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Abstract

In this paper we consider the problem of
learning approximate Markov Random Fields
(MRFs) from large transaction data. We rely
on frequent itemsets to learn MRFs on the
data. Since learning exact large MRFs is
generally intractable, we resort to learning
approximate MRFs. Our proposed modeling
approach first employs graph partitioning to
cluster variables into balanced disjoint parti-
tions, and then augments important interac-
tions across partitions to capture interdepen-
dencies across them. A novel treewidth based
augmentation scheme is proposed to boost
performance. We learn an exact local MRF
for each partition, and then combine all the
local MRF's together to derive a global model
of the data. A greedy approximate inference
scheme is developed on this global model. We
demonstrate the use of the learned MRF's on
the selectivity estimation problem. Empiri-
cal evaluation on real datasets demonstrates
the advantage of our approach over extant
solutions.

1. Introduction

In this paper we address the problem of learning ap-
proximate Markov Random Fields (MRF) on large
transaction data. Examples of such data are market
basket data, web log data, etc. Such data can be rep-
resented by a high-dimensional data matrix, with each
row corresponding to a particular market basket (web
session), and each column corresponding to a partic-
ular item (web page). Each entry takes a value of
“1” if the corresponding item is in the corresponding
basket, otherwise it takes a value of “0”. The data
matrix is binary, and very often in such applications,
highly sparse in that the number of non-zero entries is
small. In fact, such a transaction dataset corresponds
to a network, where the nodes are the entities in the
transaction data, and two nodes are connected to each
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other if they are in the same transaction. Conversely,
a network can be converted to a transaction dataset
with some converting mechanisms, for example sam-
pling. A representative example is a citation network,
where each paper can be taken as a transaction con-
sisting of author entities and the whole network is a
transaction dataset. As such, the techniques presented
in this paper can be applied to process network data
as well.

Probabilistic models capture association or causal cor-
relations among attributes in data. Important appli-
cations of probabilistic models include selectivity es-
timation in query optimization (Getoor et al., 2001;
Deshpande et al., 2001; Pavlov et al., 2003), link anal-
ysis/recommender systems (Breese et al., 1998; Gold-
enberg & Moore, 2004) and bioinformatics (Friedman,
2004).

Pavlov et al. (2003) propose a Mazimum FEntropy
(ME) model based on frequent itemsets to estimate
query selectivity. Particularly, the ME model has been
shown to be equivalent to an MRF. The usefulness
of frequent itemsets in learning probabilistic models
is supported by an observation that positive correla-
tions are much stronger than negative correlations in
the case of sparse data (Goldenberg & Moore, 2004).
Frequent itemsets capture the positive correlations be-
tween items.

However, their focus is on estimating query selectiv-
ity, instead of modeling the complete data. Thus they
only learn a local model over query variables on the
fly for every query. In this paper, we extend their
work to learn a global MRF on the original transac-
tion/network data. Such a model is useful to anal-
ysis tasks involving answering marginal probabilities
on the data. Such tasks include selectivity estimation
problem (Pavlov et al., 2003), link prediction (Liben-
Nowell & Kleinberg, 2004), link completion (Golden-
berg et al., 2003), etc. For all of these tasks, accurate
predictions and fast predicting time are crucial. In
our empirical study, we focus on examining the per-
formance of the model on the selectivity estimation
task. Particularly, we compared the estimating ap-
proach based on our proposed model with the previous
approach in (Pavlov et al., 2003). This comparison is
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interesting since the latter approach has been shown to
yield best performance on sparse data (Pavlov et al.,
2003). The main contributions of this paper are high-
lighted below.

a. We introduce a novel divide-and-conquer style ap-
proach based on graph partitioning to learning approx-
imate MRF's from large transaction data. b. We in-
troduce a novel interaction importance and treewidth
based augmentation scheme to capture interdependen-
cies across partitions during the learning process. c.
We conduct empirical evaluations on real datasets to
show the efficiency and effectiveness of the proposed
model to the selectivity estimation problem.

2. Background

Let 7 be a set of items, i1, 4o, ..., ig. A subset of Z is
called an itemset. The size of an itemset is the number
of items it contains. An itemset of size k is a k-itemset.
A transaction dataset is a collection of itemsets, D =
{t1,t2,...,tn}, where t; C Z. For any itemset o, we
write the transactions that contain « as D, = {t;|a C
t; and t; € D}. In the probabilistic model context,
each item corresponds to a distinct random variable!.

Definition 1 (Frequent itemset). For a transaction
dataset D, an itemset « is frequent if |Dy| > o, where
|Da| is called the support of o in D, and o is a user-
specified non-negative threshold.

Definition 2 (Markov Random Field). An Markov
Random Field (MRF') is an undirected graphical model
in which vertices represent variables and edges repre-
sent correlations between variables. The joint distribu-
tion associated with an undirected graphical model can
be factorized as follows:

p(%) = 5755 [ veulXeo)

c;eC

where C is the set of maximal cliques associated with
the undirected graph; ¥c; is a potential function over
the variables of clique C; and ﬁ s a normalization
term.

2.1. Using Frequent Itemsets to Learn an
MRF

The idea of using frequent itemsets to learn an MRF
was first proposed by Pavlov et al. (2003). A k-itemset
and its support represents a k-way statistic and can be
taken as a constraint for the true underlying distribu-
tion which generates the data. Given a set of itemset
constraints, a maximum entropy distribution satisfy-
ing all these constraints is picked up as the estimate
for the true underlying distribution. Such a maximum

'In this article we use these terms — item, (random)
variable — interchangeably

entropy distribution is well-known to be equivalent to
an MRF.

A simple iterative scaling algorithm can be used to
learn an MRF from a set of itemsets. Figure 1 presents
a high-level outline of a computationally efficient ver-
sion of the algorithm given by Jelinek (1998). It has
been shown that the iterative process will converge
if all the constraints are consistent, which naturally
holds in our context. If the iterative scaling algorithm
runs k iterations to converge and there are m itemset
constraints, the time complexity of the algorithm will
be O(k x m x t), where ¢ is the average inference time
over an itemset constraint. Thus efficient inference is
crucial to the running time of the learning algorithm.
We call models learned through exact inference proce-
dures exact.

Iterative-Scaling(C)

Input : C, collection of itemsets;

Output : MRF M,

1. Obtain all involved variables v and
initialize parameters of M,

/ [typically uniform over v;
while (Not all constraints are satisfied)

for (each constraint C;)
Update M to force it to satisfy Ci;

return M,

Ol O

Figure 1. Iterative scaling algorithm

2.2. Junction Tree Inference Algorithm

The junction tree algorithm is a commonly used exact
inference engine for probabilistic models. The time
complexity of the junction tree algorithm is exponen-
tial in the treewidth of the underlying model. For
the real world models, it is quite common that the
treewidth will be well above 20, making learning exact
models intractable. Correspondingly, we have to resort
to learning approximate models. We note that there
are two approaches to derive approximate models. The
first approach is to plug in an approximate inference
engine during the model learning process. The sec-
ond approach is to learn a simplified model which is
feasible to learn exactly and is close to the true exact
model.

For the first approach, it is not clear whether or not
the model learning process will still converge when
subjected to approximate inference engines. In our
empirical study, we found sometimes the model learn-
ing process will not converge when we plug in some
MCMC inference engines. Parameters such as sample
size and burn-in data size seem to affect the conver-
gence behavior of the learning algorithm. As a result,
we conjecture that we have to guarantee certain ac-
curacy of approximate inference engines to ensure the
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convergence of the model learning process. Whether or
not the convergence property will hold when we apply
approximate inference algorithms in its own right is an
interesting research problem and is beyond the scope
of this paper. In this paper we pursue a variation of
the second approach.

It is worth noting that Pavlov et al. (2003) did not
solve the problem of learning MRF's on large transac-
tion data. The MRFs they generate target specifically
the query variables and are therefore quite lightweight.
Actually, they have noted the difficulty of learning a
global model on the whole data in (Pavlov et al., 2003).

2.3. Query Selectivity Estimation

The query selectivity estimation on transaction data
is to accurately estimate the size of the answer set for
a query, which is crucial for evaluating optimal query
plans. Formally, the problem can be defined as fol-
lows. A conjunctive query @ is defined on a subset
of 7, where each item can be positively or negatively
instantiated. According to this definition, one itemset
is a special conjunctive query where all items are posi-
tively instantiated. We define a transaction satisfies
if and only if the corresponding attributes in the query
and in the transaction have equal values. We are in-
terested in finding the number of transactions in the
whole dataset satisfying @) in a time-efficient manner.

3. Learning Approximate MRFs

Before discussing our proposed approach, let us con-
sider an extreme case in which the overall graph
consists of a set of disjoint non-correlated compo-
nents. Then the joint distribution can be obtained
in a straightforward fashion according to the following
lemma.

Lemma 1 Given an undirected graph G subdivided
into disjoint components Dy, Do, ..., D, (not nec-
essarily connected components), and there is no edge
across any two components, then the probability distri-
bution associated with G is given by:

n

p(X) = Hp(Xm)

This conclusion follows immediately from the global
Markov property of the MRF.

3.1. Clustering Variables Based on Graph
Partitioning

The basic idea of our proposed divide-and-conquer
style approach comes directly from the above obser-
vation. Specifically, the variables are clustered into
groups according to their correlation strengths. We
call the group variable-cluster. Then a local MRF is
defined on each variable-cluster. In the end we aggre-
gate the local models to obtain a global model. From

Lemma 1, we see that if we have a perfect partition-
ing of an MRF in which there is no correlations across
different partitions, the divide-and-conquer style ap-
proach gives the exact estimate of the full model. Even
for an imperfect partitioning, if the correlations across
partitions are not strong, we still expect a reasonable
approximation of the full model. Correspondingly, the
first problem we face is how to cluster the variables so
that the correlations across partitions is minimized.

3.1.1. k-MinCuT

The k-MinCut problem is defined as follows (Karypis
& Kumar, 1998b): Given a graph G = (V, E) with
|V| = n, partition V into k subsets, V4, V4, ..., Vi such
that ViNV; = 0 for i # j, |Vi| = £, and U;V; =V,
and the number of edges of F whose incident vertices
belong to different subsets is minimized. Given a parti-
tioning P, the number of edges whose incident vertices
belong to different partitions is called the edge-cut of
the partitioning. In the case of weighted graphs, we
minimize the sum of weights of all edges across dif-
ferent partitions. Correspondingly, the edge-cut is the
sum of weights of all edges across different partitions.

Therefore the k-MinCut can serve our purpose of clus-
tering variables. Each graph partition corresponds to a
variable-cluster. Intuitively, we want to maximize cor-
relations among variables within variable-clusters, and
minimize correlations among variables across variable-
clusters. So we should make the weight of edges re-
flect the strength of correlations between variables. We
have the collection of all frequent itemsets. In particu-
lar, itemsets of size 2 specify the connectedness struc-
ture of the graph, and their associated supports indi-
cate the strength of pairwise correlations between vari-
ables. We can use their supports as the edge weights
directly. However, we also have higher-order statis-
tics available, i.e., the larger itemsets. We expect that
taking into consideration the information of all item-
sets will yield a better weighting scheme. To this end,
we propose an accumulative weighting scheme as fol-
lows: for each itemset, we add its support to all re-
lated edges, whose two vertices are contained by the
itemset. Intuitively, we strengthen the graph regions
which involve closely related itemsets in the hope that
the edges within these regions will not be broken in the
partitioning. Figure 2 illustrates the weighting scheme
using a simple example. The collection of frequent
itemsets and their supports are given in the figure.

An advantage of the k-MinCut partitioning scheme is
that the resulting clustering is forced to be balanced.
This is desirable for the sake of efficient model learning,
since we will not encounter very large variable-clusters
which might result in very complex local models. We
need to specify k a priori. By choosing k one can ex-
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Figure 2. Accumulative graph weighting scheme

amine trade offs involving model complexity, accuracy
and online estimation time.

The k-MinCut partitioning scheme yields disjoint par-
titions. However, there exist edges across different par-
titions. In other words, different partitions are corre-
lated to each other. So how do we account for the
correlations across different partitions?

3.2. Interaction Importance and Treewidth
Based Variable-Cluster Augmentation
The balanced wariable-clusters produced by the k-
MinCut partitioning scheme are disjoint. Intuitively,
there is significant correlation information that is lost
during the partitioning. To compensate for this loss,
we propose an interaction importance based variable-
cluster augmenting scheme to recover the damaged
correlation information. The idea is that for each
variable-cluster, we let it grow outward. More specifi-
cally, it attracts and absorbs most significant (impor-
tant) interactions (edges) incident to its vertices from
outside to itself. As a result, some extra variables are
pulled into the wariable-cluster. We control the aug-
mentation through the number of extra vertices pulled
into the cluster (called growth factor). One can use the
same growth factor for all variable-clusters to preserve
their balance.

As an optimization, we account for the model complex-
ity during the augmentation. We keep augmenting a
partition until its complexity reaches a user-specified
threshold. More specifically, we keep track of the
growth of the treewidth during the augmenting process
for this purpose. Additionally, 1-hop neighboring ver-
tices are first considered by the augmentation, followed
by 2-hop neighboring vertices and so on. Meanwhile,
we still stick to the interaction importance criteria. As
a result, the augmented partitions are likely to become
unbalanced in terms of their size. The partitions with
a small treewidth will grow more significantly than
those with a large treewidth. However, these parti-
tions are balanced in terms of their complexity. A
benefit of this scheme is that usually more interac-
tions across different partitions will be accounted for
in a computationally controllable manner, leading to
a more accurate global model. After the augmenta-

Figure 3. Augmented variable-clusters

tion, we obtain overlapped variable-clusters. Figure 3
presents a sketch of the augmented variable-clusters.

3.3. Approximate Global MRFs and A Greedy
Inference Algorithm

For each augmented wariable-cluster, we collect all of
its related itemsets and use the iterative scaling algo-
rithm to learn an exact local model. This is computa-
tionally feasible since the local model corresponding to
each wvariable-cluster is much simpler than the original
model. Two local models are correlated to each other if
they share variables. The collection of all local models
forms a global model of the original transaction data.
We note that this global model is an approximation
of the exact global MRF, since we lose dependency
information by breaking edges in the exact graphical
model. However, most of the lost strong correlations
are compensated during the wvariable-cluster augmen-
tation. As such, we believe that the proposed global
model reasonably approximates the exact model. Fig-
ure 4 provides the formal algorithm for learning an
approximate global MRF.

LearnMRF(F, k, g)
Input : F, collection of frequent itemsets;

k, number of partitions for MinCut partitioning;

g, growth factor;
Output : M, global M RF;
1. Construct a weighted graph G from F;
/]G specifies graphical structure of the exact MRF;
2. k — MinCut G,
3. for each graph partition G;

4. Gi «— augment(Gi, g);

5. Pick itemsets F; related to G
6. M; «— LearnLocal M RF(F5);
7. add M; to M;

8. return M;

Figure 4. Learning approximate global MRF' algorithm

Given the global model consisting of a set of local
MRFs, how do we make inferences on this model effi-
ciently? In the first case, where all query variables are
subsumed by a single local MRF, we just need to cal-
culate the marginal probability within the local model.
In the second case, where query variables span multiple
local models, we use a greedy decomposition scheme
to compute. First, we pick the local model that has
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the largest intersection with the current query (i.e.,
covers most query variables). Then we pick the next
local model which covers most uncovered variables in
the query. This covering process will be repeated un-
til we cover all variables in the query. Simultaneously,
all intersections between the above local models and
the query are recorded. In the end, we derive an over-
lapped decomposition of the query. We notice that
locally the dependency among small pieces in the de-
composition often exhibits a tree-like structure, and we
use Lemma 2 to compute the marginal probabilities.

Lemma 2 Given an undirected graph G subdivided
into n overlapped components, if there exists an enu-
meration of these n components, i.e., C1, Ca, ...,
Chn, s.t., for any 2 < i < n, the separating set,
s(Cy, U;—;llc_j) c(Gin (U;;lle)), then the probability
distribution associated with G is given by:

H?:l p(XCz)
[Tis p(Xe, N (UZ1 Xe,))

p(X) =

Proof: omitted in the interest of space.

To use the above formula, we require that there is
no cyclic dependency among components, The overall
dependency among components has a tree-like struc-
ture. Essentially Lemma 2 specifies a junction tree-like
structure. Given any model and one of its such decom-
position, we can use the above formula to make exact
inferences.

Discussion: We note that the greedy inference
scheme is a heuristic since it is possible to have a cyclic
dependency among the decomposed pieces. Also, we
note that our global model is not globally consistent in
that there exists inconsistency across the local models.
However, we expect that the global model is nearly
consistent since two correlated local models contain
exactly the same evidence information (itemsets) re-
garding their shared variables. A generalized belief
propagation style approach is currently under investi-
gation to force the local consistency across the local
models, thereby offering a globally consistent model.

4. Experimental Results

In this section, we examine the performance of our
proposed approach on real datasets. Particularly, we
focus on the application of the proposed model on
the selectivity estimation problem. We compare the
new model against the previous approach in (Pavlov
et al., 2003) where a local MRF over query variables is
learned for every query in an online fashion. We call
this approach online local MRF approach (abbreviated
as OLM in figures presenting experimental results).
The MRF learning algorithm is implemented in C++.

The junction tree inference algorithm is implemented
based on Intel’s Open-Source Probabilistic Networks
Library?. We use apriori (Agrawal & Srikant, 1994)
(a well-known efficient frequent itemset pattern min-
ing algorithm) to collect frequent itemsets and Metis
(Karypis & Kumar, 1998b; Karypis & Kumar, 1998a)
to obtain a k-MinCut of the exact graphical model.

4.1. Experimental Setup

All the experiments were conducted on a Pentium 4
2.66GHz machine with 1GB RAM running Linux 2.6.8.
Below we detail the datasets, query workloads and per-
formance metrics considered in our evaluation.

Datasets: We used two publicly available datasets
in our experiments: the Microsoft Anonymous Web
dataset (publicly available at the UCI KDD archive,
kdd.ics.uci.edu) with 32711 transactions (Web site vis-
itors) and 294 distinct attributes (Web pages); the
BMS-Webviewl dataset (publicly available from the
FIMI repository, fimi.cs.helsinki.fi), which is a web
click-stream dataset from a web retailer company,
Gazelle.com. The dataset contains 59602 transactions
(Web sessions) and 497 distinct attributes (product
detailed pages).

Query Workloads: In our experiments we consid-
ered the workloads consisting of conjunctive queries of
different sizes. Following the same practice in (Pavlov
et al., 2003), we first specified the number of query
variables n (varied from 4 to 12), then we picked n
variables according to the probability of the variable
taking a value of “1” and generated a value for each
selected variable by its univariate probability distribu-
tion.

Performance Metrics:

Time. We considered the online time cost, the time
taken to answer the queries using the model. We also
considered the offline time cost, the time taken to learn
the model. Our objective is to have a fast and accu-
rate online answer at the expense of potentially much
higher offline time cost.

Error. We quantified the accuracy of estimations using
the average absolute relative error over all queries in
the workload. The absolute relative error is defined as
|oc— 6| / o, where o is the true selectivity and & is the
estimated selectivity.

In the experiments, we varied k, the number of clus-
ters; g, the number of vertices used to augment
variable-clusters (the larger g is, the more overlapped
the wvariable-clusters are, in the special case where
g = 0, the variable-clusters are disjoint); the treewidth

Zhttps:/ /sourceforge.net /projects/openpnl/
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threshold tw when the treewidth based augmentation
optimization is used and query size (4, 6, 8, 10, 12).
4.2. Results on the Microsoft Web Data

In this section, we report the experimental results on
the Microsoft Web Data. We use the support thresh-
old of 20 to collect the frequent itemsets, which results
in 9901 frequent itemsets. According to the Mazimum
Cardinality Search (MCS)-ordering heuristic (Tarjan
& Yannakakis, 1984), the treewidth of the resulting
MRF is 28 for which learning the exact model is in-
tractable.

Figure ba presents the estimation accuracy when k is
varied (g is fixed as 5) for queries of different sizes. As
can be seen, the new approach works very well com-
pared with the online local MRF model. The global
model based approach gives very close or even bet-
ter estimations compared with the online local model
based approach. These results are not surprising since
for the online model, we only use the information of
the itemsets whose variables are subsets of the online
query to estimate the selectivity for the sake of a more
efficient model construction. However, for the offline
global model, we rely on more complete information
to make the estimation. Even though the graph parti-
tioning phase gives rise to information loss, since the
model is global in nature, in many cases it is still able
to yield better estimations. Furthermore, the obvi-
ous trend that stands out is that as the query size in-
creases, the quality of the estimations degrades. This
is as expected, since for larger sized queries, estima-
tion error grow for both approaches. Another obser-
vation is that the estimations are more accurate when
we use less variable-clusters. This is because with less
variable-clusters, the information loss due to the graph
partitioning is smaller, thus we better capture the cor-
relations between partitions.

Figure 5b illustrates how the online times depend on
the number of variable-clusters for queries of different
sizes. It can be clearly seen the significant growth of
the online times taken by the online model (note the
Y-axis scale). The extreme online timing efficiency of
the offline model can be clearly seen from the results.
In most cases, it outperformed the online model by two
to three orders of magnitude. Further, we see that the
smaller number of wvariable-clusters results in higher
online estimation time. This is as expected, since the
smaller £ is, the larger each local model will be, which
explains the slower estimation. In the extreme case
where k is 1, we revert to learning the exact global
MRF, which has been shown to be computationally
infeasible.

Figure 5c presents the offline learning times of the of-

fline model when varying k. An obvious trend is that
as we increase k, overall the learning cost of the of-
fline model decreases significantly. This is as expected,
since the larger k results in less complex local models.

Figure 6a presents the estimation accuracy when vary-
ing g (k is fixed as 20). As can be seen from the results,
the error decreases steadily with increasing g. When
g is 0 (disjoint variable-clusters), the estimations are
most inaccurate. In contrast, the estimations are much
more accurate when g is 5. The results clearly show the
effects of the interaction importance based wvariable-
cluster augmenting scheme. The offline model approx-
imates the exact global model better when more cor-
relations across the local models are compensated.

Figure 6b presents the online times when varying g.
We see from the results that the model with the larger
g takes more online time to answer the query. This is
also as expected, since the larger g results in more com-
plex models (similar to the case of the smaller number
of variable-clusters).

Figure 6¢ presents the offline learning times of the of-
fline model when varying g. An obvious trend is that
as we increase g, the time cost increases significantly.
This is again as expected.

Figure 7a-c present the estimation accuracy, the on-
line times and the offline learning times of the offline
global model when the treewidth based augmentation
optimization is used (k is fixed as 25). As can be
seen, the optimization can further boost the estima-
tion performance. For example, the average relative
estimation errors are 0.29%, 0.97%, 2.01%, 3.66% and
4.81% on the workloads consisting of queries of size 4,
6, 8, 10 and 12, respectively. In contrast, the corre-
sponding errors of the online local MRF approach are
0.99%, 2.76%, 4.45%, 7.82% and 10.9%, respectively.
Furthermore, the offline model is faster by about two
orders of magnitude in terms of online estimating time.
Another obvious trend is that as we raise the treewidth
threshold, the estimations will become more accurate,
at a higher cost of online estimating and offline learn-
ing times.

4.3. Results on the BMS-Webviewl Data

In this section, we report the experimental results on
the BMS-Webviewl data. We use the support thresh-
old of 50 to collect the frequent itemsets, which results
in 8191 frequent itemsets. The treewidth of the result-
ing exact MRF is 44 according to the MCS heuristic,
which also makes learning the exact model intractable.
The results on varying k£ and g are similar to that on
the Microsoft Web data and are thus omitted in the
interest of space. We only report the results when the
treewidth based wvariable-cluster augmentation scheme
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is used.

Figure 8a-c present the estimation accuracy, the on-
line times and the offline learning times of the offline
global model when the treewidth based augmentation
optimization is used (k is fixed as 70). As can be seen,
the offline model is able to achieve estimations close
to the online model, when the treewidth threshold is
10. When we increase the threshold to 12, the offline
model generates more accurate estimations. Further-
more, the offline model provides better online timing
performance than the online model, though the differ-
ence is not as significant as that on the Microsoft Web
data. The reason is that the BMS-Webview1 data con-
tains many more items than the Microsoft Web data.
As a result, the random queries generated are more
likely to contain more uncorrelated items. As such,
we have to use more local MRFs to cover one query
when we estimate its selectivity, slowing down the es-
timation. In contrast, learning an online local MRF
becomes easier in this case. However, if we consider
correlations between items when we generate random
workloads, in other words, more correlated items are
more likely to occur in the same query, we expect that
the offline global model will be significantly faster.

5. Related Work

Pavlov and Smyth (2001; 2003) proposed to use fre-
quent itemsets to learn small MRF's and Bayesian net-
works for query selectivity estimation. Goldenberg
and Moore (2004) proposed an approach (SNBS) of
using frequent itemsets to learn large Bayesian net-
works from sparse data. Further, they augmented the
learned Bayesian networks with edges of high mutual
information for variables that have not co-occurred in
the data, since such dependencies are not captured
by the frequent itemsets. The same technique can
be adopted to enhance our proposed model. Karger
and Srebro (2001) proposed a constant factor ap-
proximation algorithm for learning a maximum like-
lihood MRF of bounded treewidth. Also, there has
been significant work on approximate inference. Varia-
tional methods (Jordan et al., 1999; Wiegerinck, 2000;
Yedidia et al., 2001; Bishop et al., 2002; Xing et al.,
2003; Murray & Ghahramani, 2004; Geiger & Meek,
2005) is a very active research field.

6. Conclusion

In this paper, we have described a new approach to
learning an approximate MRF on large transaction
data. The learned model has been shown to be very
effective and efficient in solving the selectivity estima-
tion problem. In the future, we would like to employ
the model for various link analysis tasks. Furthermore,
we would like to exploit a generalized belief propaga-
tion style approach to force consistency of the model.
Also, we would like to exploit approximate inference

techniques, such as loopy belief propagation and gen-
eralized mean field algorithms in our model learning
process. Finally, taking into account temporal infor-
mation during the modeling process would be impor-
tant to analyze dynamically evolving real life networks.
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