
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed for
profit or direct commercial advantage and that copies show this notice on the first page or
initial screen of a display along with the full citation. Copyrights for components of this
work owned by others than ACM must be honored. Abstracting with credit is permitted. To
copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any
component of this work in other works requires prior specific permission and/or a fee.
Permissions may be requested from Publications Dept., ACM, Inc., 1515 Broadway, New
York, NY 10036 USA, fax +1 (212) 869-0481, or permissions@acm.org.

Lazy Snapping
†Yin Li∗ ‡Jian Sun †Chi-Keung Tang ‡Heung-Yeung Shum

†Hong Kong University of Science and Technology ‡Microsoft Research Asia

(a) Input image (b) Object Marking (c) Boundary editing (d) Output composition

Figure 1: Lazy Snapping is an interactive image cutout system, consisting of two steps: a quick object marking step and a simple boundary editing step. In
(b), only 2 (yellow) lines are drawn to indicate the foreground, and another (blue) line to indicate the background. All these lines are far away from the true
object boundary. In (c), an accurate boundary can be obtained by simply clicking and dragging a few polygon vertices in the zoomed-in view. In (d), the cut
out is composed on another Van Gogh painting.

Abstract

In this paper, we present Lazy Snapping, an interactive image cutout
tool. Lazy Snapping separates coarse and fine scale processing,
making object specification and detailed adjustment easy. More-
over, Lazy Snapping provides instant visual feedback, snapping the
cutout contour to the true object boundary efficiently despite the
presence of ambiguous or low contrast edges. Instant feedback
is made possible by a novel image segmentation algorithm which
combines graph cut with pre-computed over-segmentation. A set
of intuitive user interface (UI) tools is designed and implemented
to provide flexible control and editing for the users. Usability stud-
ies indicate that Lazy Snapping provides a better user experience
and produces better segmentation results than the state-of-the-art
interactive image cutout tool, Magnetic Lasso in Adobe Photoshop.

Keywords: User Interface, Image Cutout, Interactive Image Seg-
mentation, Graph Cut

1 Introduction

“Image cutout” is the technique of removing an object in a picture
or photograph from its background. The cutout result is typically
composited on a different background to create a new scene. Image
cutout has been around for many years, and is popular in film, tele-
vision, publication, and photography. It is simple enough to explain
that even young children make cutouts from magazines or picture

∗This research was done when Yin Li was with Microsoft Research Asia
as an intern.

books. With the advent of digital imaging, it has become possible
to specify the foreground and background on an individual pixel
level, providing more accurate results than any scissors could, but
no less tedious.

The task in image cutout is in specifying which parts of the image
are “foreground” (the part you want to cut out) and which belong
to the background. While a human finds it quite easy to specify
foreground and background to another human by saying something
like “cut out the tree from the field of flowers”, the computer is still
a long way from the sort of cognitive image understanding required
to do this work unassisted. The user is forced to specify each region
of foreground individually, with pixel accuracy. The tediousness of
this pixel-accurate work, done in support of what is a cognitively
simple task, makes image cutout a particularly frustrating task for
users.

The challenge, therefore, is to come up with a way to specify the
foreground that is less tedious than marking every pixel individu-
ally, without sacrificing pixel-accurate quality.

Related Work

For general image cutout, there are two main methods that improve
on standard pixel-level selection tools: boundary-based and region-
based. Each of these methods takes features of the image that the
computer can detect (such as color consistency) and uses them to
help automate or guide the foreground specification process.

Boundary-based methods cut out the foreground by allowing the
user to surround its boundary with an evolving curve. The user
traces along the object boundary and the system optimizes the
curve in a piecewise manner. Examples include intelligent scis-
sor [Mortensen and Barrett 1995; Mortensen and Barrett 1999],
image snapping [Gleicher 1995] and Jetstream [Perez and Blake
2001].

While easier than just selecting pixels manually with a traditional
selection tool, these techniques still demand a large amount of at-
tention from the user. There is never a perfect match between the
features used by the algorithms and the foreground image. As a re-
sult, the user must control the curve carefully. If a mistake is made,

303

© 2004 ACM 0730-0301/04/0800-0303 $5.00

the user has to “back up” the curve and try again. The user is also re-
quired to enclose the entire boundary, which can take some time for
a complex, high-resolution object. The close control required in-
terferes with the user’s ability to get an overview of their progress.
It is difficult to zoom in and out of the image while you are drag-
ging the pixel-accurate boundary line. Finally, once the boundary is
specified, the tool is no longer helpful. Any errors must be cleaned
up at the end using traditional selection tools (e.g., using the Lasso
tool with Boolean operation in Photoshop).

Recently, researchers have managed to improve image cutout
by using region-based methods, e.g., magic wand in Photoshop,
intelligent paint [Reese and Barrett 2002; Barrett and Cheney
2002], marker drawing [Falcao et al. 2000], sketch-based interac-
tion [Tan and Ahuja 2001], interactive graph cut image segmenta-
tion [Boykov and Jolly 2001], GrabCut [Rother et al. 2004]) and
interactive image Photomontage [Agarwala et al. 2004]. Region-
based methods work by allowing the user to give loose hints as to
which parts of the image are foreground or background without en-
closing regions or being pixel accurate. These hints usually take
the form of clicking or dragging on foreground or background ele-
ments, and are thus quick and easy to do. An underlying optimiza-
tion algorithm extracts the actual object boundary based on the user
input hints.

Region-based methods allow the user to operate at whatever scale
they want. They also show partial results. After each hint, the fore-
ground/background specification becomes more and more accurate.
The problem with region-based techniques is that there are often
cases where the features used by the region detection algorithms do
not match up with the desired foreground or background. Areas in
shadow, low-contrast edges, and other ambiguous areas can be ex-
tremely tedious to hint. Sometimes, they cannot be hinted and need
to be specified explicitly by hand.

Clearly, there is still a need for a user interface that can combine
the quick hinting of region-based approaches while still providing
a simple affordance for pixel-accurate boundary editing.

Our approach

We propose Lazy Snapping, which is a novel coarse-to-fine UI de-
sign for image cutout. As shown in Figure 1, Lazy Snapping con-
sists of two steps: a quick object marking step (b) and a simple
boundary editing step (c). The first step, object marking, works at
a coarse scale, which specifies the object of interest by a few mark-
ing lines (Section 2). The second step, boundary editing, works at
a finer scale or on the zoomed-in image, which allows the user to
edit the object boundary by simply clicking and dragging polygon
vertices (Section 3).

Our system inherits the advantages of region-based and boundary-
based methods in two steps. The first step is intuitive and quick
for object context specification, while the second step is easy and
efficient for accurate boundary control.

Inspired by [Boykov and Jolly 2001], we also formulate image
cutout as a graph cut problem in both steps. Furthermore, at the
object marking step, we propose an efficient graph cut algorithm
by employing pre-computed over-segmentation so that the marking
UI can provide instant visual feedback for users. At the boundary
editing step, we introduce a simple polygon editing UI, and use the
polygon locations as soft constraints to improve snapping results
around ambiguous or low contrast edges.

We have conducted usability studies (Section 4) to compare Lazy
Snapping with the state-of-the-art interactive cutout tool, Magnetic
Lasso in Photoshop, which has perhaps the best implementation
of intelligent scissor. It shows that Lazy Snapping outperforms in
terms of ease of use, efficiency, and quality of results. We have
experimented with our system on many natural images.

2 Object Marking

In the object marking step, the major task is to allow the user to
conceptually group the foreground object against its background.
Instead of tracing the object boundary, our system allows users to
use lines and curves to specify the extent of the object of interest.

2.1 UI Design

To specify an object, a user marks a few lines on the image by drag-
ging the mouse cursor while holding a button (left button indicating
the foreground, and right button for the background). A yellow line
or a blue line is displayed for the foreground marker or background
marker respectively. This high level, painting-type UI does not re-
quire very precise user inputs. As shown in Figure 1(b), most mark-
ing lines are in fact far from the object boundary. Similar marking
UI to separate object from background is also presented in[Falcao
et al. 2000; Boykov and Jolly 2001; Fails and Olsen 2003] for im-
age segmentation or gesture tracking for camera-based interaction.

The segmentation process is triggered once the user releases the
mouse button after each marking line is drawn. The user then in-
spects the segmentation result on screen and decides if more lines
need to be marked. It is therefore critical that our system gener-
ates the cutout boundary with very little delay. Our system adopts a
novel interactive graph cut algorithm to optimize the object bound-
ary, by maximizing both the color similarity inside the object and
the gradient along the boundary.

2.2 Graph Cut Image Segmentation

An image cutout problem can be posed as a binary labelling prob-
lem. Suppose that the image is a graph G = 〈V, E〉, where V is the
set of all nodes and E is the set of all arcs connecting adjacent nodes.
Usually, the nodes are pixels on the image and the arcs are adja-
cency relationships with four or eight connections between neigh-
boring pixels. The labelling problem is to assign a unique label xi

for each node i ∈ V , i.e. xi ∈ {foreground(= 1), background(=
0)}. The solution X = {xi} can be obtained by minimizing a
Gibbs energy E(X) [Geman and Geman. 1984]:

E(X) =
∑
i∈V

E1(xi) + λ
∑

(i,j)∈E
E2(xi, xj) (1)

where E1(xi) is the likelihood energy, encoding the cost when the
label of node i is xi, and E2(xi, xj) is the prior energy, denoting
the cost when the labels of adjacent nodes i and j are xi and xj

respectively.

In this paper, we will concentrate on how to define the energy terms
E1 and E2 according to user input. We refer readers to [Boykov and
Jolly 2001] for a detailed formulation of energy minimization as a
graph cut problem and how to solve it. The graph cut algorithm has
also been used in the computer graphics community, such as Graph
Cut Textures [Kwatra et al. 2003], GrabCut [Rother et al. 2004] and
Photomontage [Agarwala et al. 2004].

Once the user marks the image, two sets of pixels intersecting with
the foreground and background markers are defined as foreground
seeds F and background seeds B respectively, as shown in Figure 2.

Likelihood energy. In Equation (1), E1 encodes the color simi-
larity of a node, indicating if it belongs to the foreground or back-
ground. To compute E1, first the colors in seeds F and B are clus-
tered by the K-means method [Duda et al. 2000]. The mean colors
of the foreground and background clusters are denoted as {KF

n }
and {KB

m} respectively. The K-means method is initialized to have
64 clusters in our experiments. Then, for each node i, we compute
the minimum distance from its color C(i) to foreground clusters as

304

(a)

(b)

(c)

(d)

(e)

(f)

(a) Foreground seeds F (b)Background seeds B (c)Uncertain regions U
(d) Foreground marker (e) Background marker (f) Graph cut result

Figure 2: Graph cut formulation for Object Marking. The graph cut al-
gorithm is defined on F , B, and U . All these nodes participate in the opti-
mization process and are assigned a unique label, either foreground or back-
ground.

dF
i = min

n
‖C(i)−KF

n ‖, and similarly dB
i = min

m
‖C(i)−KB

m‖.

Therefore, E1(xi) is defined as follows:

E1(xi = 1) = 0 E1(xi = 0) = ∞ ∀i ∈F
E1(xi = 1) = ∞ E1(xi = 0) = 0 ∀i ∈B
E1(xi = 1) =

dF
i

dF
i

+ dB
i

E1(xi = 0) =
dB

i

dF
i

+ dB
i

∀i ∈U
(2)

Here, U = V \{F ∪B} is the uncertain region (Figure 2). The first
two equations guarantee that the nodes in F or B will always have
the label consistent with user inputs. The third equation encourages
the nodes to have the label with similar colors to foreground or
background.

Prior energy. We use E2 to represent the energy due to the gradient
along the object boundary. We define E2 as a function of the color
gradient between two nodes i and j:

E2(xi, xj) = |xi − xj | · g(Cij) (3)

where g(ξ) = 1
ξ+1

, and Cij = ||C(i) − C(j)||2 is the L2-Norm
of the RGB color difference of two pixels i and j. Note that |xi −
xj | allows us to capture the gradient information only along the
segmentation boundary. In other words, E2 is a penalty term when
adjacent nodes are assigned with different labels. The more similar
the colors of the two nodes are, the larger E2 is, and thus the less
likely the edge is on the object boundary.

To minimize the energy E(X) in Equation (1), we use the max-
flow algorithm in [Boykov and Kolmogorov 2001]. This algorithm
is specially designed for some vision problems. Unfortunately, as
shown in the last column of Table 1, it fails to provide interactive
visual feedback for real life image cutouts.

Image Dimension Nodes
Ratio

Edges
Ratio

Lag with
Pre-segmentation

Lag without
Pre-segmentation

Boy (408, 600) 10.7 16.8 0.12s 0.57s

Ballet (440, 800) 11.4 18.3 0.21s 1.39s

Twins (1024, 768) 20.7 32.5 0.25s 1.82s

Girl (768, 1147) 23.8 37.6 0.22s 2.49s

Grandpa (1147, 768) 19.3 30.5 0.22s 3.56s

• The nodes (edges) ratio is the number of pixels (connection between pixels) divided
by the number of nodes (edges) after the pre-segmentation.

• The feedback lag is the delay from when the user releases the mouse to when the
object boundary is displayed.

• All lags are timed on a laptop PC with Centrino 1.5GHz CPU and 512M memory.

Table 1: Performance comparison of the graph cut segmentation algo-
rithms with and without pre-segmentation on the images shown in Figure 9.

(a)

(b)

(c)

(a) A small region by the pre-segmentation. (b) The nodes and edges for the graph cut
algorithm with pre-segmentation. (c) The boundary output by the graph cut segmenta-
tion.

Figure 3: Our new graph cut algorithm works on the graph whose nodes
are small regions from watershed segmentation.

2.3 Graph Cut with Pre-segmentation

To improve efficiency, we introduce a novel graph cut formulation
which is built on a pre-computed image over-segmentation, instead
of image pixels. We choose the watershed algorithm [Vincent and
Soille 1991], which locates boundaries well, and preserves small
differences inside each small region.

We again formulate object cutout as a graph cut problem where
the nodes are instead the segmented regions from the watershed
segmentation. As shown in Figure 3, we use the same notation
G = 〈V, E〉 for the new graph, while the nodes V are the set of all
small regions from pre-segmentation, and the edges E are the set of
all arcs connecting adjacent regions.

The foreground seeds F , the background seeds B, and the uncer-
tain region U are defined similarly as in Section 2.2, except that
now these nodes are small regions instead of pixels. The likelihood
energy E1 is also similar to Equation (2) while the color C(i) is
computed as the mean color of the small region i .

For the prior energy E2 in Equation (3), we compared two defini-
tions of Cij : 1) Cij is the mean color difference between the two
regions i and j; 2) Similarly defined Cij , but it is weighted by the
shared boundary length between regions i and j. In our experi-
ments, similar results were obtained.

Since watershed segmentation provides a good super set of object
boundaries, this approximation produces reasonable results and im-
proves the speed significantly. As shown in Table 1, the number of
nodes and edges for the graph cut algorithm is reduced by more
than 10 times compared to the pixel based method in our experi-
ments with real life images. Most importantly, our new algorithm
is able to feedback the cut out results almost instantly.

3 Boundary Editing

Although the object marking step preserves the object boundary
as accurately as possible, there still exist some errors, especially
around ambiguous and low contrast edge boundaries. Therefore,
we design a simple polygon editing UI for the user to refine the
object boundary.

3.1 UI Design

The object boundary produced from the previous step is first con-
verted into editable polygons. The polygon is constructed in an
iterative way: the initial polygon has only one vertex, which is the
point with the highest curvature on the boundary. At each step, we
compute the distance of each point on the boundary to the polygon
in the previous step. The farthest point is inserted to generate a new
polygon. The iteration stops when the largest distance is less than a
pre-defined threshold (typically 3.2 pixels).

305

(a)

(b)

(c)

(d)

(e)
(a) Foreground seeds F (b) Background seeds B
(c) Uncertain regions U (d) Pixels ignored by graph cut
(e) Polygon vertices and lines

Figure 4: Graph cut formulation for boundary editing. Only pixels in F ,
B, or U are considered in optimization. The polygon location is encoded as
an energy term to guide the optimization to snap to user inputs.

Two UI tools are provided for polygon editing:

Direct vertex editing allows users to drag the vertex to adjust the
shape of the polygon. Users can add or delete vertices as well.
Multiple vertices can be grouped and processed together.

Overriding brush enables users to draw a single stroke to replace
a segment of a polygon. This is more efficient than dragging many
vertices individually.

The overriding brush is inspired by the Paintbrush tool in Adobe
Illustrator. The user brushes a stroke starting and stopping at two
points A and B on the original polygon so that the original polygon
is split into two parts, one of which has less angle difference to the
user stroke. This part is replaced by the user stroke to generate a
new polygon. The angle of the user stroke and the two parts of the
polygon is measured by the tangent direction at point A and from
A to B.

Once the user releases the mouse button after each polygon editing
operation, the system will optimize the object boundary using the
graph cut segmentation algorithm again. The optimized boundary
automatically snaps to the object boundary even though the poly-
gon vertices may not be on it. Compared with a simple polygon
boundary where the user needs to modify so many vertices, our UI
uses many fewer polygon vertices to describe the object shape.

3.2 Boundary Editing using Graph Cut

Again, we formulate boundary editing as a pixel-based graph cut
problem in a small band around the polygons. The band is 7 pixels
wide by default. Figure 4 shows foreground seeds F , background
seeds B and uncertain region U . Given the editable polygon, U is
a band computed by dilating the polygon, whereas F and B are
defined as the inner and outer boundaries of U respectively.

(a) (b) (c)

Figure 5: The polygon soft constraint can override edge locations at low
contrast regions. (a) The object marking step produces a bad boundary. Us-
ing the polygon overriding brush (thick orange line) can replace a segment
of polygon (b) Enabling the polygon as a soft constraint, the result (dotted
line) is very close to the polygon (solid line). (c) Otherwise, the optimiza-
tion is vulnerable to noise due to weak edges.

The likelihood energy E1 is defined as in Equation (2) in the ob-
ject marking step. But the prior energy E2 is defined differently.
In addition to the gradient term, E2 uses the polygon locations as
soft constraints, in order to deal with ambiguous and low contrast
gradient boundaries:

E2(xi, xj) = |xi − xj | · g
(
(1 − β) · Cij + β · η · g(D2

ij)
)

(4)

where g(·) is the same as in Equation (3), Dij is the distance from
the center of arc (i, j) to the polygon and η is the scale to unify the
units of the two terms (typical value is 10).

In Equation (4), β ∈ [0, 1] is used to control the influence of
D(i, j). A typical value of β is 0.5 and it works well in most of
our experiments, although we allow expert users to adjust this pa-
rameter for better performance. Note that β = 1 makes the graph
cut segmentation output the result that is snapped onto the polygon,
regardless of the image gradient.

When color gradient Cij is small, g(D2
ij) dominates E2, which

encourages the result to snap close to the polygon location. This
is shown in Figure 5 where low contrast edges are very difficult to
snap without polygon soft constraints. As shown in Figure 5(a),
it is also a difficult example for region-based methods (e.g., in the
object marking step).

If there are two edges with comparable strength, the polygon lo-
cation can also help users to select the desired one, as shown in
Figure 6(b). Otherwise, the segmentation result may not be fully
controlled by the polygon, as shown in Figure 6(c).

Hard vertex constraint: The users may prefer to specify manu-
ally a polygon vertex to be a “hard” constraint, so that the system
ensures the graph cut segmentation result to pass through this ver-
tex. For this hard constrained vertex, the uncertain region U is auto-
matically split into two parts along its bisector. The two “split” lines
are added into foreground seeds F and background seeds B respec-
tively, so that graph cut segmentation must output a result passing
through this vertex, because it is the only connection between the
foreground and background at this place.

4 Usability Study

We believe that Lazy Snapping is superior to existing cutout meth-
ods in being easier to learn and able to produce results of equal or
better quality in less time. In order to test this, we have conducted
a usability study that compared the performance of our Lazy Snap-
ping prototype system to Magnetic Lasso, Adobe Photoshop’s im-
age cutout tool.

Methodology

Fourteen subjects were selected. Ten were novices with little or
no experience with Photoshop or its image cutout tools, while four
were Photoshop experts. Each subject was given a five minute

(a) Original image (b) With constraint (c) Without constraint

Figure 6: (a) is the original image, and (b), (c) show the color gradient
image of the region marked on (a) as a white square. (b) With polygon
soft constraints, users can select which strong edge to snap. (c) Without
polygon soft constraints, the same input polygon may produce erroneous
edges because of the inherent edge ambiguity.

306

instruction session on the Lazy Snapping software. The novices
were also given five minutes of instruction on Photoshop’s mag-
netic lasso tool. All users were allowed to experiment with both
software packages until they were comfortable that they understood
their functions.

The study consisted of two tasks. In the first task, the subjects had
to cut out 4 images (A, B, C and D in Figure 7) as accurately as
possible. The subjects were asked to work as quickly as they could
without sacrificing accuracy. For each image, the subject had access
to a printed version of the desired cutout. After they completed the
task using one software package, they then repeated the task with
the same 4 images using the other software. The order was alter-
nated between subjects in case there was an ordering effect, with
half of the subjects using Photoshop first, the other half using Lazy
Snapping. For the second task, the subjects were given another 4
images (E, F, G and H in Figure 7) to cut out, but this time they
were given only 60 seconds per image. They were instructed to get
the cutout as accurately as possible in the allotted time. Again, the
order was alternated between subjects.

When using Photoshop, the users were advised to use magnetic
lasso as the major tool, but were also allowed to use other tools
in Photoshop, such as free lasso, and work path editing, etc.

Subjects were videotaped and their cutout results were saved for
detailed logging and quality analysis.

We evaluate the quality of cutouts by measuring the number of error
pixels in the images. Avoiding bias, we compute the quality by av-
eraging the number of error pixels for four ‘ground truth’ cutouts,
which are produced by two experts (not selected as subjects) us-
ing Lazy Snapping and Photoshop respectively. We also exclude
the pixels in the hairy and furry regions, to avoid the influence of
subjective recognition.

Ease of Use

We tested ease of use by counting the number of errors made by
the novice users. Using the video tapes, we counted the number of
times the users chose the incorrect tool or had to invoke the UNDO
command. For example, while the user wants to draw foreground in
Lazy Snapping, the background brush is used instead; when using
the magnetic lasso, the user clicks the zoom button on the navigator
tool window, which will produce an unexpected result. We found
the error rate of Lazy Snapping to be less than 20% of the rate
of Photoshop on the same image. Users also subjectively reported
Lazy Snapping to be far easier to use than Photoshop.

Better Quality in Less Time

We tested time improvements by measuring how long it took users
to complete the first task. We found subjects using Lazy Snapping

A B C D

E F G H

Figure 7: Images used in usability study. The four images in the first row
(A, B, C, and D) are for the first task. And the other four (E, F, G, and H)
are for the second task.

0%

25%

50%

75%

100%

1 3 5 7.00 9 11 13

Subject

T
im

e
 (

P
h

o
to

s
h

o
p

 =
 1

0
0

%
)

Object Marking Boundary Editing

0%

25%

50%

75%

100%

A B C D E F G H

Image

T
im

e
 (

P
h

o
to

s
h

o
p

 =
 1

0
0

%
)

Object Marking Boundary Editing

(a) (b)

0%

100%

200%

0% 100% 200% 300% 400% 500% 600%

Time

#
 E

rr
o
r

P
ix

e
ls

Photoshop LazySnapping

0%

100%

200%

300%

400%

500%

600%

0% 50% 100% 150%

Time

#
 E

rr
o
r

P
ix

e
ls

Photoshop LazySnapping

(c) (d)

Figure 8: (a) and (b) illustrate the average time of cutout process across
fourteen subjects and eight images respectively. We normalize the time by
that of Photoshop for each column, so that all data can be compared together.
Moreover, the number of error pixels to the time is shown in (c) for the first
task and in (d) for the second task. We normalized the time and quality
by the mean of all samples of each image for all subjects, so that the data
from different images can be aligned around 100% for comparison. Lazy
Snapping is clustered at the lower left corner, indicating better quality in
less time.

overall took less than 60% of the time than they did when using
Photoshop (Figure 8(a)(b)). The exact benefit varied widely de-
pending on the subject and the image (standard deviation is 30%).

We compared the quality of the Photoshop result with that of the
Lazy Snapping result. For the second task, Lazy Snapping has less
than 60% (the average of all 14 subjects and 4 images) the num-
ber of error pixels than Photoshop has. In this time-restricted task,
Lazy Snapping was a clear winner. Most subjects were able to com-
plete the entire task in the 60 seconds allotted (86% less time than
Photoshop), and for those that were not, Lazy Snapping produced
satisfactory intermediate results (less than 53% error pixels than
Photoshop). Photoshop’s magnetic lasso tool does not produce in-
termediate results. Users who ran out of time were left with large
errors. (See Figure 8(d)).

Subject Feedback

Overall, subjects preferred Lazy Snapping to the tools in Photo-
shop. They reported it to be “much easier” and “almost magic”.
One expert user expressed a concern that the ease of working with
Lazy Snapping might encourage him to be lazy himself and per-
form less accurately than with the more tedious traditional tools.
Other users made suggestions for combining the Lazy Snapping
tools with existing tools like the lasso and magic wand. Several
users expressed some dissatisfaction with the two steps and won-
dered if we could make it easier to go back and forth between them.
We are considering these and other suggestions for improving the
user experience.

5 Experiments and Summary

Figure 9 shows more examples produced by Lazy Snapping. The
number of object markers and times for polygon editing are also
listed for each image.

We use Coherent matting [Shum et al. 2004], an extended Bayesian

307

(a) Girl (4/2/12) (b) Ballet (4/7/14) (c) Boy (6/2/13)

(c) Grandpa (4/2/11) (d) Twins (4/4/12)

Figure 9: More Experiments The numbers in the brackets denote the number of foreground markers, the number of background markers and the times to
adjust polygon vertices, respectively. Each pair of images shows the marking lines for the first step and the final result. The polygons in the boundary editing
step are not shown here. Please refer to the accompanying video to view the polygon editing process.

matting [Chuang et al. 2001] with alpha prior, to compute the opac-
ity around the object boundary before compositing the cutout object
on a new background. The uncertain region for matting is computed
by dilating the object boundary. Usually this dilation is of 4 pixels
width on each side (in most of our experiments).

In this paper, we have developed an interactive image cutout system
that is easy to learn, produces better quality cutouts in less time than
existing image cutout tools. Our system explicitly separates two
tasks: object context specification and boundary refinement. We
have designed two user interfaces for these two tasks respectively.
The first is a marking UI which quickly specifies the object, and
the second is a polygon editing UI which allows simple and fast
boundary adjustment. Our usability study shows that our system
is easy to learn and produces high quality cutouts. The UI can be
easily and naturally extended to pen-computing devices.

Our current system is not good at thin and branch structures. We are
working on it. As well, we are trying to combine the object marking
and boundary editing steps in a seamless way, without switching
between each other. Moreover, we plan to extend our works to
video segmentation.

Acknowledgements:
We would like to thank the anonymous reviewers for their construc-
tive critiques. Many thanks to Dave Vronay for his help on the us-
ability study, and to Steve Lin for his professional help in video pro-
duction and proofreading. Chi-Keung Tang’s research is supported
in part by the Research Grant Council of Hong Kong Special Ad-
ministration Region, China: HKUST6193/02E and AOE/E-01/99.

References

AGARWALA, A., DONTCHEVA, M., AGRAWALA, M., DRUCKER, S., COLBURN,
A., CURLESS, B., SALESIN, D., AND COHEN, M. 2004. Interactive digital
photomontage. In Proceedings of ACM SIGGRAPH 2004.

BARRETT, W. A., AND CHENEY, A. S. 2002. Object-based image editing. In Pro-
ceedings of ACM SIGGRAPH 2002.

BOYKOV, Y., AND JOLLY, M. P. 2001. Interactive graph cuts for optimal boundary &
region segmentation of objects in n-d images. In Proceedings of ICCV 2001.

BOYKOV, Y., AND KOLMOGOROV, V. 2001. An experimental comparison of min-
cut/max-flow algorithms for energy minimization in vision. In Energy Minimiza-
tion Methods in Computer Vision and Pattern Recognition, 2001.

CHUANG, Y.-Y., CURLESS, B., SALESIN, D. H., AND SZELISKI, R. 2001. A
bayesian approach to digital matting. In Proceedings of CVPR 2001.

DUDA, R. O., HART, P. E., AND STORK, D. G. 2000. Pattern Classification (2nd
Edition). Wiley Press.

FAILS, J., AND OLSEN, D. 2003. A design tool for camera-based interaction. In Pro-
ceedings of the conference on Human factors in computing systems ACM CHI’03.

FALCAO, A. X., LOTUFO, R., AND ARAUJO, G. 2000. The image foresting transfor-
mation. In Relatorio Tecnico IC-00-12, 2000.

GEMAN, S., AND GEMAN., D. 1984. Stochastic relaxation, gibbs distributions, and
the bayesian restoration of images. In IEEE Transactions on Pattern Analysis and
Machine Intelligence, 6:721-741.

GLEICHER, M. 1995. Image snapping. In Proceedings of ACM SIGGRAPH’95.

KWATRA, V., SCHÖDL, A., ESSA, I., TURK, G., AND BOBICK, A. 2003. Graphcut
textures: Image and video synthesis using graph cuts. In Proceedings of ACM
SIGGRAPH 2003.

MORTENSEN, E. N., AND BARRETT, W. A. 1995. Intelligent scissors for image
composition. In Proceedings of ACM SIGGRAPH’95.

MORTENSEN, E. N., AND BARRETT, W. A. 1999. Toboggan-based intelligent scis-
sors with a four parameter edge model. In Proceedings of CVPR’99.

PEREZ, P., AND BLAKE, A.AND GANGNET, M. 2001. Jetstream: Probabilistic con-
tour extraction with particles. In Proceedings of ICCV 2001.

REESE, L. J., AND BARRETT, W. A. 2002. Image editing with intelligent paint. In
Proceedings of Eurographics 2002, Vol. 21, No. 3.

ROTHER, C., BLAKE, A., AND KOLMOGOROV, V. 2004. Grabcut - interactive fore-
ground extraction using iterated graph cuts. In Proceedings of ACM SIGGRAPH
2004.

SHUM, H., SUN, J., YAMAZAKI, S., LI, Y., AND TANG, C. 2004. Pop-up light field:
An interactive image-based modeling and rendering system. ACM Transaction of
Graphics, Vol. 23(2), April 2004.

TAN, K.-H., AND AHUJA, N. 2001. Selecting objects with freehand sketches. In
Proceedings of CVPR 2001.

VINCENT, L., AND SOILLE, P. 1991. Watersheds in digital spaces: an efficient
algorithm based on immersion simulations. IEEE Transactions on Pattern Analysis
and Machine Intelligence PAMI-13, 6 (June), 583–598.

308

