Appendix

A. Algorithm Pseudo-code

Algorithm 1 Continuous State Online Multitask RL with Identification (COMRI)

Require: $T_1, C, L_Q, \epsilon, \Gamma, H$

for $t = 1, 2, \ldots, T_1$ do

Receive an unknown MDP $M_t \in M$

Run algorithm 2 on M_t with (Γ, D)-known.

For all remaining steps until H steps, execute C-PACE algorithm on M_t

Store all samples as a set $Sample_{M_t}$

Cluster all tasks into $\tilde{C} \leq C$ groups and combine their sample sets.

for $t = T_1 + 1, \ldots, T$ do

Receive unknown MDP $M_t \in M$

Run algorithm 3 on M_t with (known M_t)

if M_t is identified then

Combine samples from M_t to the group

end if

end for

B. Proofs of Lemmas

B.1 Proposition 1

Proposition 1. (Lemma 4.5 in [2]) There are at most $k \cdot N_{S,A}(L_Q, \Gamma)$ number of visits to state-action pairs that are unknown in Algorithm 2, where a known state-action pair means it has k visited neighbors within a distance of $\Gamma(1 - \gamma)/8L_Q$.

B.2 Proof of Proposition 2

Proposition 2. In Algorithm 2, denoting the exact Bellman operator by T and the upper bound of Q value by Q_{max}, if

$$4Q_{\text{max}}^2 / \epsilon^2 \ln \left(\frac{4N_{S,A}(L_Q, \Gamma)}{\delta} \right) \leq k \leq 4N_{S,A}(L_Q, \Gamma) / \delta$$

Algorithm 2 Phase 1: Continuous PAC Explore

Require: T_e, L_Q, Γ

Set the neighborhood radius to $\frac{\min\{\epsilon/4, 1/24\}}{L_Q}$

while some (s, a) is unknown (see Def. ??) do

This is a start of new T_e-step episode.

Find a T_e-step undiscounted optimistic Q-function Q_{0, T_e} by:

- Initialize: $Q_{T_e}(s, a) = 0$
- for $t = T_e - 1, \ldots, 0$ do

 if (s, a) is known then

 Find k nearest neighbors of (s, a): (s_j, a_j, r_j, s_j') for $j = 1, \ldots, k$

 $Q_{t, T_e} = \frac{1}{k} \sum_{j=1}^{k} (r_j + \max_a Q_{t+1, T_e}(s_j', a) + L_Q d_{ij})$

 else

 $Q_{t, T_e} = (T_e - t)$

 end if

end for

end if

Take greedy policy of $Q_{0, T_e}(s, a)$ for next T_e steps.

if (s, a) is unknown then

Add (s, a, r, s') to the sample set

end if

end while

and the radius of the neighborhood is no more than $\frac{\Gamma}{2L_Q}$, then w.p. $1 - \delta/2$, for all known (s, a) (Known is defined in proposition 1), we have:

$$|Q_{t, T_e}(s, a) - BQ_{t+1, T_e}(s, a)| \leq \Gamma$$

where T_e is the finite horizon length in algorithm 2, and $t < T_e$.

Proof. By proposition 1, there should be at most $kN_{S,A}(L_Q, \Gamma)$ unknown samples in algorithm 2. By lemma 3.13 in [4], we have that if $Q_{\text{max}}^2 / \epsilon^2 \ln \left(\frac{4N_{S,A}(L_Q, \Gamma)}{\delta} \right) \leq k \leq 4N_{S,A}(L_Q, \Gamma) / \delta$, then w.p. $1 - \delta/2$ for any known (s, a) and t.

$$-\Gamma/2 \leq BQ_{t, T_e}(s, a) - BQ_{t+1, T_e}(s, a) \leq \Gamma/2$$

We also have

$$0 \leq BQ_{t, T_e}(s, a) - BQ_{t+1, T_e}(s, a) \leq \Gamma/2$$

and $Q_{t, T_e} = BQ_{t+1, T_e}$ by definition. Then combining them together we get

$$-\Gamma \leq Q_{t, T_e}(s, a) - BQ_{t+1, T_e}(s, a) \leq \Gamma$$

\[\square\]
B.3 Proof of Proposition 3

Proposition 3. Assume \(R \in [0,1] \). Suppose in Algorithm 2, \(|Q_{t,T_e}(s,a) - BQ_{t+1,T_e}(s,a)| \leq \Gamma \), \(\pi \) is a \(T_e \)-step greedy policy introduced by \(Q_{t,T_e} \), and \(Q^*_{t,T_e} \) is the \(Q \) value of this policy. Then \(\forall \) known \((s,a)\) (Known is defined in proposition 1), \(t < T_e \), \(|Q^*_{t,T_e}(s,a) - Q_{t,T_e}(s,a)| \leq 2(T_e-t)\Gamma \), and

\[
|V^*_{t,T_e}(s) - V_{t,T_e}(s)| \leq 2(T_e-t)\Gamma
\]

Proof. Firstly we need to clarify some notations: \(B \) is the exact Bellman operator. \(\hat{B} \) is the approximate Bellman operator which is defined in [4]:

\[
\hat{B}Q(s,a) = \frac{1}{k} \sum_{i=1}^{k} \left(r_i + \gamma V'(s'_i) + LQd_i \right)
\]

where \(LQ \) is the Lipschitz constant and \(d_i \) is the distance between \((s,a)\) and \((s_i,a_i)\). Then, we will prove:

\[
|Q^*_{t,T_e}(s,a) - Q_{t,T_e}(s,a)| \leq (T_e-t)\Gamma
\]

for all \(0 \leq t \leq T_e \) by induction. For \(t = T_e \), \(Q^*_{T_e,T_e}(s,a) = Q_{T_e,T_e}(s,a) = 0 \). Then assuming the inequality holds for \(t+1 \), we want to prove the result also holds for \(t \):

\[
|Q^*_{t,T_e}(s,a) - Q_{t,T_e}(s,a)| \leq |BQ^*_{t+1,T_e} - BQ_{t+1,T_e}| + |BQ_{t+1,T_e} - Q_{t,T_e}| \leq \frac{1}{k} \sum_{i} P(s'|s,a) \max_{a'} Q_{t+1,T_e}(s',a') \leq (T_e-t)\Gamma + \Gamma \leq (T_e-t)\Gamma
\]

The first step follows from triangle inequality and the fact \(Q^*_{t,T_e} = BQ^*_{t+1,T_e} \). The second line follows from the assumption in the proposition. The third line follows from the assumption of induction hypothesis. Now we have:

\[
|Q^*_{t,T_e}(s,a) - Q_{t,T_e}(s,a)| \leq (T_e-t)\Gamma
\]

Then we will bound the difference between \(Q_{t,T_e} \) and \(Q^*_{t,T_e} \) in a similar way. Here we define a new Bellman operator \(B^\pi \):

\[
B^\pi Q_{t,T_e}(s,a) = R(s,a) + \sum_{s' \in S} \pi^*(s') Q_{t+1,T_e}(s',a')
\]

From the definition, we know \(Q^*_{t,T_e} = B^\pi Q_{t+1,T_e} \). Since \(\pi \) is the greedy policy over \(Q \), we have \(BQ = B^\pi Q \). Replace the \(B \) operator above with \(B^\pi \), then following similar inequalities we have:

\[
|Q^*_{t,T_e}(s,a) - Q_{t,T_e}(s,a)| \leq 2(T_e-t)\Gamma
\]

Then by triangle inequality we get the result. After we have the bound on \(Q \), the the bound on \(V \) immediately follows. \(\Box \)

B.4 Proof of Lemma 1

Lemma 1. After no more than \(O \left((kN_{S,A}^2 - (LQ) + \ln \frac{1}{\delta} \right) D \) steps of algorithm 2, every state-action pair will have at least \(k \) visited neighbors, with probability of \(1-\delta \), where \(k \geq k_{\min} = O \left(D^2 \ln \left(\frac{N_{S,A}^2 (LQ)}{\delta} \right) \right) \).

Proof. For convenience, we denote a visit to an unknown state-action pair in algorithm 2 as an escape. By the diameter assumption and Markov’s inequality, we have that there exists a policy \(\pi \) that will escape within 2D steps with a probability of at least 1/2. So such a policy would get a reward of \(D \) in \(T = 3D \) steps in \(M_{\pi_c} \). So the optimal policy will get at least \(D \) reward if we set \(T_e = 3D \) steps, which means \(V^*_{t,T_e}(s) \geq D \). By applying proposition 3, we get w.p. \(1-\delta/2 \), \(V^*_{t,T_e}(s) \) is at least \(D - 2T_e \Gamma \), which could also be expressed as:

\[
\sum_{t=1}^{T_e} Pr(\text{escape at } t) (T_e - t)
\]

So with probability of \(1-\delta/2 \) we get the probability of escape in \(T \) steps, \(p_e \), could be at least a constant such as \(\frac{1}{2} \) by using...
a Γ smaller than $1/24$:

$$p_e = \sum_{t=1}^{T_e} \Pr(\text{escape at } t) \geq \sum_{t=1}^{T_e} \Pr(\text{escape at } t) \frac{T_e - t}{T_e}$$

$$\geq \frac{D}{T_e} - 2\Gamma \geq 1/3 - 2\Gamma \geq 1/4$$

Every T_e-step episode has at least probability p_e of escaping. Since there are at most $kNQ_A(LQ, \Gamma)$ number of escapes before everything is known, we can bound how many episodes there are until everything is known with high probability $(1 - \delta/2)$. Lemma 56 from [3] yields $O(kNQ_A(LQ, \Gamma) + \ln \frac{1}{\delta})$ for the number of episodes. Then the total number of time-steps required is $O\left((kNQ_A(LQ, \Gamma) + \ln \frac{1}{\delta}) D \right)$. The lower bound of p_e holds with probability $1 - \delta/2$, so the whole theorem holds by a union bound with probability $1 - \delta$. Note that the Q_{\max} in the constraint of k is no more that $T = O(D)$. \(\square\)

B.5 Lemma 2

Lemma 2. (Lemma 1 in [1]) If we set $T_1 = \frac{\ln \frac{\delta}{p_{\min}}}{p_e}$ then w.p. $1 - \delta$, all distinct MDPs will be encountered in phase 1.

B.6 Proof of Lemma 3

Lemma 3. If M_1 and M_2 are 2 MDPs such that for any (s,a) pair,

$$|r_{M_1}(s,a) - r_{M_2}(s,a)| < \frac{\epsilon(1-\gamma)}{2}$$

$$\int_{S} |T_{M_1}(s'|s,a) - T_{M_2}(s'|s,a)| ds' < \frac{\epsilon(1-\gamma)^2}{2}$$

then the optimal Q-functions for M_1 and M_2, Q_{M_1} and Q_{M_2}, satisfy that for any (s,a) pair

$$|Q_{M_1}(s,a) - Q_{M_2}(s,a)| < \epsilon$$

Proof. Let B_1 and B_2 denote the Bellman operators of M_1 and M_2, and Q_0 denotes an arbitrary function over $S \times A$. To show the result, it is sufficient to prove that $|B_i^i Q_0(s,a) - B_i^{i+1} Q_0(s,a)| \leq \sum_{j=0}^{i} \gamma^j \epsilon(1-\gamma)$, and then take the limit as $i \to \infty$. We prove this by induction. The base case is trivial since $Q_0(s,a) = Q_0(s,a)$. Assuming the state-

ment holds for i, we consider the case of $i+1$:

$$|B_i^{i+1} Q_0(s,a) - B_i^{i+1} Q_0(s,a)| \leq$$

$$\frac{\epsilon(1-\gamma)}{2} + \gamma \left| \int_{S} T_{M_1}(s'|s,a) \max_a B_i^i Q_0(s,a) ds' - \int_{S} T_{M_2}(s'|s,a) \max_a B_i^i Q_0(s,a) ds' \right|$$

$$\leq \frac{\epsilon(1-\gamma)}{2} + \gamma \int_{S} |T_{M_1}(s'|s,a) - T_{M_2}(s'|s,a)| \max_a B_i^i Q_0(s,a) ds'$$

$$\leq \frac{\epsilon(1-\gamma)}{2} + \gamma \int_{S} \sum_{j=0}^{i} \gamma^j \epsilon(1-\gamma)$$

$$= \sum_{j=0}^{i+1} \gamma^j \epsilon(1-\gamma)$$

The first inequality follows from the definition of Bellman operator. The second inequality follows by adding and subtracting the same thing. The third inequality follows by the triangle inequality. The fourth inequality follows from the condition of the lemma and the inductive assumption. \(\square\)

B.7 Proof of Lemma 4

Lemma 4. If all tasks in phase 1 are run for at least H_{\min} steps, with probability $1 - \delta$, the following holds:

1. For all tasks, any state-action pair (s,a) will receive at least $O\left(\frac{Q_{\max}}{p_e^\min} \ln \left(\frac{T_\max}{p_e^\min} \right) \right)$ visited neighbors whose distance with (s,a) is no more than $\frac{T_\delta}{D\max}$.

2. Tasks in phase 1 will be clustered correctly with high probability.

3. For any cluster, the max-norm distance between the approximate Q-function and the true optimal Q-function for any task in this cluster is at most $\frac{\epsilon(1-\gamma)}{2}$.

Proof. The first statement could be proved immediately by lemma 1. Before we prove the second statement, we firstly clarify how to cluster tasks at the end of phase 1. For each task, we find a fixed-point solution Q_{M_i} of $Q = BQ$, where B is defined in C-PACE. Then we check all the state-action pairs in a covering set and put two tasks that have $\frac{\epsilon}{2}$-close value on all the pairs into one cluster.

We are going to prove that after clustering like this, different tasks would be clustered into different groups and the
same tasks would be put into the same group. We will first prove there must exist an $\frac{\Gamma}{4}$ difference between Q^* of different tasks on the covering set, and the Q^* of tasks within one underlying cluster is $\frac{\Gamma}{7}$ close. Then we prove the fixed solution Q_{M_i} is a $\frac{\Gamma}{2}$-close approximation of Q^*. These will prove that the distance of approximate Q-functions from a same underlying cluster should be at most $\frac{\Gamma}{7} = \frac{\Gamma}{4} + 2*\frac{\Gamma}{16}$. Thus a threshold of $\frac{\Gamma}{2}$ would ensure the correctness of clustering.

By the assumption of a Q-gap Γ and the Lipschitz smoothness, we could say for any two distinct tasks i, j, there exists at least a state-action pair such that the optimal Q-function is different in its neighborhood. By the definition of a covering set, there must exists one point in the covering set in such a neighborhood. Therefore for such a point, the optimal Q function has a gap of at least $\frac{\Gamma}{2}$.

Note that when we define the underlying MDP cluster, we guarantee that their parameters are within a distance of $\sqrt{(1-\gamma)^2}$ and Γ is at least $\frac{\Gamma}{2}$. Thus by lemma 3, the max-norm distance of optimal Q functions within one underlying cluster are at most $\frac{\Gamma}{7}$.

Then we prove that $|Q_{M_i}(s, a) - Q_{M_i}'| \leq \frac{\Gamma}{10}$ for all (s, a) in the covering set and M_i in the T_i tasks. We have at least $k = \frac{16\Gamma^2}{T_i(1-\gamma)} \ln \left(\frac{N_{SA}T_i}{\delta} \right)$ neighbors for any point in the covering set S_i. Note the size of the covering set is $O(N_{SA}(LQ, \Gamma))$ and we certainly have T_i tasks. By Lemma 3.14 in [4], the fixed point solution Q satisfies that

$$|Q_{M_i} - BQ_{M_i}| \leq \frac{\Gamma}{16(1-\gamma)}$$

for any M_i. Then using Proposition 4.1 in [5], we have $|Q^* - Q| \leq \frac{\Gamma}{10}$ for all the T_i tasks.

Now we have already proved the third statement: The distance of approximate Q functions of any MDP with its optimal Q function is at most $\frac{\Gamma}{10}$, and the distance between optimal Q of MDPs within a cluster is $\frac{\Gamma}{7}$. So the distance between approximate Q-function with the optimal Q-functions for any MDP in the same cluster is $\Gamma + \frac{\Gamma}{7} \leq \frac{\Gamma}{2}$.

B.8 Proof of Lemma 5 (in the paper)

Lemma 5. If every state-action pair is (Γ, D)-known, then given any start state and desired state-action pair, it is possible to visit the desired state-action pair’s neighborhood in no more than $O(D)$ steps with high probability.

Proof. Firstly, we construct an MDP M_{inform} such that the desired state-action pairs have unit reward and all others have 0 reward. The desired reward is a self-loop and other transition probabilities are inherited from the true MDP dynamics. We know which point is desired, so we can modify the original samples to become samples in the new MDP M_{inform}. Because now every pair is (Γ, D)-known, so we have $O(D^2)$ samples in every state-action’s neighborhood in this M_{inform}. Following a similar analysis of lemma 1, we could find a policy whose probability of reaching the desired region within 3D steps is at least $\frac{\Gamma}{4}$. Then after 3D $\log_2 \delta$ steps the policy could reach the desired region with probability of $1 - \delta$.

B.9 Proof of Lemma 6 (in the paper)

Lemma 6. When we face an unknown task in phase 2, we could reach any desired state-action pair within $O(CD \ln \frac{C}{\delta})$ steps with probability $1 - \frac{\delta}{C}$.

Proof. First, consider the case where we know the diameter D. The unknown task must be one of the C tasks from phase 1. Our algorithm tries to run each policy in 3D $\ln \frac{C}{\delta}$ steps to the desired state-action pair using the samples from one of the C tasks, thus lemma 6 holds with probability $1 - \frac{\delta}{C}$. By trying all policies from the C tasks, we will encounter the one policy that corresponds to the same task and reach the desired region with high probability.

If we don’t know the diameter, we could use the doubling trick to find an upper bound on D without an increase in the sample complexity. First we try the whole process with $D = 1$. If we fail, we double the D and begin a new trial. When D is bigger than the true value of D, the rest of the analysis is the same as when we know the true diameter.

B.10 Proof of Lemma 7

Lemma 7. If T_i in algorithm 3 is at least $O\left(\frac{Q_{max}^2 \ln \frac{C}{\delta}}{\gamma_t} \right)$ and n is at least $O(\log (\Gamma))$, we could compute an approximate Q value of policy π over the current task M': $\hat{Q}^*_{M'}(s, a) = Q_{M'}(s, a)$ such that for any (s, a), $|\hat{Q}^*_{M'}(s, a) - Q_M(s, a)| \leq \frac{\Gamma}{16\gamma_t}$ with probability $1 - \frac{\delta}{C}$.

Proof. By setting n to at least $\log_2 \frac{1}{\delta} \frac{\Gamma(1-\gamma)}{32\gamma}$, we have that for each episode t, $|R_t - \sum_{i=0}^{\infty} \gamma^i r_t| \leq \frac{\Gamma}{32\gamma}$. Note that the expectation of $\sum_{i=0}^{\infty} \gamma^i r_t$ is $Q_{M}(s, a)$. We bound the error as follows:

$$P \left(\hat{Q}^*_{M'}(s, a) - Q_{M}(s, a) \right) \geq \frac{\Gamma}{16}$$

$$\leq P \left(\frac{1}{T_i} \sum_{t=1}^{T_i} R_t - Q_{M}(s, a) \right) \geq \frac{\Gamma}{16}$$

$$\leq P \left(\frac{1}{T_i} \sum_{t=1}^{T_i} \left(\sum_{i=0}^{\infty} \gamma^i r_t \right) - Q_{M}(s, a) \right) \geq \frac{\Gamma}{32\gamma}$$

$$\leq 2 \exp \left\{ \frac{-2T_i \Gamma^2}{32\gamma Q_{max}^2} \right\}$$

The first step follows from the definition of $\hat{Q}_{M'}^*(s, a)$. The second step follows from the fact $\|R_t - \sum_{i=0}^{\infty} \gamma^i r_t\| \leq \frac{\Gamma}{32\gamma}$. The third step follows from the Hoeffding inequality. Setting the probability above to $\frac{\delta}{C}$ and solving for T_i, we have that

$$T_i = O \left(\frac{Q_{max}^2 \ln \frac{C}{\delta}}{\Gamma^2} \right)$$

is sufficient to guarantee our desired result.

B.11 Proof of Lemma 8

Lemma 8. If both model M_i and M_j haven’t been eliminated by $|R_g - Q_{M_j}(s, a)| \geq \frac{\Gamma}{4}$ in algorithm 3, then the true model should have a greater R_g with high probability.

Proof. Without loss of generality, we assume M_i is in
the same underlying cluster with current task M'. Then:
\[
\left| \hat{Q}_{M_i}^{j}(s,a) - Q_{M_i}(s,a) \right| \\
\leq \left| \hat{Q}_{M_i}^{j}(s,a) - Q_{M_i}(s,a) \right| + \left| Q_{M_i}(s,a) - Q_{M_i}(s,a) \right| \\
\leq \frac{\Gamma}{16} + \frac{\Gamma}{16} + \frac{5\Gamma}{16} \\
= \frac{7\Gamma}{16}
\]

The first step follows from triangle inequality. In the second step, the first replacement follows from Lemma 7, the second replacement follows from proposition 4.1 in [5], and the third replacement follows from Lemma 4. Because M_j also hasn’t been eliminated:
\[
\left| \hat{Q}_{M_j}^{j}(s,a) - Q_{M_j}(s,a) \right| \\
\leq \left| \hat{Q}_{M_j}^{j}(s,a) - \hat{Q}_{M_j}^{j}(s,a) \right| + \left| \hat{Q}_{M_j}^{j}(s,a) - Q_{M_j}(s,a) \right| \\
\leq \frac{\Gamma}{16} + \frac{\Gamma}{16} + \frac{5\Gamma}{16} \\
= \frac{7\Gamma}{16}
\]

The first inequality is from the triangle inequality. The second inequality follows from Lemma 7 (for the first term) and the elimination condition at line 16 in Algorithm 3 (for the second term). We know there is a gap in the Q-function between M_i and M_j because (s,a) is an informative state-action pair: $|Q_{M_i}(s,a) - Q_{M_j}(s,a)| \geq \frac{\Gamma}{16}$. Then $Q_{M_j}(s,a)$ must be smaller than $Q_{M_j}(s,a)$. Otherwise it implies that $Q_{M_j}(s,a)$ is larger than $Q_{M_j}(s,a)$. However that is impossible because Q_{M_j} is the optimal policy’s Q value. Therefore,
\[
\hat{Q}_{M_j}^{j}(s,a) - Q_{M_j}(s,a) \\
= (\hat{Q}_{M_j}^{j}(s,a) - Q_{M_j}(s,a)) + (Q_{M_j}(s,a) - \hat{Q}_{M_j}^{j}(s,a)) \\
\geq \frac{\Gamma}{8} - \frac{\Gamma}{8} + \frac{5\Gamma}{8} \\
\geq \frac{5\Gamma}{8}
\]

The first inequality’s first two terms follows from the elimination condition at line 16 in Algorithm 3. The third term follows because (s,a) is an informative pair and the fact that we just showed that $Q_{M_i}(s,a) > Q_{M_j}(s,a)$, so $Q_{M_i}(s,a) - Q_{M_j}(s,a) \geq \frac{\Gamma}{16}$. Now we have shown that the approximate Q value of the true model’s policy must be larger than the other. Thus when we eliminate a candidate with the smaller Q-value, we will not eliminate the true candidate of the current task.

\section{B.12 Proof of Lemma 9}

\textbf{Lemma 9.} In phase 2, After
\[
O \left(\frac{Q^2_{\max}}{\Gamma^2} \frac{C \ln \frac{C}{\delta}}{\delta} \left(CD \ln \frac{C}{\delta} + \log_{\gamma} \Gamma \right) \right)
\]

steps, we correctly identify the new task with probability at least $1 - \delta$.

\textbf{Proof.} From Lemma 7, $O \left(\frac{Q^2_{\max}}{\Gamma^2} \frac{C \ln \frac{C}{\delta}}{\delta} \log_{\gamma} \Gamma \right)$ total steps (across multiple trajectories) is sufficient to closely estimate $Q_{M_j}^i(s,a)$ for each $i \in C$ with probability at least $1 - \frac{\delta}{\Gamma}$. Then by Lemma 8, we eliminate at least one candidate model per one informative state-action pair. However, each possible trajectory must start at the same informative state-action pair.

From Lemma 6 $O(CD)$ steps are sufficient to return to a desired informative state-action pair with high probability. Therefore the total number of steps required to identify the current task is bounded by
\[
O \left(\frac{Q^2_{\max}}{\Gamma^2} \frac{C \ln \frac{C}{\delta}}{\delta} \left(D \ln \frac{C}{\delta} + \log_{\gamma} \Gamma \right) \right)
\]

where we have applied the union bound to ensure the final bound holds with probability at least $1 - \delta$.

\begin{thebibliography}{10}
\end{thebibliography}