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Abstract

We consider the problem of recovering an underwater imagjertiéd by
surface waves. A large amount of video data of the distoreahe is
acquired. The problem is posed in terms of finding an undistioim-
age patch at each spatial location. This challenging rénat®n task
can be formulated as a manifold learning problem, such tireaténter
of the manifold is the image of the undistorted patch. To cotaphe
center, we present a hew technique to estimate global distaon the
manifold. Our technique achieves robustness thraigytvex floncom-
putations and solves the “leakage” problem inherent inmeg®nifold
embedding techniques.

1 Introduction

Consider the following problem. A pool of water is observgdabstationary video camera
mounted above the pool and looking straight down. There ares/on the surface of the
water and all the camera sees is a series of distorted imdgbe bottom of the pool,
e.g. Figure 1. The aim is to use these images to recover thstaridd image of the pool
floor — as if the water was perfectly still. Besides obvioupliations in ocean optics and
underwater imaging [1], variants of this problem also airisgeveral other fields, including
astronomy (overcoming atmospheric distortions) and &iraefrom-motion (learning the
appearance of a deforming object). Most approaches to guk/problem try to model the
distortions explicitly. In order to do this, it is criticaloh only to have a good parametric
model of the distortion process, but also to be able to rgliektract features from the data
to fit the parameters. As such, this approach is only feagibleell understood, highly
controlled domains. On the opposite side of the spectrunveyasimple method used in
underwater imaging: simply, average the data temporallhotigh this method performs
surprisingly well in many situations, it fails when the sttwre of the target image is too
fine with respect to the amplitude of the wave (Figure 2).

In this paper we propose to look at this difficult problem frarmore statistical angle. We
will exploit a very simple observation: if we watch a parfeEuspot on the image plane,
most of the time the picture projected there will be distrt8ut once in a while, when
the water just happens to be locally flat at that point, we baéllooking straight down
and seeing exactly the right spot on the ground. If we cangm®ige when this happens

*Authors in alphabetical order.
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Figure 1:Fifteen consecutive frames from the video. The experimental setajvéw: a transparent
bucket of water, the cover of a vision textbook “Computer Vision/A Mod&pproach”.

Vision e o
A NMODERN APPROACH e PP

Figure 2:Ground truth image and reconstruction results using mean and median

and snap the right picture at each spatial location, thesveging the desired ground truth
image would be simply a matter of stitching these correceplaions together. In other
words, the question that we will be exploring in this paperaswhereto look, butwheri

2 Problem setup

Let us first examine the physical setup of our problem. Theee“ground truth” imagé&?

on the bottom of the pool. Overhead, a stationary camerdipgidownwards is recording
a video strean?’. In the absence of any distortidni(z, y,t) = G(x,y) at any timet.
However, the water surface refracts in accordance withI'Sthelw. Let us consider what
the camera is seeing at a particular painbn the CCD array, as shown in Figure 3(c)
(assume 1D for simplicity). If the normal to the water suéatirectly underneath is
pointing straight up, there is no refraction aWidz) = G(x). However, if the normal is
tilted by angled;, light will bend by the amouné, = 6, — sin™! (145 sin61), so the
camera point/(x) will see the light projected frond(z + dx) on the ground plane. It
is easy to see that the relationship between the tilt of tmmabto the surfacé; and the
displacementlx is approximately lineardx ~ 0.256,h using small angle approximation,
whereh is the height of the water). This means that, in 2D, what timeeara will be seeing
over time at point/(z, y, t) are points on the ground plane sampled from a disk centered at
G(z,y) and with radius related to the height of the water and theadverughness of the
water surface. A similar relationship holds in the inverseation as well: a poin&(x, y)
will be imaged on a disk centered arouvidz, y).

What about the distribution of these sample points? AccortbnCox-Munk Law [2], the
surface normals of rough water are distributed approxilyatea Gaussian centered around
the vertical, assuming a large surface area and stationavesy Our own experiments,
conducted by hand-tracking (Figure 3b), confirm that thé&riBistion, though not exactly
Gaussian, is definitely unimodal and smooth.

Up to now, we only concerned ourselves with infinitesimaltyadl points on the image
or the ground plane. However, in practice, we must have duntethat we can compute
with. Therefore, we will make an assumption that the surfafdie water can be locally
approximated by a planar patch. This means that everythetgnias true for points is now
true for local image patches (up to a small affine distortion)



3 Tracking via embedding

From the description outlined above, one possible soliginarges. If the distribution of a
particular ground point on the image plane is unimodal, @ could track feature points
in the video sequence over time. Computing their mean positbver the entire video will
give an estimate of their true positions on the ground plas&ortunately, tracking over
long periods of time is difficult even under favorable coiwis, whereas our data is so fast
(undersampled) and noisy that reliable tracking is out efghestion (Figure 3(c)).

However, since we have a lot of data, we can substitute smes#tin time wittsmoothness
in similarity — for a given patch we are more likely to find a patch similart tsomewhere
in time, and will have a better chance to track the transitietween them. An alternative
to tracking the patches directly (which amounts to holdimg ground patcldi(x, y) fixed
and centering the image patcHiégr + dx, y +dy;) on top of it in each frame), is to fix the
image patch/ (z, y) in space and observe the patches fiGt + dz:, y + dy;) appearing
in this window. We know that this set of patches comes froms& din the ground plane
centered around pataH(z,y) — our goal. If the disk was small enough compared to the
size of the patch, we could just cluster the patches togethgr by using translational
EM [3]. Unfortunately, the disk can be rather large, cortagnpatches with no overlap
at all, thus making only the local similarity comparisonsgible. However, notice that
our set of patches lies on a low-dimensional manifold; irt fae know precisely which
manifold — it's the disk on the ground plane centered:&t, y)! So, if we could use the
local patch similarities to find an embedding of the patchds iz, y, ¢) on this manifold,
the center of the embedding will hold our desired path;, y).

The problem of embedding the patches based on local sityilarrelated to the recent
work in manifold learning [4, 5]. Basic ingredients of theleedding algorithms are: defin-
ing a distance measure between points, and finding an energiidn that optimally places
them in the embedding space. The distance can be definedpsraldistance matrix, or
as distance from a particular reference node. In both casesjant the distance function
to satisfy some constraints to model the underlying phygiczblem.

The local similarity measure for our problem turned out topleticularly unreliable, so

none of the previous manifold learning techniques were aakegfor our purposes. In the
following section we will describe our own, robust methoddomputing a global distance
function and finding the right embedding and eventually #ter of it.

a a
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Figure 3:(a) Snell’s Law (b)-(c) Tracking points of the bottom of the pool: (b) tleeled position
forms a distribution close to a Gaussian, (c): a vertical line of the imagersiad different time
instances (horizontal axis). The discontinuity caused by rapid changkss the tracking infeasible.

4 What is the right distance function?

Let Z = {L,...,I,} be the set of patches, whele = V(z,y,t) andz =
[Tmin, Tmaz)s ¥ = [Ymin, Ymaz] @re the patch pixel coordinates. Our goal is to find a
centerpatch to represent the sét To achieve this goal, we need a distance function



d:Z x T — Rsuch thati(I;, I;) < d(I;, I;;) implies thatl; is more similar tal; thanI.
Once we have such a measure, the center can be found by cogiputi

I" = arg min I;d(fi,fj) 1)
J

Unfortunately, the measurable distance functions, suddaamalized Cross Correlation
(NCC) are only local. A common approach is to design a global degtgunction using
the measurable local distances arahsitivity [6, 4]. This is equivalent to designing a
global distance function of the form:

DT — dlocal(livlj)y if dlocal(Ii’Ij) =T
d(1;, 1) —{ diransitive(1i, 1j),  otherwise. @)

whered;,.q; is a local distance function; is a user-specified threshold ang.,sizive

is a global, transitive distance function which utilizés.,;. The underlying assumption
here is that the members @flie on a constraint space (or manifold) Hence, a local
similarity function such asvCC can be used to measure local distances on the manifold.
An important research question in machine learning is terekthe local measurements
into global ones, i.e. to desigh, qnsitive abDOVE.

One method for designing such a transitive distance fundsito build a grapléz = (V, E)
whose vertices correspond to the members.dfhe local distance measure is used to place
edges which connect only very similar member&ofAfterwards, the length of pairwise
shortest paths are used to estimate the true distances omatiitold S. For example, this
method forms the basis of the well-known Isomap method [4].

Unfortunately, estimating the distandg..,sitive (-, -) USiNg shortest path computations is
not robust to errors in the local distances — which are vemgroon. Consider a patch that
contains the letter A and another one that contains ther IBtt&ince they are different
letters, we expect that these patches would be quite distatite manifoldS. However,
among the A patches there will inevitably be a very blurry Atttvould look quite similar
to a very blurry B producing an erroneous local distance mremsent. When the transitive
global distances are computed using shortest paths, aseéngineous edge will single-
handedly causall the A patches to be much closerat the B patches, short-circuiting
the graph and completely distorting all the distances.

Such errors lead to tHeakage problenn estimating the global distances of patches. This
problem is illustrated in Figure 4. In this example, our utyglag manifoldS is a triangle.
Suppose our local distance function erroneously estinatesige between the corners of
the triangle as shown in the figure. After the erroneous eslgeserted, the shortest paths
from the top of the triangléeak through this edge. Therefore, the shortest path distances
will fail to reflect the true distance on the manifold.

5 Solving the leakage problem

Recall that our goal is to find the center of our data set asefbfimEquation 1. Note that,
in order to compute the center we do not need all pairwiseuligts. All we need is the
quantitydz (I;) = ijez d(I;, I;) for all I;.

The leakage problem occurs when we compute the valyég) using the shortest path
metric. In this case, even a single erroneous edge may redeishortest paths from many
different patches td; — changing the value af;(I;) drastically. Intuitively, in order to
prevent the leakage problem we must prevent edges fronmgéttrolved in many shortest
path computations to the same node (i.e. leaking edges).awécmalize this notion by
casting the computation as a network flow problem.



Let G = (V, E) be our graph representation such that for each patch Z, there is a
vertexv; € V. The edge seF is built as follows: there is an edde;, v;) if diocai(Li, I;)
is less than a threshold. Theeightof the edg€v;, v;) is equal tadjocqi (1;, I;).

To compute the valudz(I;), we build a flow network whose vertex set is algo All
vertices inV — {v; } are sources, pushing unit flow into the network. The verteg a sink
with infinite capacity. The arcs of the flow network are choasimg the edge sdf. For
each edgdv;,v;) € E we add the arcs; — v, andv, — v;. Both arcs have infinite
capacity and the cost of pushing one unit of flow on either aregual to the weight of
(v;,vx), as shown in Figure 4 left (top and bottom). It can easily tmnghat the minimum
cost flow in this network is equal tdz(7;). Let us call this network which is used to
computedz(1;) asNW (I;).

The crucial factor in designing such a flow network is chogshre rightcostandcapacity
Computing the minimum cost flow aN'W (I;) not only gives usiz(I;) but also allows us
to compute how many times an edge is involved in the distaoo®atation: the amount of
flow through an edge is exactly the number of times that edgsed for the shortest path
computations. This is illustrated in Figure 4 (box A) whéieunits of cost is charged for
each unit of flow through the edde, w). Therefore, if we prevent too much flow going
through an edge, we can prevent the leakage problem.
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Figure 4:The leakage problenieft: Equivalence of shortest path leakage and uncapacitated flow
leakage problemBottom-middle: After the erroneous edge is inserted, the shortest paths from the
top of the triangle to vertex go through this edgeBoxes A-CAlternatives for charging a unit of
flow between nodes andw. The horizontal axis of the plots is the amount of flow and the vertical
axis is the costBox A: Linear flow. The cost of a unit of flow ig; Box B: Convex flow. Multiple
edges are introduced between two nodes, with fixed capacity, andxtpmereasing costs. The cost

of a unit of flow increases frond; to d» and then tals as the amount of flow from to w increases.

Box C: Linear flow with capacity. The cost ig; until a capacity ofc; is achieved and becomes
infinite afterwards.

One might think that the leakage problem can simply be ablaeimposing capacity
constraints on the arcs of the flow network (Figure 4, box Gjfddtunately, this is not
very easy. Observe that in the minimum cost flow solution efletwork NW (I;), the
amount of flow on the arcs will increase as the arcs get closkr Therefore, when we are
setting up the networV W (1), we must adaptively increase the capacities of arcs “closer
to the sinkv; — otherwise, there will be no feasible solution. As the dtrtes of the graph

G gets complicated, specifying this notion of closeness lesoa subtle issue. Further,
the structure of the underlying spa&ecould be such that some arcs @ must indeed



carry a lot of flow. Therefore imposing capacities on the aecplires understanding the
underlying structure of the graph as well as the spacg — which is in fact the problem
we are trying to solve!

Our proposed solution to the leakage problem uses the notiaconvex flowWe do not
impose a capacity on the arcs. Instead, we impose a convefuoation on the arcs such
that the cost of pushing unit flow on atdncreases as the total amount of flow through
increases. See Figure 4, box B.

This can be achieved by transforming the netwdfk/ (1;) to a new networkVW”'(I;).
The transformation is achieved by applying the followingergiion on each arc in
NW(I;): Let a be an arc fromu to w in NW(I;). In NW'(I;), we replacea by k
arcsay,...,ar. The costs of these arcs are chosen to be uniformly incrgasinthat
cost(a1) < cost(az) < ... < cost(ay). The capacity of aray, is infinite. The weights
and capacities of the other arcs are chosen to reflect thengte® of the desired convexity
(Figure 4, box B). The network shown in the figure yields thkofeing function for the
cost of pushing: units of flow through the arc:

diz, fo<z<¢

cost(z) = { dicy + da(x — 1), ifc; <a<ey 3)
dicy +d2(62—01)+d3(1‘—61—62), ifco <z

The advantage of this convex flow computation is twofold. desl not require putting

thresholds on the arcs a-priori. It is always feasible teetesmuch flow on a single arc as

required. However, the minimum cost flow will avoid the legkaroblem because it will
be costly to use an erroneous edge to carry the flow from mdferetit patches.

5.1 Fixing the leakage in Isomap

As noted earlier, the Isomap method [4] uses the shortektrpatisurements to estimate
a distance matri¥//. Afterwards,M is used to find an embedding of the manifddiia
MDS.

As expected, this method also suffers from the leakage gnolals demonstrated in Fig-
ure 5. The top-left image in Figure 5 shows our ground truth.thie middle row, we
present an embedding of these graphs computed using Isohiealp uses the shortest path
length as the global distance measure. As illustrated isetlfigures, even though isomap
does a good job in embedding the ground truth when there asgrocs, the embedding
(or manifold) collapses after we insert the erroneous ediesontrast, when we use the
convex-flow based technique to estimate the distances, eo¥eethe true embedding —
even in the presence of erroneous edges (Figure 5 bottom row)

6 Results

In our experiments we usei0 image frames to reconstruct the ground truth image. We
fixed 30 x 30 size patches in each frame at the same location (see top wfeFigfor two
sets of examples), and for every location we found the cefiiee middle row of Figure

7 shows embeddings of the patches computed using the distimived from the convex
flow. The transition path and the morphing from selected EdA,B,C) to the center
patch (F) is shown at the bottom.

The embedding plot on the left is considered an easier cadeavaussian-like embed-
ding (the graph is denser close to the center) and smootsititars between the patches in
a transition path. The plot to the right shows a more diffiexdmple, when the embedding
has no longer a Gaussian shape, but rather a triangular dee.néte that the transitions
can have jumps connecting non-similar patches which atardig the embedding space.
The two extremes of the triangle represent the blurry patclich are so numerous and
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Figure 5: Top row: Ground truth. After sampling points from a triangular disk, a kNN graph is
constructed to provide a local measure for the embedding (left). Addltiemoneous edgedC'
andC B are added to perturb the local measure (middle, rigkiiddle row: Isomap embedding.
Isomap recovers the manifold for the error-free cases (left). Mewaell-pairs shortest path can
“leak” through AC andC B, resulting a significant change in the embeddiBgttom row: Convex
flow embedding. Convex flow penalized too many paths going throughatne gdge — correcting
the leakage problem. The resulting embedding is more resistant to eidmin the kNN graph.

very similar to each other, so that they are no longer treatedoise or outliers. This
results in ‘folding in’ the embedding and thus, moving estied the center towards the
blurry patches. To solve this problem, we introduced addil two centers, which ideally
would represent the blurry patches, allowing the third eetd move to the ground truth.

Once we have found the centers for all patches we stitched tbgether to form the
complete reconstructed image. In case of three centerssweverlapping patches and
dynamic programming to determine the best stitching. Edushows the reconstruction
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Figure 6:Comparison of reconstruction results of different methods using %te8f)0 framestop:
patches stitched together which are closest to midt) and medianright), bottom: our results
using a singleléft) and threeright) centers

result of our algorithm compared to simple methods of takimg mean/median of the
patches and finding the closest patch to them. The bottomliowssour result for a single
and for three center patches. The better performance ddittez suggests that the two new
centers relieve the correct center from the blurry patches.

For a graph withn vertices andm edges, the minimum cost flow computation takes
O(mlogn(m + nlogn)) time, therefore finding the centét of one set of patches can be
done inO(mnlogn(m + nlogn)) time. Our flow computation is based on the min-cost
max-flow implementation by Goldberg [7]. The convex funotigsed in our experiments
was as described in Equation 3 with parametlrs- 1,¢; = 1,dy; = 5, ¢ = 9, d3 = 50.
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Figure 7: Top row: sample patches (two different locations) from 800 framdildle row:
Convex flow embedding, showing the transition patBettom row: corresponding patches (A, B,
C, Al, A2, B1, B2, C1, C2) and the morphing of them to the centers F FFBAFC respectively

7 Conclusion

In this paper, we studied the problem of recovering an undemimage from a video
sequence. Because of the surface waves, the sequenceconsistorted versions of
the image to be recovered. The novelty of our work is in thenfdation of the recon-
struction problem as a manifold embedding problem. Ourrdmrtton also includes a new
technique, based oronvex flowsto recover global distances on the manifold in a robust
fashion. This technique solves the leakage problem intbhé@reacent embedding methods.
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