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Abstract

We introduce a metric between two distributions that we call the Earth Mover's Distance (EMD). The EMD
is based on the minimal cost that must be paid to transform one distribution into the other, in a precise sense.
We show that the EMD has attractive properties for content-based image retrieval. The most important
one, as we show, is that it matches perceptual similarity better than other distances used for image retrieval.
The EMD is based on a solution to the transportation problem from linear optimization, for which e�cient
algorithms are available, and also allows naturally for partial matching. It is more robust than histogram
matching techniques, in that it can operate on variable-length representations of the distributions that avoid
quantization and other binning problems typical of histograms. When used to compare distributions with
the same overall mass, the EMD is a true metric. In this paper we focus on applications to color and texture,
and we compare the retrieval performance of the EMD with that of other distances.

1 Introduction

Multidimensional distributions are often used in computer vision to describe and summarize di�erent fea-
tures of an image. For example, the one-dimensional distribution of image intensities describes the overall
brightness content of a gray-scale image, and a three-dimensional distribution can play a similar role for
color images. The texture content of an image can be described by a distribution of local signal energy over
frequency. These descriptors can be used in a variety of applications including, for example, image retrieval.

It is often advantageous to `compress' or otherwise approximate an original distribution by another
distribution with a more compact description. This yields important savings in storage and processing time,
and most importantly, as we will see, a certain perceptual robustness to the matching. Multidimensional
distributions are usually compressed by partitioning the underlying space into a �xed number of bins, usually
of a prede�ned size: the resulting quantized data structure is a histogram. However, often only a small
fraction of the bins in a histogram contain signi�cant information. For instance, when considering color, a
picture of a desert landscape contains mostly blue pixels in the sky region and yellow-brown pixels in the
rest. A �nely quantized histogram in this case is highly ine�cient. On the other hand, a multitude of colors
is a characterizing feature for a picture of a carnival in Rio, and a coarsely quantized histogram would be
inadequate. In brief, because histograms are �xed-size structures, they cannot achieve a balance between
expressiveness and e�ciency.

In contrast, we propose variable-size descriptions of distributions. In our signatures, as we call these
new descriptions, the dominant clusters are extracted from the original distribution and are used to form
its compressed representation. A signature is a set of the main clusters or modes of a distribution, each
represented by a single point (the cluster center) in the underlying space, together with a weight that
denotes the size of that cluster. Simple images have short signatures, complex images have long ones. Of
course, in some applications, �xed-size histograms may still be adequate, and can be considered as special
cases of signatures. Our measures of distance encompass both cases, since we de�ne them for signatures,
and signatures subsume histograms.

Given two distributions, represented as either histograms or signatures, it is often useful to de�ne a
quantitative measure of their dissimilarity, with the intent of approximating perceptual dissimilarity as well
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as possible. This is particularly important in image retrieval applications, but has fundamental implications
also for the understanding of texture discrimination and color perception. De�ning a distance between
two distributions requires �rst a notion of distance between the basic features that are aggregated into the
distributions. We call this distance the ground distance. For instance, in the case of color, the ground distance
measure dissimilaritybetween individual colors. Fortunately, color ground distance has been carefully studied
in the literature of psychophysics, and has led to measures like the CIE-Lab color space [30].

In this paper, we address the problem of lifting these distances from individual features to full distri-
butions. In other words, we want to de�ne a consistent measure of distance, or dissimilarity, between two
distributions of mass in a space that is itself endowed with a ground distance. For color, this means �nding
distances between image color distributions. For texture, we locally describe the texture content of a small
neighborhood in an image as distribution of energy in the frequency domain. The \lifted" distance is a
distance between distributions of such local descriptors over the entire images, regarded as distribution of
textures.

Mathematically, it would be convenient if these distribution distances were true metrics. Also, metric
distances lead to more e�cient data structures and search algorithms [4, 6]. Practically, it is crucial that
distances between distributions correlate with human perception. In this paper we strive to achieve both
goals. For the �rst we have proof, for the second we show experiments. We also would like these distances
to allow for partial matches when one distribution is compared to a subset of the other. For partial matches,
the distances we de�ne are not metric. Concerning this point, we refer to Tversky's discussion [28] of the
non-metric nature of perceptual distances.

We introduce a distance between two signatures that we call the Earth Mover's Distance 1 (EMD) .
This is a useful and exible metric distance, based on the minimal cost that must be paid to transform one
signature into the other, in a sense that will be made precise in section 4. The EMD is based on a solution
to the transportation problem [13] from linear optimization, for which e�cient algorithms are available. The
EMD has many desirable properties for image retrieval, as we will see. It is also more robust in comparison
to other histogrammatching techniques, in that it su�ers from no arbitrary quantization problems due to the
rigid binning of the latter. It allows for partial matching, and it can be applied to signatures with di�erent
sizes. When used to compare distributions that have the same overall mass, the EMD is a true metric.

Although the EMD is a general method for matching multidimensional distributions, in this paper we
focus on applications to color and texture images. In the next section, we introduce histograms and survey
some of the existing measures of dissimilarity and their drawbacks. Then, in sections 3 and 4, we introduce
the concepts of a signature and of the Earth Mover's Distance (EMD), which we apply to color and texture
in section 5. For color we compare the results of image retrieval using the EMD with the results obtained
with other metrics. For texture, a similar comparison is hard to make since other method cannot handle the
high-dimensional space that we use to represent texture. Instead we demonstrate the unique properties of
the EMD for texture-based retrieval. Section 6 concludes with a summary and plans for future work.

2 Previous Work

Image retrieval systems usually represent image features by multi-dimensional histograms. For example, the
color content of an image is de�ned by the distribution of its pixels in some color space. Texture features
are commonly de�ned by energy distributions in the spatial frequency domain [9, 2, 16]. Image database
are indexed by these histograms, and those images that have the closest histograms to that speci�ed in the
query are retrieved. For such a search, a measure of dissimilarity between histograms must be de�ned. In
this section we formally de�ne histograms, and discuss the most common histogram dissimilarity measures
that are used for image retrieval. In section 4 we de�ne the EMD. In addition to histograms, this distance
is well de�ned also for signatures de�ned in section 3. In section 5 we also compare the EMD with the other
methods surveyed below.

A histogram fhig is a mapping from a set of d-dimensional integer vectors i to the set of nonnegative
reals. These vectors typically represent bins (or their centers) in a �xed partitioning of the relevant region
of the underlying feature space, and the associated reals are a measure of the mass of the distribution that

1The name Earth Mover's Distance was suggested by Stol�
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falls into the corresponding bin. For instance, in a grey-level histogram, d is equal to one, the set of possible
grey values is split into N intervals, and hi is the number of pixels in an image that have a grey value in the
interval indexed by i (a scalar in this case).

Several measures have been proposed for the dissimilarity between two histograms H = fhig and K =
fkig. We divide them into two categories. The bin-by-bin dissimilarity measures only compare contents of
corresponding histogram bins, that is, they compare hi and ki for all i, but not hi and kj for i 6= j. The
cross-bin measures also contain terms that compare non-corresponding bins. To this end, cross-bin distances
make use of the ground distance dij, de�ned as the distance between the representative features for bin i and
bin j. Predictably, bin-by-bin measures are more sensitive to the position of bin boundaries.

2.1 Bin-by-bin dissimilarity measures

In this category only pairs of bins in the two histograms that have the same index are matched. The
dissimilarity between two histograms is a combination of all the pairwise di�erences. A ground distance is
used by these measures only implicitly and in an extreme form: features that fall into the same bin are close
enough to each other to be considered the same, and those that do not are too far apart to be considered
similar. In this sense, bin-by-bin measures imply a binary ground distance with a threshold depending on
bin size.

Minkowski-form distance:

dLr(H;K) =

 X
i

jhi � kij
r

!1=r
:

The L1 distance is often used for computing dissimilarity between color images [27]. Other common
usages are L2 and L1. In [26] it was shown that for image retrieval the L1 distance results in many
false negatives because neighboring bins are not considered.

Histogram intersection:

d\(H;K) = 1�

P
imin(hi; ki)P

i ki

:

The histogram intersection [27] is attractive because of its ability to handle partial matches when the
areas of the two histograms are di�erent. It is shown in [27] that when the areas of the two histograms
are equal, the histogram intersection is equivalent to the (normalized) L1 distance.

Kullback-Leibler divergence and Je�rey divergence: The Kullback-Leibler (K-L) divergence [14] is
de�ned as:

dKL(H;K) =
X

i

hi log
hi

ki

:

From the information theory point of view, the K-L divergence has the property that it measures how
ine�cient on average it would be to code one histogram using the other as the code-book [7]. However,
the K-L divergence is non-symmetric and is sensitive to histogram binning. The empirically derived
Je�rey divergence is a modi�cation of the K-L divergence that is numerically stable, symmetric and
robust with respect to noise and the size of histogram bins [20]. It is de�ned as:

dJ (H;K) =
X

i

�
hi log

hi

mi

+ ki log
ki

mi

�
;

where mi =
hi+ki

2
.

�2 statistics:

d�2(H;K) =
X

i

(hi �mi)
2

mi

;
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where mi =
hi+ki

2
. This distance measures how unlikely it is that one distribution was drawn from the

population represented by the other.

These dissimilarity de�nitions can be appropriate in di�erent areas. For example, the Kullback-Leibler
divergence is justi�ed by information theory and the �2 statistics by statistics. however, these measures do
not necessarily match perceptual similarity well. The major drawback of these measures is that they account
only for the correspondence between bins with the same index, and do not use information across bins. This
problem is illustrated in �gure 1(a) which shows two pairs of one-dimensional gray-scale histograms. For
instance, the L1 distance between the two histograms on the left is larger than the L1 distance between the
two histograms on the right, in contrast to perceptual dissimilarity. The desired distance should be based
on correspondences between bins in the two histograms and on the ground distance between them as shown
in part (c) of the �gure.

Another drawback of bin-by-bin dissimilarity measures is their sensitivity to bin size. A binning that is
too coarse will not have su�cient discriminative power, while a binning that is too �ne will place similar
features in di�erent bins which will never be matched. On the other hand, cross-bin dissimilarity measures,
described next, always yield better results with smaller bins.

2.2 Cross-bin dissimilarity measures

When a ground distance that matches perceptual dissimilarity is available for single features, incorporat-
ing this information into the dissimilarity measure results in perceptually more meaningful dissimilarity
measures.

Quadratic-form distance: this distance was suggested for color based retrieval in [17]:

dA(H;K) =
q
(h� k)TA(h� k) ;

where h and k are vectors that list all the entries in H and K.

Cross-bin information is incorporated via a similarity matrix A = [aij] where aij denote similarity
between bins i and j. Here i and j are sequential (scalar) indices into the bins.

For our experiments, we followed the recommendation in [17] and used aij = 1� dij=dmax where dij is
the ground distance between bins i and j of the histogram, and dmax = max(dij). Although in general
the quadratic-form is not a true distance, it can be shown that with this choice of A the quadratic-form
is indeed a distance.

The quadratic-form distance does not enforce a one-to-one correspondence between mass elements in
the two histograms: The same mass in a given bin of the �rst histogram is simultaneously made to
correspond to masses contained in di�erent bins of the other histogram. This is illustrated in �gure 1(b)
where the quadratic-form distance between the two histograms on the left is larger than the distance
between the two histograms on the right. Again, this is clearly at odds with perceptual dissimilarity.
The desired distance here should be based on the correspondences shown in part (d) of the �gure.

Similar conclusions were obtained in [26], where it was shown that using the quadratic-form distance
in image retrieval results in false positives, because it tends to overestimate the mutual similarity of
color distributions without a pronounced mode.

Match distance:

dM (H;K) =
X
i

jĥi � k̂ij ;

where ĥi =
P

j�i hj is the cumulative histogram of fhig, and similarly for fkig.

The match distance [24, 29] between two one-dimensional histograms is de�ned as the L1 distance
between their corresponding cumulative histograms. For one-dimensional histograms with equal areas,
this distance is a special case of the EMD which we present in section 4 with the important di�erence
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Figure 1: Examples where the L1 distance (as a representative of bin-by-bin dissimilarity measures) and
the quadratic-form distance do not match perceptual dissimilarity. Assuming that histograms have unit
mass, (a) dL1

(h1;k1) = 2, dL1
(h2;k2) = 1. (b) dA(h1;k1) = 0:1429, dA(h3;k3) = 0:0893. Perceptual

dissimilarity is based on correspondence between bins in the two histograms. Figures (c) and (d) show the
desired correspondences for (a) and (b) respectively.

that the match distance cannot handle partial matches. The match distance does not extend to higher
dimensions because the relation j � i is not a total ordering in more than one dimension, and the
resulting arbitrariness causes problems.

Kolmogorov-Smirnov distance:

dKS(H;K) = max
i
(jĥi � k̂ij) :

Again, ĥi and k̂i are cumulative histograms.

The Kolmogorov-Smirnov distance is a common statistical measure for unbinned distributions. Simi-
larly to the match distance, it is de�ned only for one dimension.

Parameter-based distances: These methods �rst compute a small set of parameters from the histograms,
either explicitly or implicitly, and then compare these parameters. For instance, in [26] the distance
between distributions is computed as the sum of the weighted distances of the distributions' �rst three
moments. It is unclear how to tune the weights of the di�erent moments. Moreover, the resulting
measure is not a metric distance. In [15], textures are compared based on measures of their periodicity,
directionality, and randomness, while in [16] texture distances are de�ned by comparing their means
and standard deviations in a weighted-L1 sense.

Additional dissimilarity measures for image retrieval are evaluated and compared in [25, 20].
An example of color-based image retrieval using di�erent dissimilaritymeasures is shown in �gure 2. The

color content of the leftmost image of a red car was used as the query, and the eight images with the most
similar color contents were returned and displayed in order of increasing distance for di�erent histogram
dissimilarity measures. The details about the extraction of the color histograms are given in section 5.1.
Although, in general, semantic interpretation should not be used to judge color similarity of images, notice
that the di�erent methods returned di�erent number of red cars. A more thorough comparison of the
di�erent dissimilarity measures is given in section 5.1.
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1) 0.00
29020.jpg

2) 0.53
29077.jpg

3) 0.61
157090.jpg

4) 0.61
9045.jpg

5) 0.63
197037.jpg

6) 0.67
20003.jpg

7) 0.70
81005.jpg

8) 0.70
160053.jpg

(a)

1) 0.00
29020.jpg

2) 0.26
29077.jpg

3) 0.43
29017.jpg

4) 0.61
29005.jpg

5) 0.72
197037.jpg

6) 0.73
77047.jpg

7) 0.75
197097.jpg

8) 0.77
20003.jpg

(b)

1) 0.00
29020.jpg

2) 0.11
29077.jpg

3) 0.19
157090.jpg

4) 0.21
197037.jpg

5) 0.21
81005.jpg

6) 0.21
29017.jpg

7) 0.22
197058.jpg

8) 0.22
77045.jpg

(c)

1) 0.00
29020.jpg

2) 0.06
29077.jpg

3) 0.09
29005.jpg

4) 0.10
96035.jpg

5) 0.10
1033.jpg

6) 0.10
25013.jpg

7) 0.10
20003.jpg

8) 0.11
140075.jpg

(d)

1) 0.00
29020.jpg

2) 8.16
29077.jpg

3) 12.23
29005.jpg

4) 12.64
29017.jpg

5) 13.82
20003.jpg

6) 14.52
53062.jpg

7) 14.70
29018.jpg

8) 14.78
29019.jpg

(e)

Figure 2: The eight closest images to the leftmost image of a red car. The queries were processed by a
color-based image retrieval system using di�erent histogram dissimilarity measures. (a) L1 distance. (b)
Je�rey divergence. (c) �2 statistics. (d) Quadratic-form distance. (e) EMD.

6



3 Histograms vs Signatures

In section 2 we de�ned a histogram as deriving from a �xed partitioning of the domain of a distribution.
Of course, even if bin sizes are �xed, they can be di�erent in di�erent parts of the underlying feature space.
even so, however, for some images often only a small fraction of the bins contain signi�cant information,
while most others are hardly populated. A �nely quantized histogram is highly ine�cient in this case. On
the other hand, for images that contain a large amount of information, a coarsely quantized histogram would
be inadequate. Similar problems arise even when adaptive histograms are used. In brief, because histograms
are �xed-size structures, they cannot achieve a good balance between expressiveness and e�ciency.

A signature fsj = (mj; wj)g, on the other hand, represents a set of feature clusters. Each cluster is
represented by its mean (or mode) mj, and by the fraction wj of pixels that belong to that cluster. The
integer subscript j ranges from one to a value that varies with the complexity of the particular image. While
j is simply an integer, the representative mj is a d-dimensional vector. The size of the clusters in the feature
space should be limited and not exceed the extent of what is perceived as the same, or very similar, feature.

Since the de�nition of cluster is open, a histogram fhig can be viewed as a signature fsj = (mj; wj)g in
which the vectors i index a set of clusters de�ned by a �xed a priori partitioning of the underlying space. If
vector i maps to cluster j, the point mj is the central value in bin i of the histogram, and wj is equal to hi.

We show in section 5.1 that representing the content of an image database by signatures leads to better
results for queries than with histograms. This is the case even when the signatures contain on the average
signi�cantly less information than the histograms. By \information" here we refer to the minimal number
of bits needed to store the signatures and the histograms.

4 The Earth Mover's Distance

The ground distance between two single perceptual features can be found by psychophysical experiments.
For example, perceptual color spaces were devised in which the Euclidean distance between two single
colors approximately matches human perception of the di�erence between those colors. This becomes more
complicated when sets of features, rather than single colors, are being compared. In section 2 we showed the
problems caused by dissimilarity measures that do not handle correspondences between di�erent bins in the
two histograms. This correspondence is key to a perceptually natural de�nition of the distances between sets
of features. This observation led to distance measures based on bipartite graph matching [18, 31], de�ned as
the minimum cost of matching the bins of two histograms. In this section we take this approach and extend
it to derive the Earth Mover's Distance (EMD) as a general metric between signatures for image retrieval.

Intuitively, given two distributions, one can be seen as a mass of earth properly spread in space, the other
as a collection of holes in that same space. Then, the EMD measures the least amount of work needed to �ll
the holes with earth. Here, a unit of work corresponds to transporting a unit of earth by a unit of ground
distance. Examples of ground distances are given in section 5.

Computing the EMD is based on a solution to the well-known transportation problem [13] a.k.a. the
Monge-Kantorovich problem [21]. Suppose that several suppliers, each with a given amount of goods, are
required to supply several consumers, each with a given limited capacity. For each supplier-consumer pair,
the cost of transporting a single unit of goods is given. The transportation problem is then to �nd a least-
expensive ow of goods from the suppliers to the consumers that satis�es the consumers' demand. Signature
matching can be naturally cast as a transportation problem by de�ning one signature as the supplier and
the other as the consumer, and by setting the cost for a supplier-consumer pair to equal the ground distance
between an element in the �rst signature and an element in the second. Intuitively, the solution is then the
minimum amount of \work" required to transform one signature into the other.

This can be formalized as the following linear programming problem: Let P = f(p1; wp1); : : : ; (pm; wpm)g
be the �rst signature with m clusters, where pi is the cluster representative and wpi is the weight of the
cluster; Q = f(q1; wq1); : : : ; (qn; wqn)g the second signature with n clusters; andD = [dij] the ground distance
matrix where dij is the ground distance between clusters pi and qj.
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We want to �nd a ow F = [fij ], with fij the ow between pi and qj, that minimizes the overall cost

WORK(P;Q;F) =
mX
i=1

nX
j=1

dijfij ;

subject to the following constraints:

fij � 0 1 � i � m; 1 � j � n (1)
nX
j=1

fij � wpi 1 � i � m (2)

mX
i=1

fij � wqj 1 � j � n (3)

mX
i=1

nX
j=1

fij = min(
mX
i=1

wpi ;

nX
j=1

wqj ) ; (4)

Constraint (1) allows moving \supplies" from P to Q and not vice versa. Constraint (2) limits the amount
of supplies that can be sent by the clusters in P to their weights. Constraint (3) limits the clusters in Q
to receive no more supplies than their weights; and constraint (4) forces to move the maximum amount of
supplies possible. We call this amount the total ow. Once the transportation problem is solved, and we
have found the optimal ow F, the earth mover's distance is de�ned as the work normalized by the total
ow:

EMD(P;Q) =

Pm
i=1

Pn
j=1 dijfijPm

i=1

Pn
j=1 fij

;

The normalization factor is the total weight of the smaller signature, because of constraint (4). this factor is
needed when the two signatures have di�erent total weight, in order to avoid favoring smaller signatures. In
general, the ground distance dij can be any distance and will be chosen according to the problem at hand.
Examples are given in section 5.

Thus, the EMD naturally extends the notion of a distance between single elements to that of a distance
between sets, or distributions, of elements. The advantages of the EMD over previous de�nitions of distri-
bution distances should now be apparent. First, the EMD applies to signatures, which subsume histograms
as shown in section 3. The greater compactness and exibility of signatures is in itself an advantage, and
having a distance measure that can handle these variable-size structures is important. Second, the cost of
moving \earth" reects the notion of nearness properly, without the quantization problems of most current
measures. Even for histograms, in fact, items from neighboring bins now contribute similar costs, as appro-
priate. Third, the EMD allows for partial matches in a very natural way. This is important, for instance, in
order to deal with occlusions and clutter in image retrieval applications, and when matching only parts of
an image. Fourth, if the ground distance is a metric and the total weights of two signatures are equal, the
EMD is a true metric, which allows endowing image spaces with a metric structure. A proof of this is given
in appendix A.

Of course, it is important that the EMD can be computed e�ciently, especially if it is used for image
retrieval systems where a quick response is required. In addition, retrieval speed can be increased if lower
bounds to the EMD can be computed at a low expense. These bounds can signi�cantly reduce the number
of EMDs that actually need to be computed by pre�ltering the database and ignoring images that are too
far from the query. Fortunately, e�cient algorithms for the transportation problem are available. We used
the transportation-simplex method [12], a streamlined simplex algorithm that exploits the special structure
of the transportation problem. A good initial basic feasible solution can drastically decrease the number of
iterations needed. We compute the initial basic feasible solution by Russell's method [23].

To measure the time-performance of our EMD implementation, we generated random signatures of sizes
that range from1 to 100. For each size we generated 100 pairs of random signatures and computed the average
CPU time to compute the EMD between the pairs. The results are shown in �gure 3. This experiment was
done on a SGI Indigo 2 with a 195MHz CPU. For non-random signatures, the running times are usually
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lower because a small fraction of the clusters in a signature typically captures most of the signatures' weight.
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Figure 3: A log-log plot of the average computation time for random signatures as a function of signature
size.

An easy-to-compute lower bound for the EMD between signatures with equal total weights is the distance
between their centers of mass as long as the ground distance is induced by a norm. A proof of this is given in
appendix B, along with the de�nition of norm-induced distance. Using this lower bound in our color-based
image retrieval system signi�cantly reduced the number of EMD computations. Figure 4 shows the average
number of EMD computations per query as a function of the number of images retrieved. This graph was
generated by averaging over 200 random queries on an image database with 20,000 images using the color-
based image retrieval system described in section 5.1. The fewer images are are returned by a query, the
fewer EMD need to be compared thanks to our lower bound, which guarantees that no image is missed as a
result of the saving in computation.
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Figure 4: A log-log plot of the number of EMDs as a function of the number of images retrieved. The
database contains 20,000 images.

An e�ciency advantage of signatures over histograms is that distributions de�ned in high-dimensional
feature spaces can be matched more e�ciently. This is because the only computational factor is the number
of signi�cant clusters in the distributions and not the dimension of the underlying space, although sometimes
the two correlate. The EMD is also robust to the clustering algorithm that is used to �nd the signi�cant
clusters. If a cluster in some signature is split into smaller fragments, the EMD will consider them as similar.
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5 Examples

In this section we show a few examples of application of the earth mover's distance in the areas of color and
texture analysis. Because of how the human vision system is built, color lives naturally in a three dimensional
space. Color distributions, then, can describe the color contents of entire images. A color example is given
in section 5.1. Combining the color of the pixels together with their position in the image leads to a distance
that considers the layout similarity together with the color similarity of the images. This is discussed in
section 5.2.

For texture, the situation is more complex. A texture can be described locally as a mixture of two-
dimensional sinusoidal signals at di�erent scales and orientations. Thus, the responses of bank of �lters,
centered at a pixel, can be seen as a distribution of signal energy and phase in the frequency domain which
is the space of all two-dimensional sinusoidal signals. In keeping with most of the literature on texture, we
ignore phase information. At a higher level, the texture content of a full image that might contain multiple
textures can be seen as a distribution of such two-dimensional distributions. De�ning a ground distance
between the local representations of texture leads to an EMD between images of textures. Examples of
distance computations between images with multiple textures are given in section 5.3.

5.1 Color Distributions

For the computation of the earth mover's distance between color images, we use Euclidean distance in the
CIE-Lab color space [30] as the underlying ground distance between individual colors. This color space
is expressly designed so that short Euclidean distances correlate strongly with human color discrimination
performance.

We performed our color-based retrieval on a collection of 20,000 color images from the Corel Stock Photo
Library. To compute the signature of a color image, we �rst slightly smooth each band of the image's RGB
representation in order to reduce possible color quantization and dithering artifacts. We then transform the
image into the CIE-Lab color space using D65 as the reference white [19]. At this point each image implies
a distribution of points in the three-dimensional CIE-Lab color space where a point corresponds to a pixel
in the image. We coalesce this distribution into clusters of similar colors (25 units in any of the L; a; b axes).
Because of the large number of images to be processed in typical database applications, clustering must
be performed e�ciently. To this end, we devised a novel two-stage algorithm based on a simple k-d tree
[1] where the splitting rule is to simply divide an interval into two equal sub-intervals. In the �rst phase,
approximate clusters are found by excessive subdivisions stopping when the cells become smaller than the
allowed cluster size. Since by this method clusters might be split over few cells, we use a second phase in
order to recombine them. This is done by performing another k-d tree clustering of the cluster centroids
from the �rst phase, after shifting the space coordinates by one half of the minimal allowed cell size (25
units). Each new cluster contributes a pair (p; wp) to the signature representation of the image where p is
the average color of the cluster, and the corresponding weight wp is the fraction of image pixels that are in
that cluster. At this point, we remove clusters with insigni�cant weights (less than 0.1%). In our database,
the average signature has 8.8 clusters.

We implemented a color-based image retrieval system that uses the EMD on color signatures 2. Although
our system works remarkably well on color signatures, in order to compare the EMD to the histogram
dissimilarity measures described in section 2 we also computed histograms for all the images in the database.
We ran two experiments, one on color histograms with coarse binning, and one with �ne binning. In the
�rst experiment, we divided the CIE-Lab color space into �xed-size bins of size 25� 25� 25. This quantized
the color space into 4 bins in the L channel and 8 bins in both the a and the b channels, for a total of 256
bins. However, most of these bins are always empty due to the fact that valid RGB colors can map only to
a subset of this CIE-Lab space. In fact, only 130 bins can have non-zero values. Our histograms then have
130 bins. After thresholding away bins with insigni�cant weights (less than 0.1%), the average histogram
has 15.3 non-zero bins. Notice that the amount of information contained in the signatures is comparable to
that contained in the histograms.

2A demo of our color-based image retrieval can be found at http://vision.stanford.edu/~rubner/demo
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In our second experiment, we divided the CIE-Lab color space into �xed-size bins of size 12:5�12:5�12:5.
This resulted in a total of 2048 bins of which only 719 can possibly have non zero values. Over our 20,000-
image database the average �ne histogram has 39 non-zero bins. Clearly, the amount of information in the
average signature is now much smaller than that in these �ner histograms. Nevertheless, we claim that even
with less information, signatures result in better retrieval precision than histograms.

The di�culty of establishing ground truth makes it hard to evaluate the performance of an image retrieval
system. To evaluate the precision of a query, all the images which are perceived to have similar color content
to the query should be taken into account. Evaluating the performance of retrieval systems is beyond the
scope of this paper. Our goal is rather to compare the EMD to the other dissimilarity measures described
in section 2. For that purpose we conducted a few experiments where we created a common ground truth
on which we measured the performance of the di�erent methods.

In our �rst experiment, we manually identi�ed 75 images of red cars in the database and marked them
as relevant. From this set we chose the ten \good" images that are shown at the top of �gure 5. In these ten
images the red car had a Green/Gray background, was relatively big and not obscured by the background (for
example, using an image with a small red car in front of a sunset is likely to return images of sunsets rather
that images of red cars). We performed ten queries using a di�erent \good" car every time. An example
of such a query is shown in �gure 2. The average number of relevant images for the di�erent dissimilarity
measures as a function of the number of images retrieved is shown in �gure 5(bottom) and 5(middle) for the
coarse and �ne histograms respectively. The EMD that was computed on the histograms outperformed the
other histogram-based methods, and the EMD that was computed on the signatures performed best.

In this experiment, the colors of the cars are very similar in all the relevant images while the colors of
the backgrounds have more variation. Although other images that do not have cars in them might match
the color contents of the query images better, we still expect some of the cars to be retrieved when a large
number of images is returned by the system.

The second experiment is an example where both the colors of the objects and the colors of the back-
grounds are similar for all the relevant images. This experiment was done with the relevant images being
a set of 157 images of brown horses in green �elds. Again 10 \good" images of horses (�gure 6, top) were
used for the query, with the results shown in �gure 6(middle) and 6(bottom) for the coarse and �ne his-
tograms respectively. Here again the EMD that was computed on the signatures performed best. Among the
histogram-based methods, in the experiment that used the coarse histograms, both the Je�rey divergence
and the �2 statistics outperformed the EMD. In the experiment that used the �ne histograms, the EMD
outperformed all the other measures. This can be explained by the fact that, for coarser histograms, the
ground distance is computed between more distant bin centers, and therefore becomes less meaningful. We
recall that only small Euclidean distances in CIE-Lab space are perceptually meaningful. On the other
hand, bin-by-bin distances break down as the histograms get �ner, because similar features are split among
di�erent bins.

5.2 Joint Distribution of Color and Position

In many cases, global color distributions that ignore the actual positions of the colors in the image are not
su�cient for good retrieval. For example, consider the following two color images: In the �rst, there are blue
skies on top of a green �eld, while in the other there is a blue lake below green tree-tops. Although the color
distributions might be very similar, the position of the colors in the image is very di�erent and may have to
be taken into account by the query. This can be achieved by modifying the color distance in section 5.1 as
follows: Instead of using the three-dimensional CIE-Lab color space, we use a �ve-dimensional space whose
�rst three dimensions are the CIE-Lab color space, and the other two are the (x; y) position of each pixel.
We normalize the image coordinates to be in the range of 0 to 100, and use the same clustering algorithm
as used in section 5.1. The average signature size in our 20,000 image database is now 18.5.

The ground distance is now de�ned as

�
(�L)2 + (�a)2 + (�b)2 + �

�
(�x)2 + (�y)2

�� 1
2 :

The parameter � de�nes the importance of the color positions relative to the color values. Figure 7 shows the
e�ect of position information where the leftmost image of a skier was used as the query. Part (a) shows the
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Figure 5: Ten images of red cars (top) and the average number of relevant images, for the di�erent dis-
similarity measures, that were returned by using the ten images as the queries for the histograms (middle)
and �ne (bottom) histograms. The results obtained by using signatures is also shown in the two graphs for
reference.
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Figure 6: Ten images of horses (top) and the average number of relevant images, for the di�erent dissimilarity
measures, that were returned by using the ten images as the queries for the coarse (middle) and �ne (bottom)
histograms. The results obtained by using signatures is also shown in the two graphs for reference.
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6 best matches when position information was ignored (� = 0). Part (b) uses position information (� = 0:5).
Exact color matches are somewhat compromised in order to get more similar positional layouts.

1) 0.00
61095.jpg

2) 9.23
61041.jpg

3) 9.44
47171.jpg

4) 10.84
60062.jpg

5) 10.84
60010.jpg

6) 10.92
111061.jpg

(a)

1) 0.00
61095.jpg

2) 15.19
60022.jpg

3) 16.28
60010.jpg

4) 16.79
60064.jpg

5) 17.19
61041.jpg

6) 17.73
60016.jpg

(b)

Figure 7: Using the leftmost image of a skier as the query. The six best matches without position information
(a) and with position information (b).

5.3 Texture

While color is a purely point wise property of images, texture involves a notion of spatial extent: a single
point has no texture. If texture is de�ned in the frequency domain, the texture information of a point in
the image is carried by the frequency content of a neighborhood of it. Gabor functions are commonly used
in texture analysis to capture this information (e.g. [3, 9, 16]) because they are optimally localized in both
the spatial and frequency domains [11]. There is also strong evidence that simple cells in the primary visual
cortex can be modeled by Gabor functions tuned to detect di�erent orientations and scales on a log-polar
grid [8].

In this paper we used the Gabor �lter dictionary that was derived in [16] with four scales and six
orientations. Applying these Gabor �lters to an image results for every image pixel in a four by six array
of numbers which can be seen also as a 24 dimensional vector. In order to be able to treat all the Gabor
responses from the di�erent scales in a similar way, we need to appropriately normalize the vector. Unlike [16],
who normalizes each feature in the vector by the standard deviation of the respective feature over the entire
database, we normalize the feature by the radial frequency f of the corresponding Gabor �lter. This follows
[10] who shows that the magnitude of the power spectra of natural images, falls as 1=f , suggesting that cells in
the visual pathway are likely to follow this pattern. Empirically, the two methods yield similar normalization
factors. In principle, a normalization that is based on the standard deviations requires the knowledge of the
entire database and will overemphasize features that are dominated by noise. The normalized texture vector
is our texture feature. Examples of texture features are given in Figure 8.

The texture content of an entire image is represented by a distribution of texture features. In general,
this distribution will be simple for images of one uniform texture, and more complex for images with multiple
textures such as natural images. To make the representation more compact, we �nd the dominant clusters
in the 24 dimensional space. This is done using the same clustering algorithm described in section 5.1. The
resulting set of cluster centers together with the cluster weights is the texture signature.

We constructed a database of 1744 texture patches, by dividing each of 109 textures from the Brodatz

14



Figure 8: Texture features. (left) Texture patches from the Brodatz album [5]. (right) The average Gabor
responses over the whole texture patch. The Gabor �lter bank consists of four scales and six orientations.
The top texture (Fur, D93) has one dominant orientation �ne scales. The bottom texture (Hand-woven
oriental rattan, D64) has two dominant orientations, mostly at coarse scales.

album [5]3, into 4 by 4 non-overlapping patches. Every patch is 128 by 128 pixels. After the clustering
process, the average size of the texture signatures was 12 clusters.

In order to use the EMD on our texture signatures, we have to de�ne a ground distance. A natural
ground distance is to consider the texture features as a distribution in a two-dimensional space: 4 scales by
6 orientations, and de�ne a low-level EMD that will serve as the ground distance of the high-level one. This
low-level EMD is discussed in [22]. For image retrieval, this two-level EMD approach is too slow, so we use
the L1-distance between the texture features as an approximation for the low-level EMD. This is reasonable,
because the quantization of the two-dimensional space is very coarse (4 scales and 6 orientations): The fact
that the L1-distance does not consider neighboring bins is justi�ed here, since neighboring bins are not too
similar - they are one octave apart in scale and 30 degrees apart in orientation.

Having de�ned texture signatures and a ground distance between them, we can now use the EMD to
retrieve images with textures. Figure 9 shows two examples of retrieving texture patches by using a given
texture as the query. Notice that the full distribution in the Gabor space is used. Other methods for texture
similarity that are based on histograms work e�ectively only on the marginals [16, 20]. This di�erence makes
it hard to compare the EMD with the other similarity measures described in section 2.

An important advantage of the EMD over other measures for texture similarity is its ability to handle
images that contain more than one texture without �rst segmenting the images as needed when using other
measures. Using the EMD for partial matches can �nd images that contain speci�c textures. Figure 10
shows an example of a partial query. Here we added images with compositions of textures to our texture
database. The query was 20% of the texture in part (a) and 80% \don't care". The best matches are shown
in part (b) with the 16 patches from the same texture at the beginning followed by all the compositions that
contain some part of the queried texture. We emphasize again that no segmentation was performed.

Figure 11 shows an example of texture-based image retrieval on natural images. We created a database
of 250 images of animals from the Corel Photo Collection with zebras in 25 of the images. From the image
of zebra in part (a) we cropped a block with the zebra's stripe pattern as shown in part (b), and asked for

3The full Brodatz album consists of 112 textures. We used only the 109 textures that were used by [16] in order to be able
to compare results from both methods.
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(a)

(b)

Figure 9: Texture queries. The �rst image in each of the two parts was used as the query. (a) Co�ee beans
(D75). All the 16 patches from the same texture were returned �rst. (b) Lace (D41). Here, 15 out of the 16
texture patches are in the top 18 matches.

images with at least 20% of this texture. The 8 best matches are shown in part (c) ranked by their similarity
to the query.

6 Conclusions

The earth mover's distance is a general and exible metric and has desirable properties for image retrieval.
It allows for partial matches, and it can be applied to variable-length representations of distributions. It can
be computed e�ciently, and lower bounds are readily available for it. Because of these advantages, both
conceptual and computational, we believe that the EMD can be of use both for understanding distributions
related to vision problems, as exempli�ed by our case studies with color and texture, and as a fundamental
element of image retrieval systems. Comparisons with other dissimilarity measures show that the EMD
matches perceptual dissimilarity better.

Our analysis of texture similarity in particular has brought forth a number of interesting open problems.
For instance, how can the distance between two signatures be computed if either of them is allowed to
undergo a transformation from a prede�ned group at no cost? An answer to this question would lead to a
more direct approach to the issue of invariance when comparing textures or other features.

Finally, it would be interesting to apply the earth mover's distance to other vision problems such as
classi�cation and recognition based on other types of visual cues. In addition, we surmise that the EMD
may be a useful metric also for problems outside the realm of computer vision.
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(a)

(b)

Figure 10: Texture partial query. The query was 20% of the texture in part (a) and 80% \don't care". (b)
The best matches: the 16 patches from the same texture followed by all the compositions that contain some
part of the queried texture. No segmentation was performed.
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A Metric Proof

In this appendix we prove that when the signatures have equal weights and the ground distance d(�; �) is
metric, the EMD is a true metric. Non-negativity and symmetry hold trivially in all cases, so we only need
to prove that the triangle inequality holds. Without loss of generality we assume here that the total sum
of the ows is 1. Let ffijg be the optimal ow from P to Q and fgijg be the optimal ow from Q to R.
Consider the ow P 7! Q 7! R. We now show how to construct a feasible ow from P to R that represents
no more work than that of moving mass optimally from P to R through Q. Since the EMD is the least
possible amount of feasible work, this construction proves the triangle inequality.
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The largest weight that moves as one unit from pi to qj and from qj to rk de�nes a ow which we call
bijk where i, j and k correspond to pi, qj and rk respectively. Clearly

P
k bijk = fij , the ow from P to Q,

and
P

i bijk = gij, the ow from Q to R. We de�ne

hik
4
=
X
j

bijk

to be a ow from pi to rk. This ow is a feasible one because it satis�es the constraints (1)-(4) in section 4.
Constraint (1) holds since by construction bijk > 0. Constraints (2) and (3) hold becauseX

k

hik =
X
j;k

bijk =
X
j

fij = wpi ;

and X
i

hik =
X
i;j

bijk =
X
j

gjk = wrk ;

and constraint (4) holds because the signatures have equal weights. Since EMD(P;R) is the minimal ow
from P to R, and hik is some legal ow from P to R,

EMD(P;R) �
X
i;k

hikd(pi; rk)

=
X
i;j;k

bijkd(pi; rk)

�
X
i;j;k

bijkd(pi; qj) +
X
i;j;k

bijkd(qj; rk) (because d(�; �) is metric)

=
X
i;j

fijd(pi; qj) +
X
j;k

gjkd(qj; rk)

= EMD(P;Q) + EMD(Q;R) :

B Lower Bound Proof

Here we show that when the ground distance is induced by the norm k �k, the distance between the centroids
of two signatures is a lower bound on the EMD between them. Let pi and qj be the coordinates of cluster i in
the �rst signature, and cluster j in the second signature respectively. Then, using the notation of equations
(1)-(4),

mX
i=1

nX
j=1

dijfij =
mX
i=1

nX
j=1

kpi � qjkfij

=
mX
i=1

nX
j=1

kfij(pi � qj)k (fij � 0)

�
 mX
i=1

nX
j=1

fij(pi � qj)


=
 mX
i=1

� nX
j=1

fij

�
pi �

nX
j=1

� mX
i=1

fij

�
qj


=

 mX
i=1

wpipi �
nX
j=1

wqjqj


= k �P � �Qk ;

where �P and �Q are the centers of mass of P and Q respectively.
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