
Exactness of the Mayer-Vietoris Sequence

in Homotopy Type Theory

e cavallo ∗ (ecavallo@andrew.cmu.edu)

with Robert Harper, Daniel R. Licata, Carlo Angiuli, Ed Morehouse

1 Introduction

An Eilenberg-Steenrod cohomology theory consists of a family of contravariant functors (Cn)n:Z
from pointed types to abelian groups which satisfies the Eilenberg-Steenrod axioms.1 Cohomology
groups provide a means of classifying types which is coarser but simpler to compute than homotopy
groups.

Given a span X
f← Z

g→ Y (of pointed types and basepoint-preserving maps), the Mayer-Vietoris
sequence is a particular infinite sequence of maps

· · · −→ Cn(ΣZ) −→ Cn(X tZ Y ) −→ Cn(X ∨ Y ) −→ Cn+1(ΣZ) −→ · · ·

(see Appendix A for definitions of Σ, t, and ∨ in homotopy type theory) which is exact : the kernel
of each map is the image of the previous map. Since the Eilenberg-Steenrod axioms prescribe that
Cn(ΣZ) = Cn−1(Z) and Cn(X ∨ Y ) = Cn(X) × Cn(Y ), this gives us a means, at least in some
cases, of decomposing a pushout’s cohomology in terms of its components’ cohomology.

For our purposes, we will be interested in the exactness of a sequence

Cn(ΣZ)
Cn(extract-glue)−→ Cn(X tZ Y )

Cn(reglue)−→ Cn(X ∨ Y ) (1)

The maps extract-glue and reglue are defined recursively by

extract-glue : X tZ Y → ΣZ
extract-glue (left x) = north
extract-glue (right y) = south

∗This research was sponsored in part by the National Science Foundation under grant numbers CCF-1116703 and
CCF-1445995 (REU). The views and conclusions contained in this document are those of the author and should not
be interpreted as representing the official policies, either expressed or implied, of any sponsoring institution, the U.S.
government or any other entity.

1See http://homotopytypetheory.org/2013/07/24/cohomology/ for a formulation and exposition of these axioms
in homotopy type theory. A specification of the axioms in Agda is available at https://github.com/HoTT/HoTT-Agda/
blob/master/cohomology/Theory.agda.

1

http://homotopytypetheory.org/2013/07/24/cohomology/
https://github.com/HoTT/HoTT-Agda/blob/master/cohomology/Theory.agda
https://github.com/HoTT/HoTT-Agda/blob/master/cohomology/Theory.agda


ap extract-glue (glue z) = merid z

reglue : X ∨ Y → X tZ Y
reglue (winl x) = left x
reglue (winr y) = right y
ap reglue wglue = ap left pf

−1 · glue z0 ·′ ap right pg

where pf : fz0 = x0 and pg : gz0 = y0 are the proofs that f and g preserve basepoint. (Here ·
is composition defined by induction on the left argument, and ·′ composition by induction on the
right. This particular choice is not necessary, but it is convenient.)

The exactness of this sequence can be proven by way of the Exactness axiom:

Axiom 1 (Exactness). Let pointed types X,Y and a (basepoint-preserving) map f : X → Y be

given. Then the sequence Cn(Cof(f))
Cn(cfcod)−→ Cn(Y )

Cn(f)→ Cn(X) is exact.

(Cof(f) is the cofiber space of f ; see Appendix A.) By defining a path mv-path : Cof(reglue) = ΣZ
and proving cfcod =V. XtZY→V

mv-path extract-glue, we can take the assertion that the sequence

Cn(Cof(reglue))
Cn(cfcod)−→ Cn(X tZ Y )

Cn(reglue)−→ Cn(X ∨ Y )

is exact and transport it along these equalities to prove that (1) is exact. In fact, a proof by this
method can be extended to prove the exactness of the long Mayer-Vietoris sequence.2 The existence
of two such paths is therefore our main theorem.

A fully formalized proof, including those aspects which are omitted here, is available in the HoTT-
Agda library at https://github.com/HoTT/HoTT-Agda/blob/master/cohomology/MayerVietoris.
agda.

2 Proof

In what follows, we assume that the basepoint-preservation proofs for f and g are idp, and therefore
that x0 ≡ f(z0) and y0 ≡ g(z0); this assumption can be justified by path induction. In this case,
we have ap reglue wglue = glue z0.

As an intuitive argument, consider the following picture:

2One must also consider the action of mv-path on the map Cn(X ∨ Y ) → Cn+1(ΣZ) – we omit this, since the
proofs involved are straightforward given the ideas developed here.

2

https://github.com/HoTT/HoTT-Agda/blob/master/cohomology/MayerVietoris.agda
https://github.com/HoTT/HoTT-Agda/blob/master/cohomology/MayerVietoris.agda


Yg[Z]

Z

X f [Z]x0

z0

y0

Figure 1: Image of reglue in X tZ Y

We view the pushout X tZ Y as consisting of X and Y with glue connecting f [Z] to g[Z]. The
image of X ∨ Y by reglue in this space is shaded gray; it consists of X, Y , and a single path
(the image of wglue) connecting x0 to y0. To obtain the cofiber space, Cof(reglue), we in essence
contract the shaded subset to a point. Equivalently, we could merely contract X and Y to points,
leaving the image of wglue (which is already equivalent to a point) intact. This leaves us with two
endpoints and a family of paths indexed by Z between them, which is precisely the structure of
ΣZ.

We prove the theorem by an equivalence Cof(reglue) ' ΣZ, following the high-level description
above.

Equivalence Maps

First, we define a function into : Cof(reglue) → ΣZ by recursion on the cofiber type. The point
cases are simple:

into : Cof(reglue)→ ΣZ
into cfbase = north
into (cfcod u) = extract-glue u

We now need a proof into-glue : Πw:X∨Y. north = extract-glue (reglue w), showing that extract-glue
maps any point in the image of reglue to north. For this we go by induction on ΣZ. For the point
cases, we can define

into-glue : Πw:X ∨ Y. north = extract-glue (reglue w)
into-glue (winl x) = idp
into-glue (winr y) = merid z0

For the coherence, we need a dependent path of type

idp =
w.north= extract-glue (reglue w)
wglue merid z0

3



This is equivalent to proving the following square (for an overview of squares, see Appendix B):

north north

north south

ap (λ →north) wglue

id
p

m
erid

z
0

ap (extract-glue ◦ reglue) wglue

We observe that ap (λ → north) wglue = idp and

ap (extract-glue ◦ reglue) wglue = ap extract-glue (ap reglue wglue)

= ap extract-glue (glue z0)

= merid z0

Applying these equalities, we are left to prove the square

north north

north south

idp

id
p

m
erid

z
0

merid z0

Since connection : Square idp idp q q is provable for any path q, we are done.

This completes our definition of the function into. We now define its inverse out : ΣZ → Cof(reglue).
Ideally, ap out (merid z) should reduce to something like ap cfcod (glue z). But while ap cfcod (glue z)
has type cfcod (left (fz)) = cfcod (right (gz)), the endpoints of ap out (merid z) are out north and
out south and must be independent of z. We can correct for this using the paths

cfglue (winl (fz)) : cfbase = cfcod (reglue (winl (fz))) ≡ cfcod (left (fz))

cfglue (winr (gz)) : cfbase = cfcod (reglue (winr (gz))) ≡ cfcod (right(gz))

Thus we define the point cases of out as

out : ΣZ → Cof(reglue)
out north = cfbase
out south = cfbase

We now need paths out-glue : Z → cfbase = cfbase; the above argument suggests we use

out-glue z = cfglue(winl(fz)) · ap cfcod (glue z) · cfglue(winr(gz))−1

4



We will instead use another, propositionally equal path which is more convenient for our use: we
define out-glue z by filling the following box, obtaining out-square z in the process:

cfbase cfbase

cfcod(left(fz)) cfcod(right(gz))

out-glue z

cfg
lu
e(w

in
l(f
z
))

out-square z

cfg
lu
e(w

in
r(g
z
))

ap cfcod (glue z)

This completes our definition of the equivalence maps. We now show these maps are mutually
inverse.

Right Inverse

We first show out is a right inverse, that is, that into (out σ) = σ for every σ : ΣZ; this is the
simpler of the two proofs.

The proof is by suspension induction. At the endpoints we define:

into-out : Πσ:ΣZ. into (out σ) = σ
into-out north = idp
into-out south = merid z0

For the coherence, we need for every z : Z a dependent path

idp =
σ.into (out σ)=σ
merid z merid z0

or equivalently, a square

north north

north south

ap (into ◦ out) (merid z)

id
p

m
erid

z
0

ap idΣZ (merid z)

Note that ap (into ◦ out) (merid z) = ap into (ap out (merid z)) = ap into (out-glue z). By applying
into to out-square (an operation analagous to ap into), we can obtain

5



north north

north south

ap into (out-glue z)

a
p

in
to

(cfg
lu
e(w

in
l(f
z
)))

ap-square into (out-square z)

a
p

in
to

(cfg
lu
e(w

in
r(g
z
)))

ap into (ap cfcod (glue z))

By definition of into, we know ap into (cfglue(winl(fz))) = idp and ap into (cfglue(winr(gz))) =
merid z0. Finally, ap into (ap cfcod (glue z)) = ap (into◦cfcod) (glue z)) ≡ ap extract-glue (glue z) =
merid z = ap idΣZ (merid z). Thus we can construct the square we need from ap-square into (out-square z).

Left Inverse

We now show that out is a left inverse. We have out (into cfbase) ≡ out north ≡ cfbase definitionally.
For the codomain, we go by induction on X tZ Y . We can prove the point cases as follows:

out-into-cod : Πγ:X tZ Y. out (into (cfcod γ)) = cfcod γ
out-into-cod (left x) = cfglue (winl x)
out-into-cod (right y) = cfglue (winr y)

To complete this definition, we need for every z : Z a dependent path

cfglue (winl (fz)) =
out (into (cfcod γ))=cfcod γ
glue z cfglue (winr (gz))

. We prove this via a square

cfbase cfbase

cfcod(left(fz)) cfcod(right(gz))

ap (out ◦ into ◦ cfcod) (glue z)

cfg
lu
e(w

in
l(f
z
))

out-into-cod-square z

cfg
lu
e(w

in
r(g
z
))

ap cfcod (glue z)

which we can build starting from out-square z, since

ap (out ◦ into ◦ cfcod) (glue z) = ap out (ap extract-glue (glue z)) = ap out (merid z) = out-glue z

We have now given proofs that out is a left inverse in the cfbase and cfcod cases. To finish the
induction, we need to give for every w : X ∨ Y a dependent path

idp =
κ.out(into κ) =κ
cfglue w out-into-cod (reglue w)

6



which we will do by giving a square

cfbase out (into (cfcod (reglue w)))

cfbase cfcod (reglue w)

ap (out ◦ into) (reglue w)

id
p

o
u
t-in

to
-co

d
(reg

lu
e
w

)
ap idX∨Y (cfglue w)

The top path is equal to ap out (into-glue w), and the bottom path to cfglue w. From here we go
by induction on w : X ∨ Y . In the case w ≡ winl x, the square simplifies to

cfbase cfbase

cfbase cfcod (left x)

idp

id
p out-into-sql x

cfg
lu
e

(w
in
l
x

)

cfglue (winl x)

which we can prove with connection. In the case w ≡ winr y, the square simplifies to

cfbase cfbase

cfbase cfcod (right y)

ap out (merid z0)

id
p out-into-sqr x

cfg
lu
e

(w
in
r
y
)

cfglue (winr y)

We will prove this square by concatenating two squares, one of which we leave unspecified3 for the
moment:

3Our proof of this square is somewhat indirect. To see why there ought to be a square with this type –
equivalently, to see why ap out (merid z0) = idp – recall the definition of out-glue z0 as a filler. The square
natural-square cfglue wglue’s type (see Appendix B) has the same left, bottom, and right edges as out-square z0;
since square fillers are unique, it follows that out-glue z0 is equal to the top edge in natural-square cfglue wglue’s type,
which is ap (λ → north) wglue. Thus ap out (merid z0) = out-glue z0 = ap (λ → north) wglue = idp.

7



cfbase cfbase

cfbase cfbase

cfbase cfcod (left x)

ap out (merid z0)

id
p ?

id
p

idp

id
p connection

cfg
lu
e

(w
in
r
y
)

cfglue (winr y)

Note that the type of the missing square is independent of y. In order to determine what this
square should be, we consider the coherence condition. We need to prove a dependent path

out-into-sql x0 =
w.Square idp (ap out (into-glue w)) (cfglue w) (out-into-cod (reglue w))
wglue out-into-sqr y0

We can prove a dependent path in a square fibration by giving a cube, in this case of the form

· ·

· ·

· ·

· ·

out-into-sql x
0

out-into-sqr y
0

For our purposes, we only need to know the definitions of the left and right squares; the precise
form is given in Appendix B, but we will not need it here.

Given five faces of a cube, we can find a cube filler, a sixth face such that the six together form
a cube. We are almost in a position to use this fact: we have one missing square, the ? in our
definition of out-into-sqr, which we want to choose so that we can prove the cube above. However,
the ? is not a face of the cube, but only a part of a face. In order to fix this, we will shift the
connection piece of out-into-sqr onto the bottom face of the cube, leaving only the ? on the right.
We accomplish this with the following lemma:

Lemma 1. Define the function

8



push : ∀q → Square p0− p−0 p−1 (p1− · q)→ Square p0− p−0 (p−1 ·′ q−1) p1−
push {p1− = idp} idp sq = sq

In order to construct a cube of type Cube sq−−0 (sq−−1 ·v sq′) sq0−− sq−0− sq−1− sq1−−,
where sq′ has type Square q0− q−0 q−1 q1−, it suffices to construct a cube of type
Cube sq−−0 sq−−1 (push q0− sq0−−) sq−0− (sq−1− ·′h (sym sq′)−1h) (push q0− sq1−−).

(Here, ·v is vertical composition of squares by induction on the first argument, ·′h is
horizontal composition by induction on the second argument, −1h is horizontal inversion,
and sym is the natural mapping from Square p q r s to Square q p s r.)

Proof. By square induction, we can assume sq′ ≡ ids. Generalizing slightly, we will
instead assume sq′ ≡ vid q−0 (where vid p : Square idp p p idp is defined inductively by
vid idp = ids). This makes it possible to do a second induction on the square sq−−1, the
upper square on the right face. In this case we observe that:

• q−0 ≡ idp, so sq′ reduces back to ids,

• sq−−1 ·v sq′ ≡ ids ·v ids ≡ ids ≡ sq−−1,

• the right edges of the squares sq0−− and sq1−− (where they connect to sq−−1)
are idp, which means that push q0− sq0−− ≡ push idp sq0−− ≡ sq0−− and likewise
push q1− sq1−− ≡ sq1−−,

• sq−1− ·′h (sym sq′)−1h ≡ sq−1− ·′h ids ≡ sq−1−.

Thus, in this case both cubes have type Cube sq−−0 sq−−1 sq0−− sq−0− sq−1− sq1−−,
so that we can trivially construct one from the other.

Now we can construct the cube we need: to get a cube of type

Cube (out-into-sql x0) (out-into-sqr y0) (. . .) (. . .) (. . .) (. . .)

that is, of type
Cube connection (? ·v connection) (. . .) (. . .) (. . .) (. . .)

we first choose ? to be the filler such that there is a cube of type

Cube connection ? (push m (. . .)) (. . .) (. . . ·′h sym connection) (push m (. . .))

We can then use the lemma above to convert that cube into the form we need. This completes the
definition of out-into, and thus the definition of the equivalence Cof(reglue) ' ΣZ.

Properties of the Equivalence

The equivalence additionally shows that Cof(reglue) and ΣZ are equal as pointed types, since the
equivalence is pointed: into sends the basepoint of Cof(reglue) (which is cfbase) to the basepoint of
ΣZ (north) by definition.

9



As for the effect of transporting cfcod along the equivalence, one can prove that for any function
f : A → B and equivalence e : B ' C that f =D.A→D

ua e e ◦ f . Writing mv-equiv : Cof(reglue) ' ΣZ
for the equivalence, we thus have

cfcod =V.XtZY→V
ua mv-equiv into ◦ cfcod ≡ extract-glue

as desired. Furthermore, cfcod and extract-glue correspond as basepoint-preserving functions given
the natural (and propositionally only) choice of basepoint-preservation proofs; we will not discuss
this here, but the definitions and proofs are available in the Agda library.

10



A Types Involved

The main higher inductive type used here is the pushout of a span X
f← Z

g→ Y , which is generated
by the following constructors:

data X tZ Y : Type where
left : X → X tZ Y
right : Y → X tZ Y
glue : Πz:Z. left (fz) = right (gz)

We assume that the computation rules for functions defined by higher induction hold definitionally
for point cases and propositional for higher cases. The other higher inductive types we use are all
special cases of the pushout:

Yg[Z]

Z

X f [Z]

(a) The pushout type.

X

Y

x0

y0

(b) The wedge type X ∨ Y is the pushout of the
span X ← · → Y , with constructors written as
winl : X → X ∨ Y , winr : Y → X ∨ Y , and
wglue : winl x0 = winr y0.

X

north

south

(c) The suspension type ΣX is the pushout of the
span · ← X → ·, with constructors north : ΣX,
south : ΣX, and merid : X → north = south.

Yf [X]

X

(d) The cofiber type Cof(f) of a function f : X →
Y is the pushout of the span · ← X

f→ Y , with
constructors cfbase : Cof(f), cfcod : Y → Cof(f),
and cfglue : Πx:X. cfbase = cfcod (fy). If f is an
“inclusion”, the effect is to contract the image of
X in Y to a point.

The basepoint of the pushout X tZ Y of a span of pointed functions is defined to be left x0 in the
Agda library, slightly arbitrarily; one could instead choose left (fz0), right (gz0), or right y0, all of

11



which are propositionally equal.

B Squares and Cubes

(This presentation is adopted from Dan Licata’s cubical library at https://github.com/dlicata335/
hott-agda/tree/master/lib/cubical.)

A square is the two-dimsensional analogue of a path, defined by the inductive type

data Square {A : Type} {a00 : A} : {a01 a10 a11 : A}
→ a00 = a01 → a00 = a10 → a01 = a11 → a01 = a11 → Type where
ids : Square idp idp idp idp

Exhibiting an element of type Square p0− p−0 p−1 p1− is equivalent to proving that p0− · p−1 =
p−0 · p1−, i.e. that the following square commutes:

a00 a10

a01 a11

p0−

p−0

p1−

p−1

One useful property expressible as a square is the naturality of homotopies: for functions f, g :
A→ B, a homotopy p : Πx:A.fx = gx, and a path q : a1 = a2, we have a square

fa1 fa2

ga1 ga2

pa1

ap f q

natural-square p q pa2

ap g q

In general, dependent paths in a fibration of the form x.fx = gx are expressible as squares: the
type u =x.fx=gx

p v is equivalent to the square type

fa1 fa2

ga1 ga2

u

ap f p

v

ap g p

with natural-square p q corresponding to apd p q : pa1 =x.fx=gx
q pa2.

The three-dimensional analogue is, unsurprisingly, the cube, which is defined inductively as

data Cube {A : Type} {a000 : A} : {a010 a100 a110 a001 a011 a101 a111 : A}
{p0−0 : a000 = a010} {p−00 : a000 = a100} {p−10 : a010 = a110} {p1−0 : a100 = a110}
{p0−1 : a001 = a011} {p−01 : a001 = a101} {p−11 : a011 = a111} {p1−1 : a101 = a111}
{p00− : a000 = a001} {p01− : a010 = a011} {p10− : a100 = a101} {p11− : a110 = a111}
(sq−−0 : Square p0−0 p−00 p−10 p1−0) (sq−−1 : Square p0−1 p−01 p−11 p1−1)

12

https://github.com/dlicata335/hott-agda/tree/master/lib/cubical
https://github.com/dlicata335/hott-agda/tree/master/lib/cubical


(sq0−− : Square p0−0 p00− p01− p0−1) (sq−0− : Square p−00 p00− p10− p−01)
(sq−1− : Square p−10 p01− p11− p−11) (sq1−− : Square p1−0 p10− p11− p1−1)
→ Type where
idc : Cube ids ids ids ids ids ids

To clarify, we visualize sq−−0 as the left face, sq−−1 as the right, sq0−− as the back, sq−0− as the
top, sq−1− as the bottom, and sq1−− as the front.

Just as a dependent path in a fibration x.fx = gx can be expressed as a square, a dependent path in
a fibration x.Square (p0−x) (p−0x) (p−1x) (p1−x) can be expressed as a cube. For a path q : a1 = a2

and squares u : Square (p0−a1) (p−0a1) (p−1a1) (p1−a1) and v : Square (p0−a2) (p−0a2) (p−1a2) (p1−a2),

the type u =
x.Square (p0−x) (p−0x) (p−1x) (p1−x)
q v is equivalent to the cube type

Cube u v (natural-square p0− q) (natural-square p−0 q) (natural-square p−1 q) (natural-square p1− q)

The most useful property of squares and cubes for our purposes is the existence of fillers. Given
three consecutive edges (a frame for a square missing one edge), there exists a (propositionally)
unique fourth edge such that the four form a square. Likewise, given five faces of a cube, there is
a unique sixth face which completes the cube.

13


	Introduction
	Proof
	Types Involved
	Squares and Cubes

