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ABSTRACT
Similarity measures for text have historically been an impor-
tant tool for solving information retrieval problems. In many
interesting settings, however, documents are often closely
connected to other documents, as well as other non-textual
objects: for instance, email messages are connected to other
messages via header information. In this paper we consider
extended similarity metrics for documents and other objects
embedded in graphs, facilitated via a lazy graph walk. We
provide a detailed instantiation of this framework for email
data, where content, social networks and a timeline are in-
tegrated in a structural graph. The suggested framework
is evaluated for two email-related problems: disambiguating
names in email documents, and threading. We show that
reranking schemes based on the graph-walk similarity mea-
sures often outperform baseline methods, and that further
improvements can be obtained by use of appropriate learn-
ing methods.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Retrieval
models, Search process

General Terms
Algorithms, Experimentation

Keywords
graph-based retrieval, email, name disambiguation, thread-
ing

1. INTRODUCTION
Many tasks in information retrieval can be performed by

clever application of textual similarity metrics: in addition
to the canonical IR problem of ad hoc retrieval, which is
often formulated as the task of finding documents “similar
to” a query, textual similarity plays a prominent role in the
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literature for diverse tasks such as text categorization [32],
data integration [6], summarization [28] and document seg-
mentation [16].

In modern IR settings, however, documents are usually
not isolated objects: instead, they are frequently connected
to other objects, via hyperlinks or meta-data. (An email
message, for instance, is connected via header information
to other emails and also to the recipient’s social network.)
Thus it is important to understand how text-based doc-
ument similarity measures can be extended to documents
embedded in complex structural settings.

Our similarity metric is based on a lazy graph walk, and is
closely related to the well-known PageRank algorithm [25].
PageRank and its variants (e.g., [14]) are based on a graph
walk of infinite length with random resets. In a lazy graph
walk, there is a fixed probability of halting the walk at each
step. In previous work [30], lazy walks over graphs were used
for estimating word dependency distributions: in this case,
the graph was one constructed especially for this task, and
the edges in the graph represented different flavors of word-
to-word similarity. Other recent papers have also used walks
over graphs for query expansion [31, 11]. In these tasks, the
walk propagates similarity to a start node through edges in
the graph—incidentally accumulating evidence of similarity
over multiple connecting paths.

In contrast to this previous work, we consider schemes for
propogating similarity across a graph that naturally models
a structured dataset like an email corpus: entities corre-
spond to objects including email addresses and dates, (as
well as the usual types of documents and terms), and edges
correspond to relations like sent-by. We view the similarity
metric as a tool for performing search across this structured
dataset, in which related entities that are not directly similar
to a query can be reached via a multi-step graph walk.

In this paper, we formulate and evaluate this extended
similarity metric. The principal problem we consider is
disambiguating personal names in email , which we formu-
late as the task of retrieving the person most related to a
particular name mention. We show that for this task, the
graph-based approach improves substantially over plausible
baselines. After retrieval, learning can be used to adjust
the ranking of retrieved names based on the edges in the
paths traversed to find these names, which leads to an ad-
ditional performance improvement. As a demonstration of
generality, we also show performance improvements on a sec-
ond email-related task—recovering messages from the same
email thread. Name disambiguation and email threading are
particular applications of the suggested general framework,



which is also applicable to any real-world setting in which
structural data is available as well as text.

This paper proceeds as follows. Sections 2 and 3 formal-
ize the general framework and its instantiation for email.
Section 4 gives a short summary of the learning approach.
Section 5 includes experimental evaluation, describing the
corpora and results for the person name disambiguation as
well as threading tasks. The paper concludes with a review
of related work, summary and future directions.

2. EMAIL AS A GRAPH
A graph G consists of a set of nodes, and a set of labeled

directed edges. Nodes will be denoted by letters such as x,
y, or z, and we will denote an edge from x to y with label `

as x
`

−→ y. Every node x has a type, denoted T (x), and we
will assume that there is a fixed set of possible types. We
will assume for convenience that there are no edges from a
node to itself (this assumption can be easily relaxed).

We will use these graphs to represent real-world data.
Each node represents some real-world entity, and each edge

x
`

−→ y asserts that some binary relation `(x, y) holds.
The entity types used here to represent an email corpus
are shown in the leftmost column of Table 1. They in-
clude the traditional types in information retrieval sys-
tems, namely file and term. In addition, however, they
include the types person, email-address and date. These
entities are constructed from a collection of email mes-
sages in the obvious way—for example, a recipient of “Einat
Minkov <einat@cs.cmu.edu>” indicates the existence of a
person node “Einat Minkov” and an email-address node
“einat@cs.cmu.edu”. (We assume here that person names
are unique identifiers.)

The graph edges are directed. We will assume that edge
labels determine the source and target node types: i.e., if

x
`

−→ z and w
`

−→ y then T (w) = T (x) and T (y) = T (z).
However, multiple relations can hold between any particular

pair of nodes types: for instance, it could be that x
`

−→ y

or x
`′

−→ y, where ` 6= `′. (For instance, an email message
x could be sent-from y, or sent-to y.) Note also that edges
need not denote functional relations: for a given x and `,

there may be many distinct nodes y such that x
`

−→ y. For
instance, for a file x, there are many distinct terms y such

that x
has-term
−→ y holds.

In representing email, we also create an inverse label `−1

for each edge label (relation) `. Note that this means that
the graph will definitely be cyclic. Table 1 gives the full set
of relations used in our email represention scheme.

3. GRAPH SIMILARITY

3.1 Edge weights
Similarity between two nodes is defined by a lazy walk

process, and a walk on the graph is controlled by a small
set of parameters Θ. To walk away from a node x, one first
picks an edge label `; then, given `, one picks a node y such

that x
`

−→ y. We assume that the probability of picking the
label ` depends only on the type T (x) of the node x, i.e.,
that the outgoing probability from node x of following an
edge type ` is:

Pr(` | x) = Pr(l | Ti) ≡ θ`,Ti

source type edge type target type
file sent-from person

sent-from-email email-address
sent-to person
sent-to-email email-address
date-of date
has-subject-term term
has-term term

person sent-from−1 file
sent-to−1 file
alias email-address
includes-term term

email-address sent-to-email−1 file
sent-from-email−1 file
alias−1 person
is-email−1 term

term has-subject-term−1 file
has-term−1 file
is-email email-address
includes-term−1 person

date date-of−1 file

Table 1: Graph structure: Node and relation types

Let STi
be the set of possible labels for an edge leaving a

node of type Ti. We require that the weights over all outgo-
ing edge types given the source node type form a probability
distribution, i.e., that �

`∈STi

θ`,Ti
= 1

In this paper, we will assume that once ` is picked, y is

chosen uniformly from the set of all y such that x
`

−→ y.
That is, the weight of an edge of type l connecting source
node x to node y is:1

Pr(x
`

−→ y | `) =
θ`,Ti

| y : x
`

−→ y |

This assumption could easily be generalized, however: for
instance, for the type T (x) = file and ` = has-term, weights

for terms y such that x
`

−→ y might be distributed according
to an appropriate language model [12].

3.2 Graph walks
Conceptually, the edge weights above define the probabil-

ity of moving from a node x to some other node y. At each
step in a lazy graph walk, there is also some probability γ of
staying at x. Putting these together, and denoting by Mxy

the probability of being at node y at time t + 1 given that
one is at x at time t in the walk, we define

Mxy = � (1 − γ)� ` Pr(x
`

−→ y|`) · Pr(`|T (x)) if x 6= y
γ if x = y

If we associate nodes with integers, and make M a matrix
indexed by nodes, then a walk of k steps can then be de-
fined by matrix multiplication: specifically, if V0 is some
initial probability distribution over nodes, then the distri-
bution after a k-step walk is proportional to Vk = V0M

k.
Larger values of γ increase the weight given to shorter paths
between x and y. In the experiments reported here, we con-
sider small values of k, and this computation is carried out

1If no such y exists, then the outgoing probability mass θ`,Ti

associated with node x is absorbed into a “null” state.



directly using sparse-matrix multiplication methods.2 If V0

gives probability 1 to some node x0 and probability 0 to all
other nodes, then the value given to y in Vk can be inter-
preted as a similarity measure between x and y.

In our framework, a query is an initial distribution Vq over
nodes, plus a desired output type Tout , and the answer is a
list of nodes y of type Tout , ranked by their score in the
distribution Vk. For instance, for an ordinary ad hoc doc-
ument retrieval query (like “economic impact of recycling
tires”) would be an appropriate distribution Vq over query
terms, with Tout = file. Replacing Tout with person would
find the person most related to the query—e.g., an email
contact heavily associated with the retread economics. Re-
placing Vq with a point distribution over a particular docu-
ment would find the people most closely associated with the
given document.

3.3 Relation to TF-IDF
It is interesting to view this framework in comparison to a

more traditional IR setting, which can be viewed as a special
case. Suppose we restrict ourselves to only two types, terms
and files, and allow only in-file edges. Now consider an
initial query distribution Vq which is uniform over the two
terms “the aardvark”. A one-step matrix multiplication will
result in a distribution V1, which includes file nodes. The
common term “the” will spread its probability mass into
small fractions over many file nodes, while the unusual term
“aardvark” will spread its weight over only a few files: hence
the effect will be similar to use of an IDF weighting scheme.

4. LEARNING
As suggested by the comments above, the described graph

framework could be used for many types of tasks, and it is
unlikely that a single set of parameter values θ will be best
for all tasks. It is thus important to consider the problem
of learning how to better rank graph nodes.

Previous researchers have described schemes for adjust-
ing the parameters θ using gradient descent-like methods
[14, 24]. In this paper, we suggest an alternative approach
of learning to re-order an initial ranking. This reranking ap-
proach has been used in the past for meta-search [8] and also
several natural-language related tasks [10, 9]. The advan-
tage of reranking over parameter tuning is that the learned
classifier can take advantage of “global” features that are
not easily used in a walk.

Note however that node reranking, while can be used as
an alternative to weight manipulation, it is better viewed as
a complementary approach, as the techniques can be natu-
rally combined by first tuning the parameters θ, and then
reranking the result using a classifier which exploits non-
local features. This hybrid approach has been used success-
fully in the past on tasks like parsing [10].

We here give a short overview of the reranking approach,
which is described in more detail elsewhere [10]. The rerank-
ing algorithm is provided with a training set containing n
examples. Example i (for 1 ≤ i ≤ n) includes a ranked list
of li nodes. Let wij be the jth node for example i, and let
p(wij) be the probability assigned to wij by the graph walk.

2We have also explored an alternative approach based on
sampling; this method scales better but introduces some
additional variance into the procedure, which is undesirable
for experimentation.

A candidate node wij is represented through m features,
which are computed by m feature functions f1, . . . , fm. We
will require that the features be binary; this restriction al-
lows a closed form parameter update [10]. The ranking func-

tion for node x is defined as:

F (x, ᾱ) = α0L(x) +

m�
k=1

αkfk(x)

where L(x) = log(p(x)) and ᾱ is a vector of real-valued
parameters. Given a new test example, the output of the
model is the given node list re-ranked by F (x, ᾱ).

To learn the parameter weights ᾱ, we use a boosting
method [10], which minimizes the following loss function on
the training data:

ExpLoss(ᾱ) =
�

i

li�
j=2

e−(F (xi,1,ᾱ)−F (xi,j ,ᾱ))

where xi,1 is, without loss of generality, the correct tar-
get node.3 The weights for the function are learned with
a boosting-like method, where in each iteration the feature
fk that has the most impact on the loss function is chosen,
and αk is modified. Closed form formulas exist for calculat-
ing the optimal additive parameter updates [10, 29].

5. EVALUATION
There are currently no available annotated email corpora

for evaluation of email-related queries. In this paper we eval-
uate the system on two tasks: person name disambiguation,
and email threading. The key property of these tasks is that
a non-subjective correct answer set can be constructed per
query. Each task was evaluated on three corpora.

5.1 Corpora
Each corpus is of moderate size—representative, we hope,

of an ordinary user’s collection of saved mail.
The Cspace corpus contains email messages collected from

a management course conducted at Carnegie Mellon Univer-
sity in 1997 [23]. In this course, MBA students, organized
in teams of four to six members, ran simulated companies in
different market scenarios. The corpus we used here includes
the emails of all teams over a period of four days, plus all
messages that were replied to in the four-day period. This
subcorpus is convenient for the task of name disambiguation
for several reasons, which are outlined below.

The Enron corpus is a collection of mail from the Enron
corpus that has been made available to the research com-
munity [19]. This corpus can be easily segmented by user:
here, we used the saved email of four different users.4 To
eliminate spam and news postings we removed email files
sent from email addresses with suffix “.com” that are not
Enron’s; widely distributed email files sent from addresses
such as “enron.announcement” or “enron.chairman” at “en-
ron.com”; and emails sent to “all.employees@enron.com”
etc. Text from forwarded messages, or replied-to messages

3If there are k > 1 target nodes in a ranking, we split the
ranking into k examples. Note also that it is possible to
incorporate weights into this formula, e.g., to assign higher
weight to nodes earlier in the ranking; however we assign all
nodes equal importance.
4Specifially, we used the “all documents” folder, including
both incoming and outgoing files.



were also removed from the corpus. In deriving terms for
the graph, terms were Porter-stemmed and stop words were
removed.

Table 2 (leftmost columns) gives the size of each processed
corpus, and the number of nodes in the graph representation
of it. The processed Enron-derived corpora are available
from the first author’s home page.5

corpus Person set Thread set
files nodes train test train test

Cspace 821 6248 26 80 30 100
Sager-E 1632 9753 11 51 - -
Shapiro-R 978 13174 11 49 - -
Germany-C 2657 12730 - - 27 54
Farmer-D 2548 14082 - - 29 98

Table 2: Corpora Details

5.2 Person Name Disambiguation

5.2.1 Task definition
Consider an email message containing a common name

like “Andrew”. Ideally an intelligent mailer would, like
the user, understand which person “Andrew” refers to, and
would rapidly perform tasks like retrieving Andrew’s pre-
ferred email address or home page. Resolving the referent
of a person name is also an important complement to the
ability to perform named entity extraction for tasks like so-
cial network analysis or studies of social interaction in email.

However, while the referent of the name is usually unam-
biguous to the recipient of the email, it can be non-trivial
for an automated system to find out which “Andrew” is in-
dicated. Automatically determining that “Andrew” refers
to “Andrew Y. Ng” and not “Andrew McCallum” (for in-
stance) is especially difficult when an informal nickname is
used, or when the mentioned person does not appear in the
email header. As noted above, we model this problem as a
search task: based on a name-mention in an email message
m, we formulate query distribution Vq, and then retrieve a
ranked list of person nodes.

5.2.2 Data preparation
Unfortunately, building a corpus for evaluating this task

is non-trivial, because (if trivial cases are eliminated) deter-
mining a name’s referent is often non-trivial for a human
other than the intended recipient. We evaluated this task
using three labeled datasets, as detailed in Table 2.

The Cspace corpus has been manually annotated with per-
sonal names [23]. Additionally, with the corpus, there is a
great deal of information available about the composition of
the individual teams, the way the teams interact, and the
full names of the team members. Using this extra informa-
tion it is possible to manually resolve name mentions. We
collected 106 cases in which single-token names were men-
tioned in the the body of a message but did not match any
name from the header. Instances for which there was not
sufficient information to determine a unique person entity
were excluded from the example set. In addition to names
that refer to people that are simply not in the header, the
names in this corpus include people that are in the email
header, but cannot be matched because they are referred

5Unfortunately, due to privacy issues, the CSpace corpus
can not be distributed in this way.

to using: initials–this is commonly done in the sign-off to
an email; nicknames, including common nicknames (e.g.,
“Dave” for “David”), and unusual nicknames (e.g., “Kai” for
“Keiko”); or American names that were adopted by persons
with foreign-language names (e.g., “Jenny” for “Qing”).

For Enron, two datasets were generated automatically.
We collected name mentions which correspond uniquely to
names that are in the email “Cc” header line; then, to simu-
late a non-trivial matching task, we eliminate the collected
person name from the email header. We also used a small
dictionary of 16 common American nicknames to identify
nicknames that mapped uniquely to full person names on
the “Cc” header line.

Table 3 gives the distribution of name mention types for
all datasets. For each dataset, some examples were picked
randomly and set aside for learning and evaluation purposes
(see Table 2).

initials nicknames other
Cspace 11.3% 54.7% 34.0%
Sager-E - 10.2% 89.8%
Shapiro-R - 15.0% 85.0%

Table 3: Person Name Disambiguation Datasets

5.3 Results for person name disambiguation

5.3.1 Evaluation details
All of the methods applied generate a ranked list of per-

son nodes, where there is exactly one correct answer per
example.6 Figure 1 gives results7 for two of the datasets
as a function of recall at rank k, up to rank 10. Table 4
shows the mean average precision (MAP) of the ranked lists
as well as accuracy, which we define as the percentage of
correct answers at rank 1 (i.e., precision at rank 1).

5.3.2 Baseline method
To our knowledge, there are no previously reported exper-

iments for this task on email data. As a baseline, we apply a
reasonably sophisticated string matching method [7]. Each
name mention in question is matched against all of the per-
son names in the corpus. The similarity score between the
name term and a person name is calculated as the maximal
Jaro similarity score [7] between the term and any single
token of the personal name (ranging between 0 to 1). In
addition, we incorporate a nickname dictionary,8 such that
if the name term is a known nickname of the person name,
the similarity score of that pair is set to 1.

The results are shown in Figure 1 and Table 4. As can be
seen, the baseline approach is substantially less effective for
the more informal Cspace dataset. Recall that the Cspace
corpus includes many cases such as initials, and also nick-
names that have no literal resemblance to the person’s name
(section 5.2.2), which are not handled well by the string sim-
ilarity approach. For the Enron datasets, the baseline ap-
proach perfoms generally better (Table 4). In all the corpora
there are many ambiguous instances, e.g., common names
like “Dave” or “Andy” that match many people with equal
strength.

6If a ranking contains a block of items with the same score,
a node’s rank is counted as the average rank of the “block”.
7Results refer to test examples only.
8The same dictionary that was used for dataset generation.



5.3.3 Graph walk methods
We perform two variants of graph walk, corresponding

to different methods of forming the query distribution Vq.
Unless otherwise stated, we will use a uniform weighting of
labels—i.e., θ`,T = 1/ST ; γ = 1/2; and a walk of length 2.

In the first variant, we concentrate all the probability in
the query distribution on the name term. The column la-
beled term gives the results of the graph walk from this
probability vector. Intuitively, using this variant, the name
term propagates its weight to the files in which it appears.
Then, weight is propagated to person nodes which co-occur
frequently with these files. Note that in our graph scheme
there is a direct path between terms to person names, so
that person nodes may recieve weight vis this path as well.

As can be seen in the results, this leads to very effective
performance: e.g., it leads to 61.3% vs. 41.3% accuracy for
the baseline approach on the CSpace dataset. However, it
does not handle ambiguous terms as well as one would like,
as the query does not include any information of the context

in which the name occurred: the top-ranked answer for am-
biguous name terms (e.g., “Dave”) will always be the same
person. To solve this problem, we also used a file+term

walk, in which the query Vq gives equal weight to the name
term node and the file in which it appears.

We found that adding the file node to Vq provides useful
context for ambiguous instances—e.g., the correct “David”
would in general be ranked higher than other persons with
this same name. On the other hand, though, adding the
file node reduces the the contribution of the term node. Al-
though the MAP and accuracy are decreased, file+term has
better performance than term at higher recall levels, as can
be seen in Figure 1.

5.3.4 Reranking the output of a walk
We now examine reranking as a technique for improving

the results. We formed the following types of features f for a
node x. Edge unigram features indicate, for each edge label
`, whether ` was used in reaching x from Vq. Edge bigram

features indicate, for each pair of edge labels `1, `2, whether
`1 and `2 were used (in that order) in reaching x from Vq.
Top edge bigram features are similar but indicate if `1, `2
were used in one of the two highest-scoring paths between
Vq and x (where the “score” of a path is the product of

Pr(y
`

−→ z) for all edges in the path).
We believe that these features could all be computed us-

ing dynamic programming methods. Currently, however, we
compute features by using a method we call path unfolding,
which is similar to the back-propagation through time algo-
rithm [15, 14] used in training recurrent neural networks.
Graph unfolding is based on a backward breadth-first visit
of the graph, starting at the target node at time step k, and
expanding the unfolded paths by one layer per each time
step. This procedure is more expensive, but offers more
flexibility in choosing alternative features, and was useful in
determining an optimal feature set.

In addition, we used for this task some additional problem-
specific features. One new feature indicates whether the set
of paths leading to a node originate from one or two nodes
in Vq. (We conjecture that in the file+term walk, nodes
that are connected to both the source term and file nodes
are more relevant than nodes that are connected to only the
file node or only the term node.) We also form features that
indicate whether the given term is a nickname of the person
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Figure 1: Person name disambiguation results: Re-

call at rank k

name, per the nicknames dictionary; and whether the Jaro
similarity score between the term and the person name is
above 0.8. This information is similar to that used by the
baseline ranking system.

The results (for the test set, after training on the train
set) are shown in Table 4 and (for two representative cases)
Figure 1. In each case the top 10 nodes were reranked.
Reranking substantially improves performance, especially
for the file+term walk. The accuracy rate is higher than
75% across all datasets. The features that were assigned
the highest weights by the re-ranker were the literal similar-
ity features and the source count feature.

5.4 Threading

5.4.1 Task Description
As a test of the generality of our approach, we also con-

sidered a second task. Threading is the problem of retriev-
ing other messages in an email thread given a single mes-
sage from the thread. Threading is a well known task for
email, although there are only few relevant works published
[21, 27]. As has been pointed out before [21], users make
inconsistent use of the “reply” mechanism, and there are



MAP ∆MAP Acc. ∆Acc

Cspace
Baseline 49.0 - 41.3 -
Graph - term 72.6 48.2% 61.3 48.4%
Graph - file+term 66.3 35.3% 48.8 18.2%
Reranking - term 85.6 74.7% 72.5 75.5%
Reranking - file+term 89.0 81.6% 83.8 102.9%
Sager-E
Baseline 67.5 - 39.2 -
Graph - term 82.8 22.7% 66.7 70.2%
Graph - file+term 61.7 8.6% 41.2 5.1%
Reranking - term 83.2 23.3% 68.6 75.0%
Reranking - file+term 88.9 31.7% 80.4 105.1%
Shapiro-R
Baseline 60.8 - 38.8 -
Graph - term 84.1 38.3% 63.3 65.3%
Graph - file+term 56.5 (7.1%) 38.8 1.3%
Reranking - term 87.9 44.6% 65.3 70.5%
Reranking - file+term 85.5 40.6% 77.6 102.6%

Table 4: Person Name Disambiguation Results

frequent irregularities in the structural information that in-
dicates threads; thus, thread discourse arguably should be
captured using an intelligent approach. It has also been
suggested [19] that once obtained, thread information can
improve message categorization into topical folders.

Our primary interest in this task is that threading is an
easily-evaluated proxy for the task of finding similar mes-
sages in a corpus. Finding related messages would be both
a useful operation for users, and is also important for auto-
matic email processing at the corpus level. As threads (and
more generally, similar messages) are indicated by multiple
types of relations including text, social network information,
and timing information, we expect this task to benefit from
the graph framework.

More precisely, we formulate threading as follows: given
an email file as a query, produce a ranked list of related
email files, where the immediate parent and child of the
given file are considered to be “correct” answers. We limit
the answer set to the adjacent files because of our more
general interest in finding related messages: while consecu-
tive thread messages can be assumed to be related to each
other, this assumption is weaker if applied on the entire
thread. This definition does, however, make the task some-
what more challenging.

5.4.2 Data
We created three datasets for task evaluation, again from

the Cspace and Enron corpora. The number of queries for
each dataset are given in Table 2. For each relevant message,
its parent was identified by using the subject line and time
stamp. About 10-20% of the messages have both parent
and child messages available, otherwise only one file in the
thread is a correct answer.

We used a series of variants of this data, in which we
varied the amount of message information that is available.
Specifically, several information types are available in these
corpora: the email header,including sender, recipients and
date; the body, i.e., the textual content of an email, excluding
any quoted reply lines or attachements from previous mes-
sages; reply lines, i.e., quoted lines from previous messages;
and the subject, i.e., the content of the subject line.

We compared several combinations of these components,

as detailed in Table 5. Of particular interest is the task
which considers header and body information alone, since
it best reflects the situation for the more general task of
finding “related” messages.

5.4.3 Baseline method
The baseline approach generates a list of files, ranked by

similarity scores using the vector space model, in which a
document is represented as a weighted vector in a term space
and a document similarity score is the cosine similarity of
their vectors. TF-IDF term weighting is commonly used for
document representation; to apply the TF-IDF scheme here,
we simply consider all available information as text.

The results (Table 5) show that this approach performs
reasonably well. Due to space limitations full results are
given as MAP scores; in addition, Figure 2 shows the recall-
at-k curve for the Cspace dataset, using header and text.
Recall of about 55% at rank 5 is reached using header and
text information for Cspace using the baseline approach.
As one might expect, adding information, in particular the
subject and reply lines, improves performance substantially.

5.4.4 Graph walk methods
To formulate this as a problem in the graph model, we

let Vq assign probability 1 to the file node corresponding
to the original message, and let Tout = file. In addition
to using uniform graph weights, we also use an extremely
simple weight-tuning method: specifically, we evaluated 10
randomly-chosen sets of weights and pick the one that per-
forms best (in terms of MAP) on the CSpace training data.
We repeated this procedure separately for every experiment
setting, so a total of four “random” weight vectors were
used. Performance for this weight set is shown as “Graph-
Random” in the table.

The results show that the graph walk and the TF-IDF
are comparable when identical chunks of text, such as sub-
ject lines, are present in both the query message and the
“target”. However, the graph walk performs better using
only header and body text information, with an absolute
improvement of 4.1% to 24.7% in MAP across corpora. Note
that the “random” weights outperform uniform weights and
TF-IDF substantially on CSpace, and often also on other
corpora. This is especially true when reply and subject
lines are not available. This suggests that even very simple
weight-tuning methods are likely to improve performance.

5.4.5 Reranking the output of walks
We applied reranking on top of the random-weighted graph

walk results. The top 50 file nodes were given to the re-
ranker. The features applied are edge unigram, edge bigram

and top edge bigram (described in section 5.3.4). We found
that the edge bigram features are most informative, leading
to large improvement rates. Overall, reranking the graph
walk almost always yields the best results.9 For example,
recall of 75% at rank 5 is achieved for the CSpace dataset,
with only header and text available, compared to 58% using
the TF-IDF based method and 54% prior to reranking. Most
features that were assigned high weight by the learner were
bigrams: some examples are: sent from → sent to−1, date

9Performance degraded in only one of the ten cases, for
Farmer-D dataset using header only. This is probably due
to over-fitting; performance improved slightly on the train
set.



header
√ √ √ √

body
√ √ √

-
subject

√ √

- -
reply lines

√

- - -
Cspace
TF-IDF 58.4 50.2 36.2 43.7
Graph - Uniform 59.6 54.8 40.2 40.6
Graph - Random 61.9 62.1 49.3 46.8
Graph - Reranked 73.8 71.5 60.3 55.0

Germany-C
TF-IDF - 58.2 37.5 28.1
Graph - Uniform - 50.5 41.6 33.9
Graph - Random - 49.7 41.6 46.7
Graph - Reranked - 68.6 49.1 57.5

Farmer-D
TF-IDF - 65.7 36.1 30.8
Graph - Uniform - 66.7 57.1 50.3
Graph - Random - 63.8 60.8 56.6
Graph - Reranked - 79.8 65.1 48.4

Table 5: Threading Results: MAP
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Figure 2: Threading results: Recall at rank k

of → date of−1, and has term → has term−1. These paths
are indeed characteristic of a thread: e.g., the sender of a
message is likely to be a recipient of a reply message, there
is high temporal proximity between messages in a thread,
and some textual overlap.

Note that while such sequences of relations can be read-
ily identified as important in our framework, they cannot
be even modeled easily in a flat representation. Sequential
aspects of a corpora have been shown to be important for
other email-related tasks, e.g., workflows and social interac-
tion [5].

6. RELATED WORK
As noted above, the similarity measure we use is based on

graph-walk techniques which have been adopted by many
other researchers for several different tasks. In the infor-
mation retrieval community, infinite graph walks are preva-
lent for determining document centrality (e.g., [25, 14, 20]).
Another related line of research is of spreading activation

over semantic or association networks: here the underly-
ing idea is to propagate “activation” from source nodes via

weighted links through the network (e.g., [4, 26]). Spread-
ing activation methods are parameterized by user-provided
threshold functions for node activation, limits on node dis-
tance, preferences over paths, and other constraints. The
framework presented here is similar, but operates through
unconstrained lazy graph walks, where path preferences are
learned from data.

The idea of representing structured data as a graph is
widespread in the data mining community, which is mostly
concerned with relational or semi-structured data. Recently,
the idea of PageRank has been applied to keyword search
in structured databases [2]. Analysis of inter-object rela-
tionships has been suggested for entity disambiguation for
entities in a graph [18], where the graph edges are undi-
rected and edge weights represent confidence in having a
connecting path between the entities. It has been suggested
to model similarity between objects in relational data in
terms of structural-context similarity [17], where the simi-
larity measure corresponds to the expected number of steps
required for a random surfer to cross the graph from one ob-
ject to the other. The latter did not consider edge weights.

In this paper we propose the use of learned re-ranking
schemes to improve performance of a lazy graph walk. Ear-
lier authors have considered instead using hill-climbing ap-
proaches to adjust the parameters of a graph-walk [14]. We
have not compared directly with such approaches; it may
be that the performance gain of such methods is limited,
due to their inability to exploit the global features we used
for these tasks. In preliminary experiments, reranking using
a set of simple locally-computable features only modestly
improved performance of the “random” weight set for the
CSpace threading task. Another related line of research ex-
plores random walks for semi supervised learning [34, 33].

As mentioned earlier, not much work has been done that
integrates meta-data and text in email. One example ex-
amines clustering using multiple types of interactions in co-
occurence data [3]. Another recent paper [1] proposes a
graph-based approach for email classification. They repre-
sent an individual email message as a structured graph rep-
resenting both content and header, and find a graph profile
for each folder; incoming messages are classified into folders
using graph matching techniques.

The task of person disambiguation has been studied in
the field of social networks and applied also to email data
(e.g., [22, 13]). In particular, it has been recently suggested
to perform name disambiguation in email using traffic in-
formation, as derived from the email headers [13]. Our ap-
proach differs in that it allows integration of email content
and a timeline in addition to social network information in
a unified framework. In addition, we use learning to tune
the system parameters automatically.

7. CONCLUSION
We have presented a scheme for representing a corpus of

email messages with a graph of typed entities, and an ex-
tension of the traditional notions of document similarity to
documents embedded in a graph. This scheme provides good
performance on two representative email-related tasks: dis-
ambiguating person names, and email threading. Using a
boosting-based learning scheme to rerank outputs based on
graph-walk related features provides an additional perfor-
mance improvement. The final results are quite strong: for
name disambiguation, the method yields MAP scores in the



mid-to-upper 80’s; and for threading, it produces substantial
gains over a TF-IDF baseline. The person name identifica-
tion task illustrates a key advantage of our approach—that
context can be easily incorporated in entity disambiguation.

In future work, we plan to further explore the scalability
of the approach, and also ways of integrating this approach
with language-modeling approaches for document represen-
tation and document retrieval. A newer version of this sys-
tem (not the one used in the experiments) uses a sampling-
based approximation to iterative matrix multiplication. In
preliminary timing experiments, the new system can very
accurately approximate walks of the sort considered here in
around 0.5 seconds, and can approximate 10-step walks on
a million-node corpus (from a different domain) in around
10-15 seconds.

There are several strong motivations for using this frame-
work for search-related tasks in email. First, preserving
entity type allows one to formulate a broad range of prob-
lems as typed search queries—including, in this paper, name
disambiguation and threading. Secondly, structural rela-
tion modeling provides a unified framework for integration
of multiple types of information, including social networks,
text, timelines,10 and other information such as organization
charts. With such additional information, many interesting
information management tasks can be formulated as (or fa-
cilitated by) typed retrieval: for instance, retrieval of email
addresses related to calendar entries could facilitate meeting
rescheduling.
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