Shape-based instance detection under arbitrary
viewpoint

Edward Hsiao and Martial Hebert

Abstract Shape-based instance detection under arbitrary viewpoint is a very chal-
lenging problem. Current approaches for handling viewpoint variation can be di-
vided into two main categories: invariant and non-invariant. Invariant approaches
explicitly represent the structural relationships of high-level, view-invariant shape
primitives. Non-invariant approaches, on the other hand, create a template for each
viewpoint of the object, and can operate directly on low-level features. We sum-
marize the main advantages and disadvantages of invariant and non-invariant ap-
proaches, and conclude that non-invariant approaches are well-suited for capturing
fine-grained details needed for specific object recognition while also being compu-
tationally efficient. Finally, we discuss approaches that are needed to address ambi-
guities introduced by recognizing shape under arbitrary viewpoint.

1 Introduction

Object instance detection under arbitrary viewpoint is a fundamental problem in
Computer Vision and has many applications ranging from robotics to image search
and augmented reality. Given an image, the goal is to detect a specific object in a
cluttered scene from an unknown viewpoint. Without prior information, an object
can appear under an infinite number of viewpoints, giving rise to an infinite number
of image projections. While the use of discriminative point-based features, such as
SIFT [21, 28], has been shown to work well for recognizing texture-rich objects
across many views, these methods fail when presented with objects that have little
to no texture.
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Fig. 1: View-invariance vs. texture for current state-of-the-art methods.

Objects range from being completely uniform in color, to having stochastic tex-
tures from materials, to repeatable point textures found on man-made items (i.e.,
soup cans). In the following, texture-rich objects refer to those where discrimina-
tive, point-based features (e.g., SIFT) can be extracted repeatably. Weakly-textured
objects, on the other hand, refer to those that contain stochastic textures and/or small
amounts of point textures, but which are insufficient for recognizing the object by
themselves. Examples of objects of different texture types can be seen in Figure 1.

Weakly-textured objects are primarily defined by their contour structure and ap-
proaches for recognizing them largely focus on matching their shape [12, 18, 24,
41]. Many object shapes, however, are very simple, comprised of only a small num-
ber of curves and junctions. Even when considering a single viewpoint, these curves
and junctions are often locally ambiguous as they can be observed on many different
objects. The collection of curves and junctions in a global configuration defines the
shape and is what makes it more discriminative.

Introducing viewpoint further compounds shape ambiguity as the additional
curve variations can match more background clutter. Much research has gone into
representing shape variation across viewpoint. Figure 1 shows a rough layout of cur-
rent state-of-the-art methods with respect to the type of texture they are designed to
recognize versus how much view-invariance they can handle. Current models can
roughly be divided into two main paradigms: invariant and non-invariant.
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Fig. 2: Invariant methods consider properties of shape primitives that are invariant
across viewpoint. Common invariant properties that are used are parallelism, co-
termination, co-linearity and symmetry.

Invariant models create a unified object representation across viewpoint by ex-
plicitly modeling the structural relationships of high level shape primitives (e.g.,
curves and lines). Non-invariant models, on the other hand, use view-based tem-
plates and capture viewpoint variations by sampling the view space and matching
each template independently. In this article, we discuss the advantages and disad-
vantages of invariant and non-invariant methods. We conclude that non-invariant ap-
proaches are well-suited for capturing viewpoint variation for specific object recog-
nition since they preserve the fine-grained details. We follow with a discussion on
additional techniques that are necessary for addressing shape ambiguities under ar-
bitrary viewpoint.

2 Invariant methods

Invariant methods are based on representing structural relationships between view-
invariant shape primitives [4, 17]. Typically, these methods represent an object in
3D and reduce the problem of object detection to generating correspondences be-
tween a 2D image and a 3D model. To facilitate generating these correspondences,
significant work has gone into designing shape primitives [3] that can be differen-
tiated and detected solely from their perceptual properties in 2D while being rela-
tively independent of viewing direction. Research in perceptual organization [29]
and non-accidental properties (NAPs) [44] have demonstrated that certain proper-
ties of edges in 2D are invariant across viewpoint and unlikely to be produced by
accidental alignments of viewpoint and image features. These properties provide a
way to group edges into shape primitives and are used to distinguish them from each
other and from the background. Example of such properties are collinearity, sym-
metry, parallelism and co-termination as illustrated in Figure 2. After generating
candidate correspondences between 2D image and 3D model using these proper-
ties, the position and pose of the object can then be simultaneously computed.

In earlier approaches, 3D CAD models [13, 24, 46] were extensively studied
for view-invariant object recognition. For simple, polyhedral objects, CAD models
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consist of lines. However for complex, non-polyhedral objects, curves, surfaces and
volumetric models [25] are used. In general, obtaining a compact representation of
arbitrary 3D surfaces for recognition is very challenging. Biederman’s Recognition-
by-Components (RBC) [3] method decomposes objects into simple geometric prim-
itives (e.g., blocks and cylinders) called geons. By using geons, structural relation-
ships based on NAPs can be formulated for view-invariant detection.

Given geometric constraints from NAPs and an object model, the recognition
problem reduces to determining if there exists a valid object transformation that
aligns the model features with the image features. This correspondence problem is
classically formulated as search, and approaches such as interpretation trees [16,
17], Generalized Hough Transforms [17] and alignment [6, 23] are used.

Interpretation trees [16, 17] consider correspondences as nodes in a tree and se-
quentially identify nodes such that the feature correspondences are consistent with
the geometric constraints. If a node does not satisfy all the geometric constraints, the
subtree below that node is abandoned. Generalized Hough Transforms (GHT) [17],
on the other hand, cluster evidence using a discretized pose space. Each pair of
model and image feature votes for all possible transformations that would align them
together. Geometric constraints are combined with the voting scheme to restrict the
search of feasible transformations. Finally, alignment-based techniques [6, 23] start
with just enough correspondences to estimate a hypothesis transformation. Verifi-
cation is then used to search for additional model features satisfying the geometric
constraints. The hypothesis with the most consistent interpretation is chosen.

While CAD models and geons have been shown to work well in a number of
scenarios, automatically learning 3D models is a considerable challenge [5, 16].
In addition, geons are unable to approximate many complex objects. To address
these issues, recent approaches [26, 33] try to learn view-invariant features and non-
accidental properties directly from 2D data. A common paradigm is to align and
cluster primitives that have similar appearance across viewpoint. For example, the
Implicit Shape Model (ISM) [26] considers images patches as primitives and uses
Hough voting for recognition. To determine view-invariant features, images patches
from all viewpoints of the object are clustered. Each cluster corresponds to a locally
view-invariant patch and is associated with a probabilistic set of object centers. A
match to a cluster casts a probabilistic vote for its corresponding object positions.

While patches are simple to extract, those on the object boundary contain back-
ground clutter and can result in incorrect matches. A more direct approach to mod-
eling shape is to use contours. In the following, we use an approach we developed
to illustrate the challenges of learning and using view-invariant curves for object
detection. We follow the ISM approach and learn view-invariant curves by grouping
curves with similar appearance together. Unlike patches which have a fixed num-
ber of pixels, the length of curves varies across viewpoint. We maintain the same
number of points by using Coherent Point Drift [32] to generate point-to-point cor-
respondences between curves of nearby views. Given a sequence of object images,
we start with the curves of a single view and track the curve deformations by linking
the pairwise correspondences. As each frame is processed, a new track is initialized
if a curve fragment does not correspond to one that is already being tracked. Tracks
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Fig. 3: Modeling the deformation of curves across viewpoint. (a) Curve in red
tracked across viewpoint. The green arrow specifies the center and upright pose
of the object. (b) Aligned curves with their associated centers and pose in blue. (c)
Mean curve with deformations computed from aligned curves. (d) Global consis-
tency is difficult to enforce without storing the viewpoint information.

(a) Image (b) Canny edges (c) gPb

Fig. 4: Edge extraction. Current state-of-the-art methods in boundary detection
(gPb) are unable to stably extract interior contours which are essential for recog-
nizing specific objects. Canny, on the other hand, can detect these edges, but will
also fire on spurious texture edges.

are stopped if the number of unique points remaining is less than 50% of the original
curve. Each tracked curve is then represented by its mean and deformations, and is
associated with a probabilistic set of object centers as shown in Figure 3.

At recognition time, a modified Iterative Closest Point (ICP) [37] matches image
curves with model curves, accounting for the local deformations. If an image curve
matches a significant portion of the model curve, it casts a vote for all correspond-
ing poses. The critical issue with allowing local deformations is that it is difficult to
enforce global consistency of deformations without storing the constraints for each
viewpoint individually. Figure 3d shows an example where the local deformations
are valid but the global configuration is not consistent. If the constraints are de-
fined individually for each viewpoint, however, the view-invariance is lost and the
approach is equivalent to matching each view independently (i.e., non-invariant).

Another common issue with invariant approaches is that they rely on stable ex-
traction of shape primitives. This is a significant limitation since reliable curve ex-
traction and grouping [29] still proves to be a considerable challenge. While there
has been significant development in object boundary detection [1, 8], no single
boundary detector is able to extract all relevant curves. The Global Probability of
Boundary (gPb) detector, which is designed to ignore stochastic textures, often con-
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Fig. 5: Non-invariant methods create a template for each viewpoint of the object.

fuses interior contours with stochastic texture as seen in Figure 4. These interior
edges provide distinctiveness that is necessary for recognizing specific objects.

Due to the challenges of creating 3D models, extracting shape primitives and
learning geometric constraints from data, many recent approaches have moved away
from using invariant shape primitives. In the next section, we discuss how non-
invariant, view-based methods are able to address the above issues and why they are
more effective for specific object recognition under arbitrary viewpoint.

3 Non-invariant (view-based) methods

Non-invariant methods represent an object under multiple viewpoints by creating a
“view-based” template [35] for each object view. Each template captures a specific
viewpoint, only allowing slight deformation from noise and minor pose variation.
Unlike invariant methods which define geometric constraints between pairs or sets
of shape primitives, non-invariant methods directly fix both the local and global
shape configurations. To combine the output of view-based templates, the scores
from each view are normalized [30, 38] and non-maximal suppression is applied.

Non-invariant methods have a number of benefits over invariant ones. First, using
view-based templates bypasses the 3D model generation and allows the algorithm
to directly observe the exact projection of the object to be recognized. This has
the benefit of not approximating the shape with volumetric primitives (e.g., geons),
which can lose fine-grained details needed for recognizing specific objects. Sec-
ondly, template matching approaches can operate directly on low-level features and
do not require extraction of high-level shape primitives. Finally, many non-invariant
approaches achieve recognition performances on par or better than invariant ones,
while being relatively simple and efficient to implement. Recent results show that
they can be successfully applied to tasks such as robotic manipulation.

A number of methods exist for representing object shape from a single view.
These range from using curves and lines [11, 12, 39] to sparse edge features [18, 27]
and gradient histograms [7]. Methods which use curves and lines often employ 2D
view-invariant techniques, similar to the approaches described in Section 2, to re-
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duce the number of view samples needed. Interpretation trees [17], Generalized
Hough Transforms [17] and alignment techniques [6] which are used for 3D view-
invariance are similarly applied to 2D geometric constraints. However, this repre-
sentation suffers from the same limitations of using high-level shape primitives.

While some approaches use 2D view-invariance, others simply brute force match
all the possible viewpoints using low-level features. The Dominant Orientation Tem-
plate (DOT) method [19] considers the dominant orientation in each cell of a grid.
Starting with a single template of an arbitrary viewpoint, new templates are added
if the detection score using the previous templates becomes too low. By carefully
designing the algorithm for efficient memory access and computation, the approach
is able to recognize thousands of templates in near real-time. More recently, the
LINE2D [18] approach has demonstrated superior performance to DOT while main-
taining similar computation speeds. LINE2D represents an object by a set of sparse
edge points, each associated with a quantized gradient orientation. The similarity
measure between a template and image location is the sum of cosine orientation
differences for each point within a local neighborhood. While LINE2D works well
when objects are largely visible, Hsiao et al. [22] showed that considering only the
points which match the quantized orientations exactly is a much more robust met-
ric when there are occlusions. Finally, the popular Histogram of Oriented Gradients
(HOG) [7, 10] approach represents objects by a grid of gradient histograms.

While using low-level features avoids edge extraction, a drawback is the loss of
edge connectivity and structure. For example, the HOG descriptor is unable to dif-
ferentiate between a single line and many lines of the same orientation because their
descriptors would be similar. The LINE2D method matches each point individually,
resulting in high scoring false positives where neighboring edge points are not con-
nected. These drawbacks, however, are often outweighed by the benefit of operating
on low-level features and observing the exact projection of the object in the image.

An additional criticism of non-invariant methods is that they require a large
number of templates to sample the view space. For example, LINE2D requires
2000 templates per object. While this many templates may have resulted in pro-
hibitive computation times in the past, advances in algorithms [18, 19] and process-
ing power have demonstrated that template matching can be done very efficiently
(e.g., LINE2D and DOT are able to match objects at 10 frames per second). To in-
crease the scalability, template clustering and branch-and-bound [19] methods are
commonly used. In addition, templates are easily scanned in parallel and many can
be implemented efficiently on Graphics Processing Units (GPUs) [36].

4 Ambiguities

Regardless of whether invariant or non-invariant methods are used, shape recogni-
tion under arbitrary viewpoint has many inherent ambiguities. Allowing corners and
smooth contours to deform results in a wide range of contours that can match the
background, especially for simple shapes. Without additional information, introduc-
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Fig. 6: Stability. (a) In static environments, most objects rest on surfaces. Objects
detected in unstable poses can be down-weighted or filtered. We illustrate the use-
fulness of knowing the support surface orientation with an example of finding im-
age ellipses that correspond to circles parallel to the ground in 3D. These circles
are commonly found on household objects. (b) Raw ellipse detections. (c) Ellipse
detections remaining after filtering with the ground normal.

More likely occlusion Less likely occlusion

Fig. 7: Occlusion reasoning. Objects in natural scenes are often occluded by objects
resting on the same surface. This information can be used to rank the occlusion con-
figurations of an object. (a) The left cup has a more likely occlusion configuration
than the right cup. (b) Example false detection window of a cup without occlusion
reasoning. (c) Model points that match well to the edgemap are shown in red and
those that match poorly are shown in blue. The occlusion configuration is unlikely.

ing view-invariance in shape recognition produces many improbable false positives
that align very well to the image.

Objects in real world environments, however, do not appear in arbitrary configu-
rations. Especially when recognizing multiple objects simultaneously, the relation-
ships between object poses are constrained. An approach used in many scenarios
is to determine the supporting plane [20] of the objects, such as road in outdoor
scenes or table for indoor scenes. Given the supporting surface, the possible stable
configurations (Figure 6) of objects on the surface are drastically reduced. Object
hypotheses that are in unstable configurations can be filtered or down-weighted.
Other approaches, along these lines, reason about scene layout and object recogni-
tion together. Given a set of object hypotheses, the approach of [2] determines the
best object poses and scene layout to explain the image.

Most shape-based recognition approaches focus solely on finding locations with
good matches to the object boundary. However, not all object hypotheses with the
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Fig. 8: Region information is necessary for robust shape recognition. The false pos-
itive shown aligns well to the edgemap but the interior matches poorly. (a) Model
object. (b) False positive detection. (c) Zoomed in view of the false positive. (d)
Edge points matched on top of the edgemap (red is matched, blue is not matched).
(e) Activation scores of individual HOG cells [43]. Hotter color equals better match.

same match percentage are equally plausible (Figure 7). For example in natural
scenes, the bottom of an object is more likely to be occluded than the top [9]. Meth-
ods for occlusion reasoning [17, 34, 40] range from enforcing local coherency [14]
of regions that are inconsistent with object statistics [15, 31, 43] to using relative
depth ordering [42, 45] of object hypotheses. Most of these approaches, however,
require learning the occlusion structure for each view independently. Recently, our
results have shown that explicitly reasoning about 3D interactions of objects [22]
can be used to analytically represent occlusions under arbitrary viewpoint and sig-
nificantly improve shape-based recognition performance.

Finally, while regions with uniform texture are often ignored for recognizing
weakly-textured objects, our recent experiments show that they are actually very
informative. In Figure 8, the object shape aligns very well to the background, but the
texture-less object interior matches poorly. By combining both region and boundary
information, many high scoring false positives in cluttered scenes can be filtered.

5 Conclusion

Shape-based instance detection under arbitrary viewpoint is a challenging problem
and has many applications from robotics to augmented reality. Current approaches
for modeling viewpoint variation can roughly be divided into two main categories:
invariant and non-invariant models. Invariant models explicitly represent the de-
formations of view-invariant shape primitives, while non-invariant models create a
non-invariant, view-based template for each view. While invariant models provide
a unified representation of objects across viewpoint, they require generation of 3D
models and extraction of high level features which are challenges in themselves.
Non-invariant methods are able to bypass these issues by directly operating on low-
level features in 2D. They are also able to directly observe the 2D projection without
needing to approximate the 3D shape. Recent advances in algorithms and processing
power have demonstrated efficient template matching approaches which simultane-
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ously detect thousands of templates in near real-time. Since shape recognition under
arbitrary viewpoint introduces ambiguities that result in a large number of false pos-
itives, additional information such as surface layout estimation, occlusion reasoning
and region information are needed for robust recognition.
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