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_Question |} Motivations

« Latest advances driven by massive compute on ever-growing

How much paired data and
compute is required to learn
well-aligned multimodal
representations?

modality-coupled datasets 1. 2

e But we often have unimodal encoders already trained! How to use
them efficiently?

e The training sets are also very noisy. Can we do better with smaller,

curated datasets?

Multimodal Learning

Given paired images and captions, goal is to learn a joint image and
text embedder such that representations are semantically aligned.

Alignment is tested with zero-shot classification accuracy:
embed each class name with the text encoder and classify each
Image according to which class embedding is closest.
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Main Findings

- We show that frozen pretrained
encoders can be closely aligned with a
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small auxiliary MLP (4-6 layers). This
approach is cheaper to train, more
sample efficient, and less prone to
overfitting on small datasets.
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» Using ImageNet-Captions, 4] we achieve
better downstream performance on a
variety of tasks with two orders of
maghnitude less training time and data.

[terations Dataset Size (log scale)

o APE achieves higher zero-shot accuracy with fewer iterations across a wide range
of training set sizes.

e« Though both methods use the full encoder, APE trains ~75% fewer parameters and
does not backdrop through the text encoder, requiring less memory.

With Abundant Training /| Compute

Using Small, Curated Datasets

e Prior work scales up collection of noisy, task-agnostic
paired data

e \We ask: how valuable is curation of smaller datasets
which are more relevant to the downstream task?

« We show that a much smaller dataset can achieve better
downstream performance with substantially shorter
training times.
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e« When training data / compute / memory are abundant,
full fine-tuning is still preferable.

«But APE gets surprisingly close, for much cheaper!
e Future work to try to close this gap.
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