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At each time i, compare STRSAGA to an offline algorithm
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« DynaSAGA(p)?, which has access to S; at the beginning of time, but same
computational power of p - i iterations. It optimizes over a subset of t° points of S;, and
has error ~ H (tP). (If p = 2|S;]/i, then tP = |S;].)
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Under a variety of general arrival distributions, STRSAGA is c-risk-competitive to the offline
w.h.p. at each time i > i*; i.e., E[Suboptg, | < c¢H (tP)
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* Holds for Poisson arrivals, bounded max, and unbounded max satisfying Bernstein’s
condition

Streaming data setting: training data arrives incrementally
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Goal: A streaming data a|gorithm that efficiently updates the Empirical risk Rsi (w) = Ex~Si [loss(w, x)], minimized by ERM ngi Statistical error = R(ng) — R(w*) < 17'[(|Sl|) [2] H. Daneshmand, A. Lucchi, and T. Hofmann. Startir;g small — learning \’/vith adaptive sample sizes.
Expected risk R(w) = E,._p[loss(w, x)], minimized by OPT w* Assume H(n) =kn % 1/2<a <1 In ICML, pages 1463-1471, 2016.

model, with accuracy similar to an offline algorithm [3] R. Frostig, R. Ge, S. M. Kakade, and A. Sidford. Competing with the empirical risk minimizer in a

Error(w) = R(w) — R(w™) If SUboptSi(W) < ¢, then Error(w) < & + H(|S;]) single pass. In COLT, pages 728-763, 2015.



