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Abstract

We present a unified occlusion model for object instance
detection under arbitrary viewpoint. Whereas previous ap-
proaches primarily modeled local coherency of occlusions
or attempted to learn the structure of occlusions from data,
we propose to explicitly model occlusions by reasoning
about 3D interactions of objects. Our approach accurately
represents occlusions under arbitrary viewpoint without re-
quiring additional training data, which can often be dif-
ficult to obtain. We validate our model by extending the
state-of-the-art LINE2D method for object instance detec-
tion and demonstrate significant improvement in recogniz-
ing texture-less objects under severe occlusions.

1. Introduction

Occlusions are common in real world scenes and are a
major obstacle to robust object detection. While texture-
rich objects can be detected under severe occlusions with
distinctive local features, such as SIFT [13], many man-
made objects have large uniform regions. These texture-less
objects are characterized by their contour structure, which
are often ambiguous even without occlusions. Instance de-
tection of texture-less objects compounds this ambiguity by
requiring recognition under arbitrary viewpoint with severe
occlusions as shown in Figure 1. While much research
has addressed each component separately (texture-less ob-
jects [21], arbitrary viewpoint [7], occlusions [4]), address-
ing them together is extremely challenging. The main con-
tributions of this paper are (1) a concise model of occlu-
sions under arbitrary viewpoint without requiring additional
training data and (2) a method to capture global visibility
relationships without combinatorial explosion.

In the past, occlusion reasoning for object detection has
been extensively studied [6, 15, 17]. One common approach
is to model occlusions as regions that are inconsistent with
object statistics. Girshick et al. [5] use an occluder part
in their grammar model when all parts cannot be placed.
Wang et al. [22] use the scores of individual HOG filter
cells, while Meger et al. [14] use depth inconsistency from
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Figure 1: Example detections of (left) saucepan and (right)
pitcher under severe occlusions.

3D sensor data to classify occlusions. Local coherency
of occlusions are often enforced with a Markov Random
Field [3] to reduce noise in these classifications.

While assuming any inconsistent region is an occlusion
is valid if occlusions happen uniformly over an object, it
ignores the fact there is structure to occlusions for many
objects. For example, in real world environments, objects
are usually occluded by other objects resting on the same
surface. Thus it is often more likely for the bottom of an
object to be occluded than the top of an object [2].

Recently, researchers have attempted to learn the struc-
ture of occlusions from data [4, 10]. With enough data,
these methods can learn an accurate model of occlusions.
However, obtaining a broad sampling of occluder objects is
usually difficult, resulting in biases to the occlusions of a
particular dataset. This becomes more problematic when
considering object detection under arbitrary view [7, 18,
20]. Learning approaches need to learn a new model for
each view of an object. This is intractable, especially when
recent studies [7] have claimed that approximately 2000
views are needed to sample the view space of an object.
A key contribution of our approach is to represent occlu-
sions under arbitrary viewpoint without requiring additional
training data of occlusions. We demonstrate that our ap-
proach accurately models occlusions, and that learning oc-
clusions from data does not give better performance.

Researchers have shown in the past that incorporating
3D geometric understanding of scenes [1, 9] improves the
performance of object detection systems. Following these
approaches, we propose to reason about occlusions by ex-
plicitly modeling 3D interactions of objects. For a given
environment, we compute physical statistics of objects in
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Figure 2: Occlusion model. (left) Projected width of oc-
cluder, w, for a rotation of 6. (right) PrOJected height of
occluder, h, and projected height of object, Hobj, for an el-
evation angle of ¥). An occluder needs a projected height of
h>H obj to fully occlude the object.

the scene and represent an occluder as a probabilistic dis-
tribution of 3D blocks. The physical statistics need only
be computed once for a particular environment and can be
used to represent occlusions for many objects in the scene.
By reasoning about occlusions in 3D, we effectively pro-
vide a unified occlusion model for different viewpoints of
an object as well as different objects in the scene.

We incorporate occlusion reasoning with object detec-
tion by: (1) a bottom-up stage which hypothesizes the like-
lihood of occluded regions from the image data, followed
by (2) a top-down stage which uses prior knowledge rep-
resented by the occlusion model to score the plausibility of
the occluded regions. We combine the output of the two
stages into a single measure to score a candidate detection.

The focus of this paper is to demonstrate that a rela-
tively simple model of 3D interaction of objects can be
used to represent occlusions effectively for instance detec-
tion of texture-less objects under arbitrary view. Recently,
there has been significant progress in simple and efficient
template matching techniques [7, 8] for instance detection.
These approaches work extremely well when objects are
largely visible, but degrade rapidly when faced with strong
occlusions in heavy background clutter. We evaluate our
approach by extending the state-of-the-art LINE2D [7] sys-
tem, and demonstrate significant improvement in detection
performance on a challenging occlusion dataset.

2. Occlusion Model

Occlusions in real world scenes are often caused by a
solid object resting on the same surface as the object of in-
terest. In our model, we approximate occluding objects by
their 3D bounding box and demonstrate how to compute oc-
clusion statistics of an object under different camera view-
points, ¢, defined by an elevation angle v and azimuth 6.

Let X = {X3,..., Xn} be a set of N points on the ob-
ject with their visibility states represented by a set of bi-
nary variables V = {V1, ..., Vy} such that if V; = 1, then
X, is visible. For occlusions O, under a particular cam-
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Figure 3: Computation of Ao, . (left) We consider the cen-
ter positions of a block (red) which occlude the object. The
base of the block is always below the object, since we as-
sume they are on the same surface. (right) The set of posi-

tions is defined by the yellow rectangle which has area Ao, .
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Figure 4: Computation of Ay, o,. (left) We consider the
center positions of a block (red) which occlude the object
while keeping X; visible. (right) The set of positions is
defined by the green region which has area Ay, o_.

era viewpoint ¢, we want to compute occlusion statistics
for each point in X'. Unlike other occlusion models which
only compute an occlusion prior P(V;|O..), we propose to
also model the global relationship between visibility states,
P(V;|V.;,0.) where V_; = V\V;. Through our derivation,
we observe that P(V;]O,.) captures the classic intuition that
the bottom of the object is more likely to be occluded than
the top. More interesting is P(V;|V.;, O.) which captures
the structural layout of an occlusion. The computation of
these two occlusion properties both reduce to integral ge-
ometry [16], and for explanation, we illustrate the deriva-
tion of the occlusion prior P(V;|O.).

We make a couple of approximations to tractably derive
the occlusion statistics. Specifically, since objects which
occlude each other are usually physically close together, we
approximate the objects to be on the same support surface
and we approximate the perspective effects over the range
of object occlusions to be negligible.

2.1. Representation under different viewpoints

The likelihood that a point on an object is occluded de-
pends on the angle the object is being viewed from. Most
methods that learn the structure of occlusions from data [4]
require a separate occlusion model for each view of every
object. These methods do not scale well when considering
detection of many objects under arbitrary view.

In the following, we propose a unified representation
of occlusions under arbitrary viewpoint of an object. Our
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Figure 5: Example of (a) occlusion prior P(V;|O,), (b,c) conditional likelihood P(V;|V;,O,) and P(V;|V}, O
separate points X; and X}, individually, (d) approximate conditional likelihood P (V;|
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) given two
Vi, Vi, O.) from Equation 12, and (e)

explicit conditional likelihood P(V;|V;, Vi, O.) from Equation 10.

method requires only the statistics of object dimensions,
which is obtained once for a given environment and can be
shared across many objects for that environment.

The representation we propose is illustrated in Figure 2.
For a specific viewpoint, we represent the portion of a block
that can occlude the object as a bounding box with dimen-
sions corresponding to the projected height h and the pro-
jected width w of the block. The projected height and width
are the observed height and width of a block to the viewer.

The object of interest, on the other hand, is represented
by its silhouette in the image. Initially, we derive our model
using the bounding box of the silhouette with dimensions
H obj and Wobj, and then relax our model to use the actual
silhouette (Section 2.4).

First, we compute the projected width w of an occluder
with width w and length [ as shown by the top-down view
in Figure 2. In our convention, w0 = w for an azimuth of
# = 0. Using simple geometry, the projected width is,

w(0) =w-|cosf| +1-]|sinb|. (1)

Since € is unknown for an occluding object, we obtain a dis-
tribution of w assuming all rotations about the vertical axis
are equally likely. The distribution of @ over 6 € [0, 2] is
equivalent to the distribution over any 7 interval. Thus, the
distribution of w0 is computed by transforming a uniformly
distributed random variable on [0, 5] by Equation 1. The
resulting probability density of w is given by,

1
2(1-gfp) w<w<l
1
(1—rjlz) P l<h < Vet

Next, we compute the projected height h of an occluder
as illustrated by the side view of Figure 2. For an elevation
angle ¢ and occluding block with height &, the projected
height £ is

pa () = 2

h(y) = h - cos. 3)

This corresponds to the maximum height that can occlude
the object given our assumptions.

The projected height of the object, f[obj, is slightly dif-
ferent in that it accounts for the apparent height of the ob-
Ject silhouette. An object is fully occluded vertically only if
h > Hobj To compute Hobj, we need the distance, D,
from the closest edge to the farthest edge of the object. Fol-
lowing the computation of the projected width w, we have

Doy (0) = Wopj - |sinf| 4+ Lop; - | cosf|. The projected
height of the object at an elevation angle ¢ is then given by,

Hopj(0,%) = Hopj - |costb| + Doy (0) - [sinv].  (4)

Finally, the projected width of the object Wobj is computed
using the aspect ratio of the silhouette bounding box.

2.2. Occlusion Prior

Given the representation derived in Section 2.1, we want
to compute a probability for a point on the object being oc-
cluded. Many systems which attempt to address occlusions
assume that they occur randomly and uniformly across the
object. However, recent studies [2] have shown that there is
structure to occlusions for many objects.

We begin by deriving the occlusion prior using an oc-
cluding block with projected dimensions (i, 1) and then
extend the formulation to use a probabilistic distribution of
occluding blocks. The occlusion prior specifies the prob-
ability P(V;]|O.) that a point on the object X; = (x;,y;)
is visible given an occlusion of the object. This involves
estimating the area, Ap,, covering the set of block posi-
tions that occlude the object (shown by the yellow region
in Figure 3), and estimating the area, Ay, o, covering the
set of block positions that occlude the object while keeping
X; visible (shown by the green region in Figure 4). The
occlusion prior is then just a ratio of these two areas,

P(V0,) = A¥e0e. 5)

O.

From Figure 3, a block (red) will occlude the object if its
center is inside the yellow region. The area of this region,
AOC,’ is A ~

Ao, = (Wobj + ﬁ/) - h. (6)

Next, from Figure 4, this region can be partitioned into
a region where the occluding block occludes X; (blue) and
a region which does not (green). Ay, o, corresponds to the
area of the green region and can be computed as

Ay,.0, = Wopj - b+ 10 - min(h, y;). @)

Now that we have derived the occlusion prior using a
particular occluding block, we extend the formulation to a
distribution of blocks. Let p; () and p;, (h) be distributions
of w and h respectively. To simplify notation, we define
pi = Ep, @)[w] and p;, = Epﬂ(,}) [h] to be the expected



width and height of the occlqders underkthesAe distributions,
and define 8, (y;) = [ min(h,y;) - p; (h) dh. The average
areas, Ao, and Ay, o, are then given by

Ao, = (Wobs + ) - iy, ®)

Av,.0. = Wepj -y, + ts - By (yi)- &)

This derivation assumes that the distribution p,; ; (@, h) can

be separated into p; () and p;, (h). For household objects,
we empirically verified that this approximation holds. In
practice, the areas are computed by discretizing the distri-
butions and Figure 5(a) shows an example occlusion prior.

2.3. Occlusion Conditional Likelihood

Most occlusion models only account for local coherency
and the prior probability that a point on the object is oc-
cluded. Ideally, we want to compute a global relationship
between all visibility states )V on the object. While this is
usually infeasible combinatorially, we show how a tractable
approximation can be derived in the following section.

Let Xy, be the visible subset of X according to V_;. We
want to compute the probability P(V;|V.;, O.) that a point
X 1s visible given the visibility of &), ,. Following Section
2.2, the conditional likelihood is given by
_Aviv.o.

Ay o,
We first consider the case where we condition on one visible
point, X; (i.e., Xy, = {X;}). To compute P(V;|V;,O.),
we already have Ay, o, from Equation 9, so we just need
Ay, v;,0.- The computation follows from Section 2.2, so
we omit the details and just provide the results below. If we
let B, (z;, z;) = [min(d, |z; — xj|) - po () dib, then

P(Vi|V.1,0) (10)

Av,v;.0. = Wonj — |w — 54]) - pj,+

|zi—z|
(/ (|Jz; — x| — @) - pa (W) du?) S+ (D)
0

Ba(wiyx5) - By(yi) + pa - By(ys)-

We can generalize this to k visible points (i.e., | Xy,
k) by counting as above, however, the number of cases in-
creases combinatorially. We make the approximation that
the point X; € &), with the highest conditional likelihood
P(V;|V}, O.) provides all the information about the visibil-
ity of X;. This observation assumes that V; L {V.;\V;}|V;
and allows us to compute the global visibility relationship
P(V;|V.;,0.) without combinatorial explosion. The ap-
proximation of P(V;|V.;, O_;) is then

P(Vi[V.i,0c) = P(Vi|V}", Oc), 12)
Vi = argmax P(V;|V;, O,). (13)
VieV.;

For example, Figure 5(d,e) shows the approximate condi-
tional likelihood and the exact one for |y, | = 2.

(a) True positive

(b) False positive

Figure 6: Examples of occlusion hypotheses. (a) For a true
detection, the occluded points (red) are consistent with our
model. (b) For a false positive, the top of the object is hy-
pothesized to be occluded while the bottom is visible, which
is highly unlikely according to our model.

2.4. Arbitrary object silhouette

The above derivation can easily be relaxed to use the ac-
tual object silhouette. The idea is to subtract the area, A;,
covering the set of block positions that occlude the object
bounding box but not the silhouette from the areas described
in Sections 2.2 and 2.3. The occlusion prior and conditional
likelihood are then given by,

A — A,
P(Vi|O.) = =2, (14)
_Avivio, — As
P(ViV4,0.) = Ao A, (15)
3. Object Detection

Given our occlusion model from Section 2, we augment
an object detection system by (1) a bottom-up stage which
hypothesizes occluded regions using the object detector,
followed by (2) a top-down stage which measures the con-
sistency of the hypothesized occlusion with our model. We
explore using the occlusion prior and occlusion conditional
likelihood for scoring and show in our evaluation that both
are informative for object detection.

3.1. Occlusion Hypothesis

We follow previous methods [3, 5, 22] and consider re-
gions that do not match well with the object statistics to be
occluded. Hypothesizing these regions depends on the in-
dividual object detector. For HOG, Wang et al. [22] use the
score of individual filter cells to classify occlusions. In the
following, we propose a similar approach for LINE2D.

The LINE2D method represents an object by a template
of sampled edge points, each with a quantized orientation.
For every scanning window location, a similarity score is
computed between the gradient of each model point and the
image. We consider a point to be occluded if the image gra-
dient and the model gradient have different quantized ori-
entations. Figure 6 shows example occlusion hypotheses.

3.2. Occlusion Scoring

Given the hypothesized visibility labeling V for a detec-
tion window Z from Section 3.1, we want a metric of how



Figure 7: Example detection results under severe occlusions in cluttered household environments.
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Figure 8: Dataset occlusion and performance. (leff) Our
dataset contains roughly equal amount of partial occlusions
(1-35%) and heavy occlusions (35-80%). (right) While our
methods improve performance under all levels of occlu-
sions, we see larger gains under heavy occlusions.

well the occluded regions agree with our model. Intuitively,
we should penalize points that are hypothesized to be oc-
cluded by the object detector (Section 3.1) but are highly
likely to be visible according to our occlusion model. From
this intuition, we propose the following detection score,

score(Z,V) ZV f(z,Vv), (16)
where f(Z,V) is a penalty funct10n for occlusions. A
higher score indicates a more confident detection, and for
detections with no occlusion, the score is 1. For detections
with occlusion, the penalty f(Z,V) is higher the more oc-
cluded points which are inconsistent with the model. In the
following, we propose two penalty functions, fopp(Z,V)
and focLp(Z,V), based on the occlusion prior and occlu-
sion conditional likelihood of Section 2.

3.2.1 Occlusion Prior Penalty

The occlusion prior penalty (OPP) gives high penalty to lo-
cations that are hypothesized to be occluded but have a high
prior probability P(V;|O.) of being visible. Intuitively,
once the prior probability drops below some level A, the
point should be considered part of a valid occlusion and
should not be penalized. This corresponds to a hinge loss
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Figure 9: Distribution of (left) heights and (right) length
and width of occluders in household environments.

function I'( P, \) = max (%, 0). The linear penalty we
use is then,

forr(2,V) = Z

2

(P(Vi]Oc), Ap)l - (17)

3.2.2 Occlusion Conditional Likelihood Penalty

The occlusion conditional likelihood penalty (OCLP), on
the other hand, gives high penalty to locations that are
hypothesized to be occluded but have a high probability
P(V;|V.;,0,) of being visible given the visibility labeling
of all other points V_;. Using the same penalty function for-
mulation as the occlusion prior penalty, we have that,

focir(Z,V) Z

(P(Vi[V.i; Oc), Ac)] -

(18)
4. Evaluation

In order to evaluate our occlusion model’s performance
for object instance detection, two sets of experiments were
conducted; the first for a single view of an object and the
second for multiple views of an object. While in practice,
one would only detect objects under multiple views, it is
important to tease apart the effect of occlusion from the ef-
fect of viewpoint. We validate our approach by extending
the LINE2D [7] method, a current state-of-the-art system
for instance detection under arbitrary viewpoint.



LINE2D rLINE2D rLINE2D rLINE2D
with OPP  with OCLP
baking pan 0.44 0.51 0.51 0.55
colander 0.43 0.65 0.68 0.74
cup 0.40 0.60 0.63 0.69
pitcher 0.21 0.62 0.64 0.69
saucepan 0.48 0.67 0.65 0.67
scissors 0.32 0.46 0.46 0.51
shaker 0.18 0.35 0.40 0.48
thermos 0.43 0.73 0.80 0.80
Average 0.36 0.57 0.60 0.64
Gain 0.00 0.21 0.24 0.28

Table 1: Single view. Detection rate at 1.0 FPPL

In each set of experiments, we explore the benefits of
(1) using only the bottom-up stage and (2) incorporating
prior knowledge of occlusions with the top-down stage.
When evaluating the bottom-up stage, we hypothesize the
occluded region using the method of Section 3.1 and con-
sider the score of only the visible portions of the detection.
This score is equivalent to the first term of Equation 16. We
will refer to this system as robust LINE2D (rLINE2D).

The parameters for LINE2D were the same as [7], and
in our implementation, we use random edge points for the
object template. We tested our implementation on a subset
of the dataset provided by the authors of [7] and observed
negligible difference in performance. The parameters of
our occlusion model were calibrated on images not in the
dataset and were kept the same for all objects and all exper-
iments. The occlusion parameters were set to A, = 0.5 and
Ac = 0.05. We ran each experiment 10 times using different
random edge points, and report the average results.

4.1. Dataset

Many object recognition algorithms work well in con-
trolled scenes, but fail when faced with real-world condi-
tions exhibiting strong viewpoint and illumination changes,
occlusions and clutter. Current datasets for object detection
under multiple viewpoints either contain objects on simple
backgrounds [19] or have minimal occlusions [7, 11]. For
evaluation under a more natural setting, the dataset we col-
lected consists of common household objects in real, clut-
tered environments under various levels of occlusion. Our
dataset contains 1600 images of 8 objects and is split evenly
into two parts; 800 for a single view of an object and 800 for
multiple views of an object. The single-view part contains
ground truth labels of the occlusions and Figure 8 shows
that our dataset contains roughly equal amounts of partial
occlusion (1-35%) and heavy occlusions (35-80%) as de-
fined by [2], making this dataset very challenging.

For multiple-view evaluation, we focus our viewpoint
variation to primarily the elevation angle as relative perfor-
mance under different azimuth angles is similar. We use 25
model images for each object which is the same sampling
density as [7]. Each model image was collected with a cali-

LINE2D rLINE2D  rLINE2D rLINE2D
with OPP  with OCLP
baking pan 0.26 0.36 0.36 0.41
colander 0.37 0.61 0.60 0.64
cup 0.29 0.52 0.55 0.58
pitcher 0.28 0.46 0.51 0.54
saucepan 0.42 0.69 0.68 0.69
scissors 0.31 0.39 0.38 0.39
shaker 0.19 0.21 0.30 0.29
thermos 0.30 0.59 0.66 0.69
Average 0.30 0.48 0.51 0.53
Gain 0.00 0.18 0.21 0.23

Table 2: Multiple views. Detection rate at 1.0 FPPIL.

bration pattern to ground truth the camera viewpoint (¢, 6)
and to rectify the object silhouette to be upright. The test
data was collected by changing the camera viewpoint and
the scene around a stationary object. A calibration pattern
was used to ground truth the position of the object.

4.2. Distribution of Occluder Sizes

The distribution of object sizes varies in different envi-
ronments. For a particular scenario, it is natural to only
consider objects as occluders if they appear in that environ-
ment. The statistics of objects can be obtained from the
Internet [12] or, in the household scenario, simply from 100
common household items. Figure 9 shows the distributions
for household objects.

From real world dimensions, we can compute the pro-
jected width and height distributions, py (w) and pﬁ(ﬁ), for
a given camera viewpoint. The projected width distribution
is the same for all viewpoints and is obtained by comput-
ing the probability density from Equation 2 for each pair
of width and length measurement. These densities are dis-
cretized and averaged to give the final distribution of .

The projected height distribution, on the other hand, de-
pends on the elevation angle . From Equation 3, hisa
factor cos of h. Thus, the projected height distribution,
pﬁ(ﬁ), is computed by subsampling pj (h) by cos .

4.3. Single view

We first evaluate the performance for single view object
detection. An object is correctly detected if the intersection-
over-union (IoU) of the predicted bounding box and the
ground truth bounding box is greater than 0.5. Each ob-
ject is evaluated on all 800 images in this part of the dataset
and Figure 10 shows the false positive per image (FPPI) ver-
sus the detection rate (DR). To summarize the performance,
we report the detection rate at 1.0 FPPI in Table 1. A few
example detections are shown in Figure 7.

From the table, the rLINE2D method already signifi-
cantly outperforms the baseline LINE2D method. One issue
with the LINE2D gradient similarity metric (i.e., cosine of
the orientation difference) is that it gives high score even to
orientations that are very different, resulting in false posi-
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Figure 10: FPPI/DR results for single view. There is significant improvement in performance by using occlusion reasoning.
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Figure 11: FPPI/DR results for multiple views. The overall performance is lower than the single view experiments due to
more false positives, but importantly, we observe similar gains from using our occlusion reasoning

tives with high scores. The rLINE2D metric of considering
only points with the same quantized orientation is more ro-
bust to background clutter in the presence of occlusions.
When rLINE2D is augmented with occlusion reasoning,
there is an absolute improvement of 3% for OPP and 7%
for OCLP. We performed a paired t-test and the results are
significant at the p = 10! level, indicating that both oc-
clusion properties are informative for object detection. The
disparity between the gains of OPP and OCLP suggests that
accounting for global occlusion layout by OCLP is more in-
formative than considering the a priori occlusion probabil-
ity of each point individually by OPP. In particular, OCLP
improves over OPP when one side of the object is com-
pletely occluded as shown in Figure 13. Although the top of
the object is validly occluded, OPP assigns a high penalty.
Figure 8 shows the performance under different levels
of occlusion. Here, the detection rate is the percentage of
top detections which are correct. Our occlusion reasoning
improves object detection under all levels of occlusion, but

provides significantly larger gains for heavy occlusions.

To verify that our model accurately represents occlusions
in real world scenes, we reran the above experiments with
occlusion priors and conditional likelihoods learned from
data. We use 5-fold cross-validation and Figure 12 shows
the results from using different number of images for learn-
ing. From the plot, the performance of the learned occlu-
sion properties, IOPP and 10CLP, both converge to their
corresponding explicit counterparts, OPP and OCLP. This
indicates that our model is able to represent occlusions ac-
curately without requiring additional training data.

4.4. Multiple views

Next we evaluate the performance for object detection
under multiple views. Figure 11 shows the FPPI/DR plots
and Table 2 reports the detection rate at 1.0 FPPI. Again, we
obtain significant improvement gains over the LINE2D sys-
tem. Although the performance is lower overall due to more
false positives from increasing the number of templates, the
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Figure 12: Learning the occlusion prior and conditional
likelihood from data. Our model is able to explicitly repre-
sent occlusions accurately without additional training data.

relative gains at 3% for OPP and 5% for OCLP are similar
to the single view case and are significant at the p = 10~
level. This demonstrates that our model is effective for rep-
resenting occlusions under arbitrary view.

Figure 6 shows a typical false positive that can only be
filtered by our occlusion reasoning. Although a majority
of the points match well and the missing parts are largely
coherent, the detection is not consistent with our occlusion
model and is thus heavily penalized and filtered.

Figure 14 shows a couple of failure cases where our as-
sumptions are violated. In the first image, the pot occluding
the pitcher is not accurately modeled by its bounding box.
In the second image, the occluding object rests on top of the
scissor. Even though we do not handle these types of occlu-
sions, our model represents the majority of occlusions and
is thus able to increase the overall detection performance.

5. Conclusion

The main contribution of this paper is to demonstrate that
a simple model of 3D interaction of objects can be used
to represent occlusions effectively for object detection un-
der arbitrary viewpoint without requiring additional training
data. We propose a tractable method to capture global visi-
bility relationships and show that it is more informative than
the typical a priori probability of a point being occluded.
Our results on a challenging dataset of texture-less objects
under severe occlusions demonstrate that our approach can
significantly improve object detection performance.
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