M

•When training data / compute / memory are abundant, 
full fine-tuning is still preferable.


•But APE gets surprisingly close, for much cheaper!

•Future work to try to close this gap.

(This work)


