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APPENDIX
A. ALGORITHM PSEUDO-CODE

Algorithm 1 Continuous State Online Multitask RL with
Identification (COMRLI)

Require: T1, C̄, LQ, ε,Γ, H
for t = 1, 2, . . . T1 do

Receive an unknown MDP Mt ∈M
Run algorithm 2 on Mt with (Γ, D)-known.
For all remaining steps until H steps, execute C-PACE

algorithm on Mt

Store all samples as a set SampleMt
end for
Cluster all tasks into Ĉ ≤ C̄ groups and combine their
sample sets.
for t = T1 + 1, . . . T do

Receive unknown MDP Mt ∈M
Run algorithm 3 on Mt

if Mt is identified then
Combine samples from Mt to the group

end if
end for

B. PROOFS OF LEMMAS

B.1 Proposition 1
Proposition 1. (lemma 4.5 in [2]) There are at most

k · NSA(LQ,Γ) number of visits to state-action pairs that
are unknown in Algorithm 2, where a known state-action
pair means it has k visited neighbors within a distance of
Γ(1−γ)

8LQ
.

B.2 Proof of Proposition 2
Proposition 2. In Algorithm 2, denoting the exact Bell-

man operator by B and the upper bound of Q value by Qmax,
if

4Q2
max

ε2
ln

(
4NSA(LQ,Γ)

δ

)
≤ k ≤ 4NSA(LQ,Γ)

δ
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Algorithm 2 Phase 1: Continuous PAC Explore

Require: Te, LQ,Γ

Set the neighborhood radius to min{Γ/4,1/24}
LQ

while some (s, a) is unknown (see Def.??) do
This is a start of new Te-step episode.
Find a Te-step undiscounted optimistic Q-function

Q0,Te by:
Initialize: QTe,Te (s, a) = 0
for t = Te − 1, . . . , 0 do

if (s, a) is known then
Find k nearest neighbors of (s, a):

(sj , aj , rj , s
′
j)
k
j=1

Qt,Te = 1
k

k∑
j=1

(
rj + max

a
Qt+1,Te

(
s
′
j , a
)

+ LQdij
)

else
Qt,Te = (Te − t)

end if
end for
Take greedy policy of Q0,Te (s, a) for next Te steps.
if (s, a) is unknown then

Add (s, a, r, s′) to the sample set
end if

end while

and the radius of the neighborhood is no more than Γ
2LQ

,

then w.p. 1− δ/2, for all known (s, a) (Known is defined in
proposition 1), we have:

|Qt,Te (s, a)−BQt+1,Te (s, a)| ≤ Γ

where Te is the finite horizon length in algorithm 2, and
t < Te.

Proof. By proposition 1, there should be at most kNSA(LQ,Γ)
unknown samples in algorithm 2. By lemma 3.13 in [4], we

have that if
Q2
max
Γ2 ln

(
4NSA(LQ,Γ)

δ

)
≤ k ≤ 4NSA(LQ,Γ)

δ
, then

w.p. 1− δ/2 for any known (s, a) and t,

−Γ/2 ≤ B̂Qt,Te (s, a)−BQt,Te (s, a) ≤ Γ/2

We also have

0 ≤ B̃Qt,Te (s, a)− B̂Qt,Te (s, a) ≤ Γ/2

and Qt,Te = B̃Qt+1,Te by definition. Then combining them
together we get

−Γ ≤ Qt,Te (s, a)−BQt+1,Te (s, a) ≤ Γ



Algorithm 3 Phase 2: Continuous Identify

Require: Γ, ε, C̄,H, Ti, n
Initialize version space: C ← {1, . . . , C̄}
while h < H do

for c ∈ C do
Use algorithm 2 with samples from Mc to find a

informative pair (s, a), s.t.
∣∣∣QπiMi(s, a)−QπjMj (s, a)

∣∣∣ ≥ 7Γ
8

if informative pair (s, a) is reached then
Break the loop.

end if
end for
for g = {i, j} do

for t = 1 . . . Ti do (Monte Carlo estimate)
Run the greedy policy of QMg , πg, for n steps

Rgt ← r(s, a) +
∑n
l=1 γ

lrl, h← h+ n

D̃ ← 1
while Haven’t returned to (s, a) do

for c ∈ C do
Use Mc to create an informative MDP,

and try to go back to (s, a) within 12D̃ ln C̄
δ

steps.
if get back to (s, a) then

Break the loop.
end if

end for
D̃ ← 2D̃

end while
end for
Rg ← 1

Ti

∑Ti
t=1 Rgt

if
∣∣Rg −QMg (s, a)

∣∣ ≥ Γ
8
then

C ← C\{g}
end if

end for
if Both i,j haven’t been eliminated then

Eliminate the model k with a smaller Rg.
end if
if Only one group left then

Combine the sample sets and run C-PACE
end if

end while

B.3 Proof of Proposition 3

Proposition 3. Assume R ∈ [0, 1]. Suppose in Algo-
rithm 2, |Qt,Te (s, a)−BQt+1,Te (s, a)| ≤ Γ, π is a Te-step
greedy policy introduced by Qt,Te , and Qπt,Te is the Q value of
this policy. Then ∀ known (s, a) (Known is defined in propo-
sition 1), t<T,

∣∣Q∗t,Te (s, a)−Qπt,Te (s, a)
∣∣ ≤ 2 (Te − t) Γ, and∣∣V ∗t,Te (s) ≤ V πt,Te (s)

∣∣ ≤ 2 (Te − t) Γ

Proof. Firstly we need to clarify some notations: B is
the exact Bellman operator. B̂ is the approximate Bellman
operator which is defined in [4]:

B̂Q(s, a) =
1

k

k∑
i=1

(
ri + γV (s

′
i)
)

where (si, ai, ri, s
′
i) ranges over the k nearest neighbor tu-

ples. B̃ denotes the approximate Bellman operator defined

by the right side of equation 1 in [4]:

B̃Q(s, a) =
1

k

k∑
i=1

(
ri + γV (s

′
i) + LQdi

)
where LQ is the Lipschitz constant and di is the distance
between (s, a) and (si, ai). Then, we will prove∣∣Q∗t,Te (s, a)−Qt,Te (s, a)

∣∣ ≤ (Te − t) Γ

for all 0 ≤ t ≤ Te by induction. For t = Te, Q
∗
t,Te (s, a) =

Qt,Te (s, a) = 0. Then assuming the inequality holds for
t+1, we want to prove the result also holds for t:∣∣Q∗t,Te −Qt,Te ∣∣ ≤ ∣∣BQ∗t+1,Te −BQt+1,Te

∣∣
+ |BQt+1,Te −Qt,Te |

≤

∣∣∣∣∣∑
s′

P (s′|s, a)
(
maxa′Q

∗
t+1,Te(s′, a′)

−maxa′Qt+1,Te(s′, a′)
)∣∣+ Γ

≤ (Te − t− 1) Γ + Γ

= (Te − t) Γ

The first step follows from triangle inequality and the fact
Q∗t,Te = BQ∗t+1,Te . The second line follows from the as-
sumption in the proposition. The third line follows from the
assumption of induction hypothesis. Now we have∣∣Q∗t,Te (s, a)−Qt,Te (s, a)

∣∣ ≤ (Te − t) Γ

Then we will bound the difference betweenQπt,Te andQt,Te
in a similar way. Here we define a new Bellman operator Bπ:

BπQt,Te(s, a) = R(s, a) +
∑
s′∈S

P (s′|s, a)Qt+1,Te(s′, π(s′))

From the definition, we know Qπt,Te = BπQπt+1,Te . Since π is
the greedy policy over Q, we have BQ = BπQ. Replace the
B operator above with Bπ, then following similar inequali-
ties we have

∣∣Qπt,Te (s, a)−Qt,Te (s, a)
∣∣ ≤ 2 (Te − t) Γ. Then

by triangle inequality we get the result. After we have the
bound on Q, the the bound on V immediately follows.

B.4 Proof of Lemma 1

Lemma 1. After no more than O
((
kNSA,−(LQ) + ln 1

δ

)
D
)

steps of algorithm 2, every state-action pair will have at
least k visited neighbors, with probability of 1− δ, where k ≥
kmin = O

(
D2 ln

(
NSA(LQ,Γ)

δ

))
, k ≤ kmax = O

(
NSA(LQ,Γ)

δ

)
.

Proof. For convenience, we denote a visit to an unknown
state-action pair in algorithm 2 as an escape. By the diame-
ter assumption and Markov’s inequality, we have that there
exists a policy π that will escape within 2D steps with a
probability of at least 1/2. So such a policy would get a
reward of D in T = 3D steps in MK . So the optimal policy
will get at least D reward if we set Te = 3D steps, which
means V ∗0,Te (s) ≥ D. By applying proposition 3, we get
w.p. 1− δ/2, V π0,Te (s) is at least D− 2TeΓ, which could also
be expressed as

Te∑
t=1

Pr (escape at t) (Te − t)

So with probability of 1−δ/2 we get the probability of escape
in T steps, pe, could be at least a constant such as 1

4
by using



a Γ smaller than 1/24:

pe =

Te∑
t=1

Pr (escape at t) ≥
Te∑
t=1

Pr (escape at t)
Te − t
Te

≥ D

Te
− 2Γ =

1

3
− 2Γ ≥ 1

4

Every Te-step episode has at least probability pe of escaping.
Since there are at most kNSA(LQ,Γ) number of escapes be-
fore everything is known, we can bound how many episodes
there are until everything is known with high probability
(1− δ/2). Lemma 56 from [3] yieldsO

(
kNSA(LQ,Γ) + ln 1

δ

)
for the number of episodes. Then the total number of time-
steps required is O

((
kNSA(LQ,Γ) + ln 1

δ

)
D
)
. The lower

bound of pe holds with probability 1 − δ/2, so the whole
theorem holds by a union bound with probability 1 − δ.
Note that the Qmax in the constraint of k is no more that
T = O (D).

B.5 Lemma 2

Lemma 2. (lemma 1 in [1]) If we set T1 =
ln C̄

δ
pmin

then

w.p. 1 − δ, all distinct MDPs will be encountered in phase
1.

B.6 Proof of Lemma 3

Lemma 3. If M1 and M2 are 2 MDPs such that for any
(s,a) pair,

|rM1(s, a)− rM2(s, a)| < ε(1−γ)
2∫

S |TM1(s′|s, a)− TM2(s′|s, a)|ds′ < ε(1−γ)2

2

then the optimal Q-functions for M1 and M2, QM1 and
QM2 , satisfy that for any (s,a) pair

|QM1(s, a)−QM2(s, a)| < ε

Proof. Let B1 and B2 denote the Bellman operators of
M1 and M2, and Q0 denotes an arbitrary function over
S ×A. To show the result, it is sufficient to prove that
|Bi1Q0(s, a)−Bi2Q0(s, a)| ≤

∑i
j=0 γ

jε(1− γ), and then take
the limit as i → ∞. We prove this by induction. The base
case is trivial since Q0(s, a) = Q0(s, a). Assuming the state-

ment holds for i, we consider the case of i+1:

|Bi+1
1 Q0(s, a)−Bi+1

2 Q0(s, a)|
≤ |rM1(s, a)− rM2(s, a)|

+ γ

∣∣∣∣∫
S
TM1(s′|s, a)maxa′B

i
1Q0(s, a)ds′

−
∫
S
TM2(s′|s, a)maxa′B

i
2Q0(s, a)ds′

∣∣∣∣
≤ |rM1(s, a)− rM2(s, a)|

+ γ

∣∣∣∣∫
S

(TM1(s′|s, a)− TM2(s′|s, a))maxa′B
i
1Q0(s, a)ds′

+

∫
S
TM2(s′|s, a)maxa′B

i
1Q0(s, a)ds′

−
∫
S
TM2(s′|s, a)maxa′B

i
2Q0(s, a)ds′

∣∣∣∣
≤ ε(1− γ)

2
+ γ

∣∣∣∣Qmax ∫
S
|TM1(s′|s, a)− TM2(s′|s, a)|ds′

∣∣∣∣
+ γ

∣∣∣∣∫
S
TM2(s′|s, a)|maxa′Bi1Q0(s, a)−maxa′Bi2Q0(s, a)|ds′

∣∣∣∣
≤ ε(1− γ)

2
+ γ

1

1− γ ×
ε(1− γ)2

2
+ γ

i∑
j=0

γjε(1− γ)

≤ ε(1− γ) + γ

i∑
j=0

γjε(1− γ)

=

i+1∑
j=0

γjε(1− γ)

The first inequality follows from the definition of Bellman
operator. The second inequality follows by adding and sub-
tracting the same thing. The third inequality follows by the
triangle inequality. The fourth inequality follows from the
condition of the lemma and the inductive assumption.

B.7 Proof of Lemma 4

Lemma 4. If all tasks in phase 1 are run for at least Hmin
steps, with probability 1− δ, the following holds:

1. For all tasks, any state-action pair (s, a) will receive

at least O
(

Q2
max

Γ2(1−γ)2
ln
(
T1NSA(LQ,Γ)

δ

))
visited neigh-

bors whose distance with (s, a) is no more than Γ
8LQ

((Γ, D)-known).

2. Tasks in phase 1 will be clustered correctly with high
probability.

3. For any cluster, the max-norm distance between the
approximate Q-function and the true optimal Q-function
for any task in this cluster is at most 5∗Γ

16
.

Proof. The first statement could be proved immediately
by lemma 1.

Before we prove the second statement, we firstly clarify
how to cluster tasks at the end of phase 1. For each task,

we find a fixed-point solution QMi of Q = B̃Q, where B̃ is
defined in C-PACE. Then we check all the state-action pairs
in a covering set and put two tasks that have Γ

2
-close value

on all the pairs into one cluster.
We are going to prove that after clustering like this, dif-

ferent tasks would be clustered into different groups and the



same tasks would be put into the same group. We will first
prove there must exist an 3Γ

4
difference between Q∗ of dif-

ferent tasks on the covering set, and the Q∗ of tasks within
one underlying cluster is Γ

4
close. Then we prove the fixed

solution QMi is a Γ
16

-close approximation of Q∗. These will
prove that the distance of approximate Q-functions from a
same underlying cluster should be at most 3Γ

8
= Γ

4
+2∗ Γ

16
.

Thus a threshold of Γ
2

would ensure the correctness of clus-
tering.

By the assumption of a Q-gap Γ and the Lipschitz smooth-
ness, we could say for any two distinct tasks i, j, there exists
at least a state-action pair such that the optimal Q-function
is different in its neighborhood. By the definition of a cov-
ering set, there must exists one point in the covering set in
such a neighborhood. Therefore for such a point, the opti-
mal Q function has a gap of at least 3Γ

4
.

Note that when we define the underlying MDP cluster,
we guarantee that their parameters are within a distance of
ε(1−γ)2

16
, and Γ is at least ε

2
. Thus by lemma 3, the max-norm

distance of optimal Q functions within one true underlying
cluster are at most Γ

4
.

Then we prove that
∣∣QMi(s, a)−Q∗Mi

∣∣ ≤ Γ
16

for all (s, a)
in the covering set and Mi in the T1 tasks. We have at

least k =
162Q2

max
Γ2(1−γ)2

ln
(
NSAT1

δ

)
neighbors for any point in

the covering set Sc. Note the size of the covering set is
O(NSA(LQ,Γ)) and we certainly have T1 tasks. By Lemma
3.14 in [4], the fixed point solution Q satisfies that

|QMi −BQMi | ≤
Γ

16(1− γ)

for any Mi. Then using Proposition 4.1 in [5], we have
|Q∗ −Q| ≤ Γ

16
for all the T1 tasks.

Now we have already proved the third statement: The
distance of approximate Q functions of any MDP with its
optimal Q function is at most Γ

16
, and the distance between

optimal Q of MDPs within a cluster is Γ
4

. So the distance be-
tween approximate Q-function with the optimal Q-functions
for any MDP in the same cluster is Γ

4
+ Γ

16
≤ 5Γ

16
.

B.8 Proof of Lemma 5 (in the paper)

Lemma 5. If every state-action pair is (Γ, D)-known, then
given any start state and desired state-action pair, it is pos-
sible to visit the desired state-action pair’s neighborhood in

no more than Õ(D) steps with high probability.

Proof. Firstly, we construct an MDP Minform such that
the desired state-action pairs have unit reward and all oth-
ers have 0 reward. The desired pair is a self-loop and other
transition probabilities are inherited from the true MDP dy-
namics. We know which point is desired, so we can modify
the original samples to become samples in the new MDP
Minform. Because now every pair is (Γ, D)-known, so we
have O(D2) samples in every state-action’s neighborhood in
this Minform. Following a similar analysis of lemma 1, we
could find a policy whose probability of reaching the desired
region within 3D steps is at least 1

4
. Then after 3D log 3

4
δ

steps the policy could reach the desired region with proba-
bility of 1− δ.

B.9 Proof of Lemma 6 (in the paper)

Lemma 6. When we face an unknown task in phase 2, we
could reach any desired state-action pair within O(C̄D ln C̄

δ
)

steps with probability 1− δ
C̄

.

Proof. First, consider the case where we know the diam-
eter D. The unknown task must be one of the C̄ tasks from
phase 1. Our algorithm tries to run each policy in 3D ln C̄

δ
steps to the desired state-action pair using the samples from
one of the C̄ tasks, thus lemma 6 holds with probability
1 − C̄

δ
. By trying all policies from the C̄ tasks, we will en-

counter the one policy that corresponds to the same task
and reach the desired region with high probability.

If we don’t know the diameter, we could use the doubling
trick to find an upper bound on D without an increase in
the sample complexity. First we try the whole process with

D̃ = 1. If we fail, we double the D̃ and begin a new trial.

When D̃ is bigger than the true value of D, the rest of the
analysis is the same as when we know the true diameter.

B.10 Proof of Lemma 7

Lemma 7. If Ti in algorithm 3 is at least O
(
Q2
max
Γ2 ln C̄

δ

)
and n is at least O(logγ Γ), we could compute an approxi-

mate Q value of policy π over the current task M ′: Q̂πiM′(s, a) =

Ri such that for any (s, a),
∣∣∣Q̂πiM′(s, a)−QπiM′(s, a)

∣∣∣ ≤ Γ
16

with probability 1− δ
C̄

.

Proof. By setting n to at least logγ
Γ(1−γ)

32
we have that

for each episode t, ‖Rit −
∑∞
l=0 γ

lrl‖ ≤ Γ
32

. Note that the

expectation of
∑∞
l=0 γ

lrl is QπiM′(s, a). We bound the error
as follows:

P

(∣∣∣Q̂πiM′(s, a)−QπiM′(s, a)
∣∣∣ ≥ Γ

16

)

= P

(∣∣∣∣∣ 1

Ti

Ti∑
t=1

Rit−QπiM′(s, a)

∣∣∣∣∣ ≥ Γ

16

)

≤ P

(∣∣∣∣∣ 1

Ti

Ti∑
t=1

(
∞∑
l=0

γlrl

)
−QπiM′(s, a)

∣∣∣∣∣ ≥ Γ

32

)

≤ 2exp

{
− 2TiΓ

2

322Q2
max

}
The first step follows from the definition of Q̂πiMi(s, a). The

second step follows from the fact ‖Rit −
∑∞
l=0 γ

lrl‖ ≤ Γ
32

.
The third step follows from the Hoeffding inequality. Setting
the probability above to δ

C̄
and solving for Ti, we have that

Ti = O

(
Q2
max

Γ2
ln
C̄

δ

)
is sufficient to guarantee our desired result.

B.11 Proof of Lemma 8

Lemma 8. If both model Mi and Mj haven’t been elimi-
nated by

∣∣Rg −QMg (s, a)
∣∣ ≥ Γ

8
in algorithm 3, then the true

model should have a greater Rg with high probability.

Proof. Without loss of generality, we assume Mi is in



the same underlying cluster with current task M ′. Then:∣∣∣Q̂πiMi(s, a)−Q∗M′(s, a)
∣∣∣

≤
∣∣∣Q̂πiMi(s, a)−QπiMi(s, a)

∣∣∣+
∣∣∣QπiMi(s, a)−QMi(s, a)

∣∣∣
+ |QMi(s, a)−Q∗M′(s, a)|

≤ Γ

16
+

Γ

16
+

5Γ

16

=
7Γ

16

The first step follows from triangle inequality. In the second
step, the first replacement follows from Lemma 7, the second
replacement follows from proposition 4.1 in [5], and the third
replacement follows from Lemma 4. Because Mj also hasn’t
been eliminated:∣∣QπjM′(s, a)−QMj (s, a)

∣∣
≤

∣∣∣QπjM′(s, a)− Q̂πjM′(s, a)
∣∣∣+
∣∣∣Q̂πjM′(s, a)−QMj (s, a)

∣∣∣
≤ Γ

16
+

Γ

8

=
3Γ

16

The first inequality is from the triangle inequality. The sec-
ond inequality follows from Lemma 7 (for the first erm) and
the elimination condition at line 16 in Algorithm 3 (for the
second term). We know there is a gap in the Q-function
between Mi and Mj because (s,a) is an informative state-
action pair:

∣∣QMi(s, a)−QMj (s, a)
∣∣ ≥ 7Γ

8
. Then QMj (s, a)

must be smaller than QMi(s, a). Otherwise it implies that
Q
πj
Mi

(s, a) is larger than Q∗M′(s, a). However that is impossi-
ble because Q∗M′ is the optimal policy’s Q value. Therefore,

Q̂πiM′(s, a)− Q̂πjM′(s, a)

= (Q̂πiM′(s, a)−QMi(s, a)) + (QMj (s, a)− Q̂πjM′(s, a))

+ (QMi(s, a)−QMj (s, a))

≥ −Γ

8
− Γ

8
+

7Γ

8

≥ 5Γ

8

The first inequality’s first two terms follows from the elimi-
nation condition at line 16 in Algorithm 3. The third term
follows because (s, a) is an informative pair and the fact that
we just showed that QMi(s, a) > QMj (s, a), so QMi(s, a) −
QMj (s, a) ≥ 7Γ

8
. Now we have shown that the approximate

Q value of the true model’s policy must be larger than the
other. Thus when we eliminate a candidate with the smaller
Q-value, we will not eliminate the true candidate of the cur-
rent task.

B.12 Proof of Lemma 9

Lemma 9. In phase 2, After

O

(
Q2
max

Γ2
C̄ ln

C̄

δ

(
C̄D ln

C̄

δ
+ logγ Γ

))
steps, we correctly identify the new task with probability at
least 1− δ.

Proof. From Lemma 7, O
(
Q2
max
Γ2 C̄ ln C̄

δ
logγ Γ

)
total steps

(across multiple trajectories) is sufficient to closely estimate

QπiM′(s, a) for each i ∈ C with probability at least 1 − δ
2C̄

.
Then by Lemma 8, we eliminate at least one candidate
model per one informative state-action pair. However, each
possible trajectory must start at the same informative state–
action pair.

From Lemma 6 O(C̄D) steps are sufficient to return to a
desired informative state–action pair with high probability.
Therefore the total number of steps required to identify the
current task is bounded by

O

(
Q2
max

Γ2
C̄ ln

C̄

δ

(
D ln

C̄

δ
+ logγ Γ

))
where we have applied the union bound to ensure the final
bound holds with probability at least is 1− δ.
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