
Topological Mapping Using Spectral Clustering and Classification

Emma Brunskill*, Thomas Kollar* and Nicholas Roy

Abstract— In this work we present an online method for
generating topological maps from raw sensor information.
We first describe an algorithm to automatically decompose
a map into submap segments using a graph partitioning
technique known as spectral clustering. We then describe how
to train a classifier to recognize graph submaps from laser
signatures using the AdaBoost machine learning algorithm. We
demonstrate that the we can perform topological mapping by
incrementally segmenting the world as the robot moves through
its environment, and we can close the loop when the learned
classifier recognizes that the robot has returned to a previously
visited location.

I. INTRODUCTION

Robotic mapping remains one of the key areas of robotics,
in part because in order for a robot to perform a large
number of useful tasks, a robot must be able to plan
collision-free trajectories and track its own position within
an environment as it moves. There is a huge body of work in
automatically learning a map of the environment from sensor
data such as laser range scans without an external source
of global position information, known as the Simultaneous
Localization and Mapping (SLAM) problem[5], [10], [1].
Full metric maps can consist of thousands of states in
large environments; building such maps and using them
in planning may be computationally expensive. A hybrid
topological-metric map that consists of small submaps linked
in a graph can greatly reduce the computational demands of
mapping and planning in large environments. We propose an
on-line algorithm that uses spectral clustering and machine
learning techniques to construct a hybrid topological-metric
map of a new environment.

Our approach has several benefits. One challenge in topo-
logical mapping is selecting how to segment an environment
into smaller submaps while ensuring that planning is not
hindered by a suboptimal topological division [10]. Spectral
clustering segments the world into subregions that tend to be
strongly connected in a graph-theoretic sense: in particular
it tends to segment locations which are weak connectors
between tightly connected regions. Weak connectors tend to
be associated with corners or doorways in building environ-
ments, and therefore spectral clustering provides a natural
division of the space that is intuitive for navigation.

Identifying when the robot returns to a previously visited
location, known as loop closing, is an essential capability
of any robust mapping algorithm. In our approach we use
classifiers to identify when the robot revisits a location. These
classifiers work by identifying a set of features that serves
to uniquely distinguish a particular submap from all other
submaps encountered so far. This approach has the benefit
that it depends not on the loop length, but on the presence

*The first two authors contributed equally to this paper. E.
Brunskill, T.Kollar and N.Roy are members of CSAIL, MIT.
emma@csail.mit.edu,(kollar,nickroy)@mit.edu

of a unique set of feature values to identify a location, and
therefore is likely to scale well to large environments. In
contrast to related work [8], we will use machine learning
techniques (specifically, boosting classification) to automati-
cally learn which features (and their associated values) from
a large feature set best uniquely identify each submap.

Our mapping procedure automatically learns a topological
representation of the world. As the robot explores, new
range data is added to the current submap using standard
gridmap techniques. When the clustering algorithm detects
that the robot has entered a new submap, the previous
submap is segmented out. As each submap is segmented
out, a classifier is trained to recognize the submap from
its perceptual signature. An individual submap is therefore
associated both with a metric submap and a classifier that
predicts whether an individual laser scan comes from that
subregion. As a submap is entered, the existing classifiers
are used to determine if a previous submap has been re-
entered or if a new submap must be created. The complete
algorithm for map construction is given in Algorithm II-A.

The rest of the paper will be organized as follows. We will
first discuss in Section II the application of spectral clustering
algorithm to mapping. In Section III, we describe submap
recognition and loop closure. Then in Section IV we provide
results. Finally we conclude with a discussion of related and
future work in Sections V and VI.

II. SPECTRAL MAPPING

We first require a method that can subdivide the envi-
ronment into a set of submaps. We would like a method
that is unsupervised1 and can be used in an online fashion.
Using the intuition that the best submaps consist of points
that are spatially correlated„ we employ spatial clustering
to extract submaps in an unsupervised fashion. The goal of
clustering is to divide a set of n-dimensional points into k
maximally similar subsets. The statistics literature contains
many variants of such algorithms and spectral clustering has
been shown to be one of the most efficient and robust.

A. Spectral Clustering

Spectral clustering is a graph partitioning algorithm; it
divides graph nodes into groups so that connectivity is maxi-
mized between nodes in the same cluster and the connectivity
is minimized between nodes in different clusters. Certain
forms of spectral clustering can approximate the normalized
cut of a graph, which roughly correspond to partitioning a
graph into k sections of equal size, minimizing the overall
interconnection between groups [9].

1Unsupervised learning implies that no external labeling is required for
the learner to recognize that some training data is different from other
training data. In a supervised setting, some external source would be
required to label which places in the world are in the same submaps: this
is generally not possible for autonomous map building.

(a) Sampling (b) Affinity graph (c) Partitioning
Fig. 1. The steps of spectral clustering.

Algorithm 1 Map Construction Algorithm Outline
While not finished creating map

• Move forward and gather a new set of laser scan
observations

• Scan match new observations and add to submap
• Every 50 steps, use spectral clustering to detect if

discovered a new submap (Sections II-A and II-B).
• If found new submap

– Use learned classifiers to determine if the new
submap is existing submap (Section III-B).

– If recognized as a previous submap, merge new
submap with previous submap and close loop in
topological map.

– If not recognized as a previous submap, add
submap to graph and train new classifier for new
submap (Section III-A).

Algorithm 2 Spectral Clustering
• Form the similarity matrix S.
• Define D a diagonal matrix with Dii =

∑n

j=1 Sij and
L = D− 1

2SD− 1

2

• Find the number of clusters k from eigenanalysis of L
• Find x1 . . . xk the largest eigenvectors of L and form

X =

| | |
x1 x2 xk
| | |

 ∈ <n×k

• Set Y to be X with rows re-normalized to have unit
length s.t. Yij =

Xij

(
∑

j
X2

ij
)
1

2

• Use k-means clustering on the rows of Y
• Assign the original point sito cluster k iff row i of Y

was assigned to cluster k
Given a set of n points V = {v1, v2 . . . , vn} in Rl cluster
them into k clusters as follows:

At the core of the standard spectral clustering algo-
rithm [12] is the similarity matrix S which defines the
distance of one point to another. Each entry Sij in the matrix
is a scale-invariant distance given by

Sij =

{

e
(− 1

σiσj
‖vi−vj‖

2)
for i 6= j

0 otherwise
(1)

Note here that vi and vj are the points to be clustered
and, following [12], each σi is defined as the median of
the l nearest neighbors. The weighting terms σi, σj provide
scale invariance so that neighbors only appear distant in
relation to other neighbors. To ensure that our clustering
is based on connectivity we normalize the similarity matrix

by computing a diagonal normalization term D such that
Dii =

∑n

j=1 Sij , and then compute the normalized similarity
as L = D− 1

2SD− 1

2 . The eigenvalues of the L normalized
similarity matrix are used to determine the number of clusters
(subgraphs) for a given set of nodes, and the projection of
each node on to the eigenvectors of the matrix determines
its cluster.

B. Applying Spectral Clustering

Each grid map can be viewed as a graph of nodes with
each node at map position (x, y) and edges placed between
all pairs of mutually visible locations, where visibility is
given by whether a straight line between the places lies
in free space. Spectral clustering will then tend to segment
a map into clusters of nodes with the fewest connections
between nodes. That is, spectral clustering will tend to cluster
contiguous “chunks” of space together. We can obtain a
substantial increase in computational efficiency by down-
sampling the grid map into an actual graph. Map segmen-
tation using spectral clustering as described in Algorithm 2
is performed according to the following steps depicted in
Fig use 1. First, a set of points is sampled in the free
space of the metric map. These constitute the nodes in our
graph, shown by the dots in Figure 1a. Edges are then
generated between mutually-visible points based on straight
line visibility determined by the metric map, shown by the
graph in Figure 1b. Each edge is weighted by the distance
between the points (distances between points with no edge
are set to 0). σi is computed and the similarity matrix is
created according to equation 1. Spectral clustering is used
to compute the eigenvectors of the resulting graph (Algo-
rithm 2) and to partition the points into spatially significant
regions. Using nearest neighbor, each grid cell is then given
a label, as shown in Figure 1c. Figure 2 shows spectral
clustering applied to a more complicated map.

C. Map Creation

The algorithm described above assumes that we have an
existing metric map that we are segmenting, but we can also
apply this algorithm to an incomplete map that is being built
incrementally. From an initial location, the robot is driven
through the environment, collecting laser scan readings and
registering them using scan matching and its local odometry.
Every few complete laser scan readings, spectral clustering
is run on the current submap of the robot. The eigenvalues
of the resulting map will determine whether a new region
should be introduced. This essentially reduces to the problem
of identifying the number of regions (or clusters) that spectral
clustering should return. The magnitude of the eigenvalues
of the similarity matrix generally correlate with the number
of clusters in the graph, and a large discontinuity in the

Fig. 2. The Stata Center, segmented into different submaps (different
shades) by the spectral clustering algorithm.

Fig. 3. Eigenvalue sequence as the robot (moving dot) moves through the
environment. TThe numbers below each map represent the second largest
eigenvalue. Notice the large transition in eigenvalue magnitude in maps 2
& 5.

matrix spectrum can often be used to determine the number
of clusters. In particular, when the robot’s trajectory starts in
one cluster and transitions to a new cluster, the magnitude of
the second eigenvalue generally changssubstantially. Figure 3
shows a large transition in the second eigenvalue magnitude
in the second map, as the robot discovers the second room,
and again in the fifth map as the robot fully enters the second
room. At this point, the spectral clustering determines that the
submap should be two submaps, and a new submap is created
consisting of the map section containing the old cluster. The
threshold on submap generation for the second eigenvalue
was set experimentally to 0.8.

This process is repeated as the robot is driven around the
new environment. These submaps, along with the connectiv-
ity between submaps, form a map of the new environment
which is both metric (inside each submap) and topological
(the connections between the submaps). In contrast to fully
metric map building approaches, there is no full alignment
done between the submaps.

III. SUBMAP RECOGNITION

Any map representation must allow an agent to quickly
localize itself within the map. This challenge is particularly
prevalent in online mapping algorithms that lack global

position information since the robot must be able to rec-
ognize it has returned to a previously visited location in
order to close loops in the environment. In our hybrid-
topological map representation, localization corresponds to
submap identification. In the online map creation algorithm
we have not yet outlined how the robot can localize itself
to a given submap. In addition, anytime the robot re-visits
one of these submaps, it will create a new submap of this
area. To avoid redundant submaps there must be a way to
identify that a new submap is the same as a pre-existing
submap, and close the resulting loop. Inspired by work by
Mozos et al. [6], submap identification is done by learning
to label the robot’s submap from local laser scans using
the AdaBoost algorithm [2]. Loop closure is performed by
identifying when the classifiers associated with two submaps
overlap sufficiently that the submaps are merged.

A. AdaBoost

AdaBoost is a popular machine learning technique [2] that
learns a binary classifier h(x) given a set of labeled training
example pairs (yi, xi) where yi is the label (±1) of the
example xi (which consists of k features fi1 . . . fik). The
label of new examples x′i is then predicted by the sign of
the classifier h(x′i). The key idea of AdaBoost is to produce
a series of weak Boolean classifiers hj(x), each that predict
the labels of the training set xi with better than random (50
percent) accuracy. Each weak classifier hj is assigned a cer-
tain number of votes αj and the strong classifier is composed
of the sum of the weighted weak classifiers

∑

j αjhj(x).
We follow Viola and Jones’ AdaBoost variant [11], in which
weak classifiers hj(x) consist of thresholding on a single
feature fk to produce an estimate of the class label:

hj(xi) =

{

1 if pjfki < tj
−1 otherwise

where pj is 1 or -1 depending on the inequality direction,
and tj is the threshold value. For example, if a feature fk is
the length of the longest wall in the current laser scan, then
a weak classifier hj associated with some class (submap) j
might vote 1 if the wall is longer than some threshold tj ,
otherwise the hj will vote −1 against the laser scan being
in class j. For each feature, the optimal values of pj and
tj are determined by exhaustively enumerating all possible
split points in the training data set along with the sign of pj
to minimize the misclassification rate of the weak classifier
on the training data set.

For the first weak classifier hj , the feature fj is chosen
(with the corresponding best tj and pj for that feature) that
minimizes the number of errors on the raw training data set,
with all training examples weighted equally (wi = 1/N ∀i):

fj = arg min
fj ,tj ,pj

N
∑

i=1

|hj(xi)− yi|

N
. (2)

This weak classifier hj is given a number of votes αj that
reflect how well it classified the training data. Then the
training samples are re=weighted to give samples that were
misclassified by the first weak classifier a higher weight w′

i:

w′
i =

wie
−yiαjhj(xi)

∑

m wme−ymαjhj(xm)
(3)

TABLE I

FEATURES USED FOR SUBMAP CLASSIFIERS.

1.Mean and standard deviation of the difference between consecutive
laser range readings
2.Number of gaps (difference between consecutive range readings >
threshold)
3.Mean, standard deviation, skew and kurtosis of laser range readings
4.The max range - min range, and the angle between the max range
and min range
5.Area, perimeter, area convexity, perimeter convexity
6.Circularity, compactness
7.Seven moment invariant features
8.Number of readings at max range (all other measurements excludes
max range readings)
9.λ1/λ2 where λ1, λ2 are first two eigenvalues of first two principle
component analysis vectors (rotation invariant estimate of aspect ratio)
10.Mean distance to centroid
11.Number of second derivative sign flips (measure of bumpiness)
12.Probability distribution over the distance between two randomly
selected points on boundary of submap formed by computed (x,y) pairs
from (r,θ) readings

Next a new weak classifier is found to minimize the error on
the re-weighted training sets. This process is repeated for a
fixed total number of weak classifiers. By re-weighting the
examples to give more weight to training samples that were
incorrectly classified, the weak classifiers correctly classify
different samples, and the overall strong classifier improves.

We use an extension of this approach called Ad-
aBoost.M2 [2] which handles multi-class classification by
decomposing a D-class classification task into D separate 1-
vs-all binary classification tasks. We selected AdaBoost.M2
due to its simplicity and good performance on our task.

B. Applying AdaBoost: Feature Selection

In our task we wish to classify laser scans into regions
produced by spectral clustering using AdaBoost.M2. To
build a classifier using AdaBoost we must select a set of
features based on the laser scan readings to use to perform
classification. Drawing from the features used in work that
classifies semantic locations from laser scans [3], [6], we
extract a set of rotation invariant geometric features from
each laser scan reading. Rotation invariant features enable
the robot to recognize previously visited locations from new
orientations. See Table I for a list of all the features used.

These features are then used to create D 1-vs-all classi-
fiers. A new laser scan is labeled with the cluster (submap)
that corresponds to the classifier giving the highest votes to
the scan (i.e., the classifier is most sure it has correctly clas-
sified this point). Therefore, classifiers localize the robot to a
certain submap. Standard metric map localization techniques
can be used to localize the robot within the given submap.

C. Loop Closure

Given the trained submap classifiers, the robot must be
able to use the classifiers to determine when it has re-
entered map. Loop closure is not considered until there are at
least two submaps (and associated classifiers c1, c2 for each
submap). Recall that each submap i is associated with a set of
training data points consisting of a robot pose and laser range
measurements xi. When a third submap is initialized, both
of the existing submap classifiers are run on the new training
dataset x3. A number is then computed which reflects how

many of the new training data points are considered by the
existing classifiers to be part of the existing submaps:

fc(co, x3) =
N3o

|x3|
(4)

where co is the existing classifier of one of the submaps, and
N3o is the number of new training datapoints x3 classified
by co as being part of submap o. When fc is large, then
existing classifier co is voting strongly that the new submap
is in fact previous submap o.

In addition, a new classifier c3 is trained for the new
submap x3 against each existing submap (x1 and then
separately x2), and c3 is tested on a submap that was not
used in training (x2 and then x3 respectively). The fraction
of points claimed is again computed using equation 4. This
fraction is large when the new classifier ci votes strongly
that the previous submap o is the same as the new submap.

To compute the similarity of two submaps, we use

ξ(o, n) = fc(co, xi)fc(ci, xo) (5)

where n is a new submap, ci is our new classifier, o is an
existing submap and ξ is our measure of similarity between
the two submaps. Essentially, we are computing the fraction
of the other submap’s points the first submap classifier
“claims” as its own, and vice versa to determine how much
the classifiers overlap. This number ξ will be somewhere
between 0 and 1: if it is high, then it is likely that the “new”
submap is in fact the same as an older submap, and instead
of initializing a new submap, we should merge it into an
existing submap, thereby closing the loop. This process is
repeated for each new submap, so at each new region, the
robot is effectively checking whether it is now in a pre-
existing location, and if it is, closes the loop. Experimentally,
we determined that an appropriate threshold for determining
that two submaps were the same was ξ = .175. This may
seem low, but in fact with several clusters the overlap claimed
between them quickly drops to very low numbers, and this
threshold was found to provide good results.

Note that in comparison to many other approaches, the
ability to detect a loop does not automatically degrade if
the robot has traveled a long distance since the last visit of a
location: rather the ability to detect a location depends solely
on being able to uniquely identify the regions (submaps)
output through the spectral clustering technique. Therefore
this technique is unlikely to work well in completely ho-
mogeneous environments, in which all rooms (regions) look
the same. However, in practice there are many environments
of interest that will contain uniquely distinguishable regions,
including many office and residential buildings.

IV. RESULTS

We have tested our complete map building algorithm on
two separate environments where we simulated laser and
pose readings of a robot. The first, the Freiburg dataset, was
a good check to ensure that our technique could repeatedly
close small loops, as the robot trajectory here repeatedly
returned to the same corridor in between visiting different
rooms. The second dataset, the Stata building, involved
closing a larger loop as the robot took a tour of the third floor
of that building. In both cases we successfully initialized

(a) Ground truth map.

(b) Initial submaps.

(c) Loop closing.

(d) Final topological map.

Fig. 4. Incremental Spectral Clustering and Loop Closing: Freiburg. (b) The submaps before loop closing (c) The classifier identifies that the robot has
returned to the corridor, and does not retain the second corridor submap. (d) The final topological map.

(a) Map and robot trajectory (b) Topological-metric map

5 10 15 20 25 30 35 40

5

10

15

20

25

30

Room
Hallway

(c) Room-hallway classifier segmentation.

Fig. 5. (a) The ground-truth metric map of the Stata building at MIT, and the robot trajectory during exploration. (b) The learned topological map. c)
Non-optimized room-hallway classifier does not generalize well to segmenting Stata.

submaps and closed loops. In order to evaluate the use of
these representations, we evaluated how well the robot could
identify its current submap based on a single laser scan
reading (this is similar to the kidnapped robot problem, and
in our case, is effectively evaluating the test set error of
our submap classifiers) and also classified the submap of the
robot as it again traversed the Stata dataset.

A. Online Partitioning and automatic loop closing

Figure 4a shows the trajectory of the robot as it goes
through the Freiburg dataset. The black square indicates the
start of the trajectory and the black circle indicates the end
of the trajectory. Figure 4b shows the first three submaps
created as the robot passes from the hallway into a room
and then back into the hallway. This is successfully detected
as a loop closure and the map is updated to only include
two submaps (see Figure 4c). Figure 4d shows the final
map representation. There are three two-way arrows in the
topological map, successfully representing the robot’s three
returns to the central corridor.

TABLE II

LOCALIZATION ERROR RESULTS

Training Set Test Set
Recall Precision Recall Precision

Freiburg dataset 0.9728 0.9818 0.9089 0.9212
Stata dataset 0.9689 0.9739 0.8300 0.8458

Figures 5a&b show the simulated trajectory of the robot in
the Stata environment and the associated topological-metric
map constructed when the robot closes the loop. During a
second trajectory around the loop, new submaps continued to
be initialized and then merged with prior existing submaps.
Occasionally an overlapping submap was created because it
did not overlap sufficiently with the existing submaps. In
the future we hope to explore whether using the topological
information of the map can lead to the identification and
thereby, elimination, of duplicate submaps.

B. Localization

In order to evaluate how well our algorithm can be used
to localize the robot to a particular submap after the map
creation stage is finished, we divided up the Freiburg and
Stata datasets each into a training set (80% of the original
dataset) that was used to produce the original map (and
associated classifiers) and a test set (20% of the original
dataset) to evaluate on. The test set is like placing the robot
at an unknown location, and asking it to predict its submap
location from a single laser scan of its environment. We
evaluated the predictions using precision and recall2. In order

2For all test examples associated with a particular submap i, recall is the
percent of the time the classifiers labeled those test examples correctly as
submap i. Precision is of all test examples the classifier labeled as submap
i, what percentage of the time was the test example actually from i. A
classifier could achieve perfect recall for a particular submap i by labeling
all test examples as i but would achieve low precision because by incorrectly
label all other submap test examples as i.

Fig. 6. Localization on a new trajectory in the Freiburg dataset.

to localize well we desire high recall and precision rates. The
results averaged over all submaps are presented in Table II.
The high rates of recall and precision on the test sets indicate
this method is likely to correctly localize the robot to a
particular submap for new datapoints. To get a qualitative
sense of the how well the robot is doing, we also ran the
robot through a new trajectory on the Freiburg dataset and
classified its location at each time step. Figure 6 shows the
robot trajectory. Localization does a good job on the whole:
the figure shows how the predicted submap changes as the
robot goes in and out of the different regions that have been
previously identified (see Figure 4).

The results we present here correspond to raw classifi-
cation rates from a single scan associated with a single
robot pose, with no constraints on consistency between
consecutive robot poses. In the future, to improve localization
we could include temporal information through methods such
as using a Hidden Markov Model to help ensure smoothness.
Another way to improve localization would be to utilize the
connectivity information encoded in the topological map.

V. RELATED WORK

In the interest of brevity we will only mention here a
few of the most related pieces of research to the current
work. The Atlas framework [1] is a mapping algorithm
that produces hybrid metric-topological maps and takes a
principled probabilistic approach to localization under uncer-
tainty. Their method for submap matching relies on matching
geometric features that do not tend to occur multiple times
within a single map whereas our approach instead focuses
on features that serve to uniquely distinguish a submap.
Kuipers et al.[4], [7] incrementally build a topological map
using Voronoi diagrams, looking for “constrictions” in the
medial axis graph to define the local topologies. Thrun [10]
constructs a Voronoi diagram based on a full metric map,
inducing submap cuts at the points that minimize clearance.

Our loop closure approach relates to recent work by
Newman et al. [8] that performs 3D SLAM in large outdoor
environments . To close loops they search for maximum
alignment between two sequences of camera images: images
are described by the presence of a fixed set of image
features. Using temporal information is likely to improve the
accuracy of loop closure compared to non-temporal methods
such as the one we present here and the authors employ a

rigorous probabilistic method for deciding if an alignment is
sufficient to be considered a loop closure. However, unlike
our work, by having a fixed set of features, the authors have
to handle explicitly the problem of “themes”– features that
occur consistently over a short period of time, such as bricks,
that do not help uniquely identify a place for loop closure.

While these approaches may not work well in an environ-
ment consisting of identical rooms and hallways, we argue
that most real-world environments have local modifications
(such as sofas or desks that move relatively little) that
generate a unique signature that can be classified reliably.

There are clearly myriad possible approaches to extracting
a partitioning of a map. We were inspired by existing
supervised labeling techniques [3], [6] for semantic locations
(such as room or hallway), but our experience was that
existing learned semantic classifiers did not generalize well
to new environments that are not naturally suited towards
the typical notions of rooms and hallways. As an example,
we trained an AdaBoost classifier to recognize rooms and
hallways based on laser scan information on a hand-labeled
version of the Freiburg dataset. We then ran this classifier on
a set of laser scans extracted from a map of the third floor
Stata building. The resulting room/hallway classification can
be seen in Figure 5(c). Though care should be taken in inter-
preting these results as the room/hallway classifier was not
optimized, comparing Figure 2 and Figure 5(c) suggests that
room/hallway classifiers do not perform as well as spectral
clustering for providing a segmentation of the environment
into unique components.

VI. CONCLUSIONS

In this paper we have demonstrated the viability of using
spectral clustering and classification techniques to automat-
ically construct a hybrid topological-metric map representa-
tion of an environment.

REFERENCES

[1] Mike Bosse, Paul Newman, John Leonard, and Seth Teller. Slam in
large-scale cyclic environments using the atlas framework. Internationl
Journal of Robotics Research, 23(12):1113–1139, 2004.

[2] Yoav Freund and Robert E. Schapire. A decision-theoretic generaliza-
tion of on-line learning and an application to boosting. In EuroCOLT,
pages 23–37, 1995.

[3] Stephen Friedman, Hanna Pasula, and Dieter Fox. Voronoi random
fields: Extracting topological structure of indoor environments via
place labeling. In IJCAI, pages 2109–2114, 2007.

[4] B. Kuipers, J. Modayil, P. Beeson, M. MacMahon, and F. Savelli.
Local metrical and global topological maps in the hybrid spatial
semantic hierarchy. In ICRA, 2004.

[5] J. Leonard and H. F. Durrant-Whyte. Simultaneous map building and
localization for an autonomous mobile robot. In IEEE International
Workshop on Intelligent Robots and Systems, 1991.

[6] O. Martínez-Mozos, C. Stachniss, and W. Burgard. Supervised
learning of places from range data using adaboost. In ICRA, 2005.

[7] J. Modayil, P. Beeson, and B. Kuipers. Using the topological skeleton
for scalable global metrical map-building. In ICRA, 2004.

[8] Paul Newman, David Cole, and Kin Ho. Outdoor slam using visual
appearance and laser ranging. In ICRA, 2006.

[9] Jianbo Shi and Jitendra Malik. Normalized cuts and image segmenta-
tion. IEEE Transactions on Pattern Analysis and Machine Intelligence
(PAMI), 2000.

[10] Sebastian Thrun. Learning metric-topological maps for indoor mobile
robot navigation. Artificial Intelligence, 99:21–71, 1998.

[11] Paul Viola and Michael Jones. Robust real-time object detection.
International Journal of Computer Vision, 2002.

[12] Lihi Zelnik-Manor and Pietro Perona. Self-tuning spectral clustering.
In NIPS, 2004.

