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Abstract

Real-world data often involve objects that
exhibit multiple relations. A typical learn-
ing problem requires one to make inferences
about a subclass of objects, while using the
remaining objects and relations to provide
relevant information. We present a simple,
unified mechanism for incorporating infor-
mation from multiple object types and rela-
tions when learning on a targeted subset. In
this scheme, all sources of relevant informa-
tion are marginalized onto the target subclass
via random walks. We show that marginal-
ized random walks can be used as a general
and effective technique for combining multi-
ple sources of information in relational data.
With this approach, we formulate new algo-
rithms for transduction and ranking in re-
lational data, and quantify the performance
of our new schemes on real world relational
data— achieving good performances in many
practical problems.

1. Introduction

Currently, most text classification and clustering al-
gorithms base their inference the co-occurrence statis-
tics of terms appearing in documents by representing
document-term relations via a bipartite graph. Many
algorithms have been developed for clustering in bipar-
tite graphs [12, 3, 11, 5, 4]. The underlying intuition
behind these approaches is that the similarities among
one type of object can be used by the other type of
object for clustering.

One obvious limitation of existing co-clustering meth-

ods is that they can only deal with two types of data
objects. However, most data sets contain more than
two types of data objects. For example, in a paper
classification task in a citation network, beyond the
bipartite interaction between papers and authors, it
is also useful to consider other sources of relevant in-
formation, such as the conferences where the papers
were published. Such additional paper-conference in-
formation could help enhance the classification perfor-
mance. In this case, one could construct a tripartite
graph G = (〈A,B, C 〉, E), where the vertex sets corre-
spond to authors, papers, and conferences respectively,
and E is the set of edges, as shown in Figure 1.

Figure 1: Tripartite graph with A,B and C

One could consider addressing the problem of higher-
order-partite graphs in a trivial manner by applying
co-clustering on each pair of object types; that is, ap-
ply a co-clustering method on A, B, and then on B,C
individually. The problem with such an approach is
that it is hard to ensure the solutions are consistent at
the intersection on B. [2] and [6] proposed methods for
solving clustering with interactive relationships among
multiple types of data objects using ideas from infor-
mation theory and spectral graph clustering, but they
needed to employ sophisticated and computationally
expensive methods like semidefinite programming to
keep the partitions consistent.
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Figure 2: A graph of Web pages and terms

Beyond tripartite clustering, more complex scenarios
arise when one considers relationships among data ob-
jects of the same type. Previous work on clustering
with bipartite and k-partite graphs has, for the most
part, not taken the relationships between objects of the
same type into account. Obviously, such information
is simply ignored if we present the data as a k-partite
graph. Moving beyond documents and terms, if one
considers clustering Web pages, it is well-known that
the hyperlink structure among the Web pages contains
information valuable for classification, clustering and
ranking of web pages [10, 9, 13], a biparite graph rep-
resentation ignores such information. When clustering
Web pages, it seems clear that both hyperlink struc-
ture and term co-occurrence are relevant sources of
useful information that one would like to take account
of in a unified way. Ideally, one would just model the
relationships between Web pages and terms as vertices
in a graph like the one shown in Figure 2. Similarly,
in a citation network, a naive tripartite representa-
tion with author-paper and paper-conference relations
still ignores important citation information between
papers. To the best of our knowledge, clustering in
data sets with multiple object types, and multiple re-
lations between objects of various types has not been
well studied in the graph partitioning literature.

In this paper, we propose a simple, unified mechanism
for learning in complex scenarios, like the ones shown
above, in a graph based approach. We model all data
objects as vertices in a graph; e.g., a k-partite graph or
a mixed graph as shown in Figure 2. The graph based
representation allows a simple and elegant mechanism
for propagating useful information globally throughout
a large database of objects: based on the graph, a nat-
ural random walk model can be defined that commu-
nicates information in a Markov chain. To summarize
information from multiple object types and relations
when making inferences about one object type, we
marginalize the transition probability of the random
walk onto the target subset, based on the transition
probability of the induced subgraph and the transition
probability between the subset and its complement. In

this way, we obtain a valid, new random walk model
on the induced subgraph that summarizes all external
sources of relevant information. Two objects in the
target subgraph that share a lot of common external
information will be highly linked in the induced ran-
dom walk, even if they share no direct links in the
induced subgraph. Once a valid random walk model
has been defined, one can derive algorithms for trans-
ductive classification, clustering and ranking, by per-
forming random walks over a Markov Chain [13].

The idea of marginalization is a simple and elegant
way of dealing with many types of complex scenar-
ios uniformly. Interestingly, when dealing with graphs
that happen to be bipartite, the clustering method
implied by marginalization is equivalent to the spec-
tral co-clustering method proposed in [12, 3]. That is,
we recover prominent bipartite graph based inference
methods as a special case.

Furthermore, the marginalization idea can be ex-
tended to solve more general types of inference prob-
lems on graphs than have been commonly studied in
graph partitoning. Consider the problem of clustering
the set of blog pages on the Web.In a conventional ap-
proach, one could use the induced subgraph on blog
pages (namely the subgraph of all the blog pages and
their hyperlink structure) to classify the blog pages
with respect to their common topics. However, the
difficulty with this approach is that there is not much
information in the hyperlinks between blog pages, as
the owners of the blogs typically do not add links to
other blogs if they do not know each other. Therefore,
the information obtained directly from the subgraph
is not enough to identify blogs of common interest. It
therefore makes sense to explore the hyperlinks that
connect blog pages to other general web pages. For
example, people who are interested in computer pro-
gramming might add a link from their blogs to the
page “the art of computer programming” created by
Donald Knuth. Although the blogs themselves may
have only a few direct links, the blogs can still be clus-
tered into identifiable communities by detecting the
pages of common interest linked from the blogs. The
scheme we propose can fully exploit all sources of rel-
evant information in a graph of heterogeneous objects
to achieve better performance on the target subset.

Peripherally related is work on probabilistic relational
models (PRMs)[7], that also model and perform infer-
ence in a relational setting. Here one posits a joint
probability model over a typed relational domain that
encodes specific conditional independence assumptions
based on object types, properties and relations. Infer-
ence in this framework is well founded, but complex.
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By comparison, our scheme is very simple, fast, and
based purely on graph theory. Inference is achieved
entirely via random walks on subgraphs.

2. Preliminaries

A bipartite graph G = (〈A,B 〉, E) is a graph that con-
sists of two disjoint sets of vertices, A and B, and a set
of edges, E, between A and B. (Typically, the two dis-
joint sets represent different objects, e.g. documents
and terms.) Let a weight function w : A × B → <
be associated with the bipartite graph such that for
each pair (a, b), w(a, b) = 0 iff (a, b) /∈ E. One can
generalize bipartite graphs to higher order k-partite
graphs, whose vertices are divided into k disjoint sets
so that no two vertices within the same set are ad-
jacent. Given an undirected graph, a natural ran-
dom walk can be defined by the transition probability
p : V×V → <≥0 such that p(a, b) = w(a, b)/d(a) for all
(a, b) ∈ E, where d(a) =

∑
b w(a, b). If the edges have

directions, then p is defined by p(u, v) = w(u, v)/d+(u)
for all (u, v) ∈ E and 0 otherwise, where d+(u) =∑

u→v w(u, v). The random walk on a strongly con-
nected and aperiodic graph has unique stationary dis-
tribution π that satisfies the balance equation πp = π.

Given a general graph G = (V, E) (with either directed
or undirected edges), and a subset S ⊂ V of the ver-
tices, the induced subgraph wrt S is the subset V of
vertices of G together with any edges whose endpoints
are both in V .

3. Learning on a Ergodic Markov Chain

Before presenting our approach in detail, we briefly re-
view related techniques for clustering and transductive
learning in graphs involved with Markov chain proper-
ties of natural random walks [13]. A graph G = (V, E)
can be associated with a Markov chain defined via a
random walk on the graph. The stationary distribu-
tion of this random walk gives a probability distribu-
tion over the vertices v in the graph.

Let H(V ) denote the space of partitions of the ver-
tices V , in that each f ∈ H(V ) maps each v ∈ V to
real values between -1 and 1. We assume that most
linked vertices as similar—that is, belong to the same
class. This means, in particular, that all vertices from
a densely linked subgraph are likely to have the same
label. This motivates us to define the functional

Ω(f) :=
1
2

∑

(u,v)∈E

π(u)p(u, v)

(
f(u)√
π(u)

− f(v)√
π(v)

)2

that sums the weighted variation of a function on each

edge of the directed graph. The labels are smoothed
over the entire graph by minimizing the variation.

There is a equivalent way to express Ω(f). Let Π de-
note the diagonal matrix with Π(v, v) = π(v) for all
v ∈ V ; let P denote the transition probability matrix;
and let PT the transpose of P . Then

Θ =
Π1/2PΠ−1/2 + Π−1/2PT Π1/2

2
.

Using I for the identity matrix, it can be proved that

Ω(f) = fT (I −Θ)f

The functional Ω(f) can also be derived with respect
to a normalized cut criterion that generalizes the stan-
dard spectral clustering criterion to directed graphs.

In this framework, the Markov Chain must be ergodic
to ensure the existence of a unique stationary distrib-
ution. However, this is not always true of graphs used
in real applications. If the graph is not ergodic, the
simple random walk model can be modified to achieve
ergodicity by adding a small probability of a random
“teleport” to any node in the graph uniformly (con-
trolled by a damping factor).

4. Marginalized Random Walks on a
Subgraph

We can model many versions of graph-based inference
problems as learning on an induced subgraph. Typi-
cal learning tasks in this setting are classification and
clustering on a target subset, where one would like to
utilize not only the original structure of the subgraph,
but also the global structure and the interactions be-
tween the subgraph and its complement. To propagate
the information needed to perform these tasks, the
graph based approach depends upon a random walk
model to communicate the relevant information glob-
ally throughout the graph. In the case where the in-
ference problem is to be localized on a focused subset
of the graph, we need a new random walk model that
communicates the sources of relevant information to
the subset. With an appropriate marginalized random
walk model, we can then derive principled techniques
for transductive classification, clustering and ranking.

Given a graph G = (V, E) (either directed or undi-
rected), and a subset of vertices V is A, we are inter-
ested in performing a learning task in A, e.g., learning
a classification of A’s vertices. We let Ac denote the
complement of A. For example, in the blog example
where A is the set of blog pages we want to classify
based on topic, Ac is the set of non-blog Web pages
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that have connections to the blog pages. In the ex-
ample of a tripartite graph for a citation network in-
cluding papers, authors and conferences, A is the set
of papers and Ac includes all the authors of the papers
and the conferences.

Typically, the transition probability P of a natural
random walk model on the graph can be written as in
Section 2. Here we can equivalently rewrite the tran-
sition probability in a blockwise form with respect to
A and Ac

P =
(

PAA PAAc

PAcA PAcAc

)

where PAAc denotes the transition probability between
vertices in A and Ac, etc.

One could attempt to perform classification in A based
only on PAA, by applying the framework reviewed in
Section 3. However this ignores the information that
connects A and Ac, which could be significant. An
extreme case is that when we have no interactive rela-
tionships in either A or Ac but only PAAc and PAcA;
that is, a bipartite graph. We will see later that co-
clustering methods utilize PAAc and PAcA; see Sec-
tion 4.1. Now our goal is to define a new random walk
in A incorporating all relevant information.

Given a vertex u in A, we first assume it has outlinks
to a vertex v in A and a vertex vc in Ac. The random
walk has the following two options starting from u: it
can follow the outlink to v (and so stay within A), or to
vc (and so leave A). If it stays in A, the random surfer
follows the transition probability PAA. If the random
surfer jumps out of A to Ac, its walk will follow the
transition probability PAAc . Once it enters Ac, there
is a non-zero chance it will take any number of steps
in Ac before possibly returning to A. Therefore, we
can write the transition probability between u and v
in A, if the surfer re-entered A after transiting from A
to Ac and back to A as,

Pout = PAAc

(
I +

n→∞∑

i=1

P i
AcAc

)
PAcA

= PAAc(I − PAcAc)−1PAcA

In addition, define Pin = PAA if the surfer stays within
A. Combining these two transition models yields a
new random walk on the subgraph A, whose transition
probability P ∗AA is given by

P ∗AA = Pin + Pout

To ensure Pout and P ∗AA are well defined, we assume
P is ergodic. We then have the following claims.

Claim 1. I − PAcAc is invertible.

Proof. Assume I − PAcAc is singular. Then (I −
PAcAc)x = 0 has a non-trivial solution x = PAcAcx.
Taking norms, we have |x| = |PAcAcx| ≤
|PAcAc | |x| < |x|. The last inequality follows because
the row sum of PAcAc is less than 1. Contradiction.

Claim 2. P ∗AA is a valid transition probability in that
the sum of each row equals 1.

Proof. Consider the ways a random surfer can start
from a vertex u in A and return to another vertex v
in A. In the first step, u has two choices, either follow
links in A or jump out of A to Ac. If it stays in A,
the transition probability is Pin. If it jumps out of A,
then the surfer has an infinite number of paths lenghts
that stay in Ac, before (possibly) returning to A. Here,
Pout is the probability of transiting from u to v via Ac.
The sum of these two disjoint transition probabilities
is a valid transition probability.

We let P ∗AA denote the new transition probability on A
by marginalizing the random walk on subset A, taking
all sources of information into account. The similar-
ity among vertices in A is measured by a combination
of the transition probability within A, Pin, and the
probability of escaping from A to Ac and then return-
ing to A, Pout. Therefore, we define a new Markov
Chain over the subset of the graph. We can use the
functional defined in (3), to produce graph-based al-
gorithms for transductive classification, clustering and
ranking on complex graphs:

f∗ = argmin
f
{Ω(f) + µ ||f − y||2}

Here y = 〈 yi 〉 is the partially labeled vector; where
each labeled data is either 1 or −1, and yi = 0 for
each unlabeled data point. For ranking, we label the
target data as 1, µ is a tuning parameter; for clustering
tasks we set µ = 0 since we do not have any label
information.

4.1. Learning with a Bipartite Graph

In this section, we will show that the original spectral
co-clustering on a bipartite graph [12, 3] can be equiv-
alently interpreted as defining random walk models on
each subset of the bipartite graph in our scheme.

Given a bipartite graph G = (〈A,B 〉, E), where A and
B are disjoint subsets of vertices in G, the transition
probability P over G has the following blockwise form:

P =
(

0 PAB

PBA 0

)
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Therefore, as in the previous section, we can define
new random walk in A and B of G as

PA = PABPBA, (1)

PB = PBAPAB (2)

Intuitively, such random walks can be also understood
as a two step random walk, motivated by the Hub
and Authority model. We take vertices in B as the
evidence of existing similarities between nodes in A.
The similarities are mutually reinforced via the ran-
dom walk between them, as follows.

First consider the random walk among vertices in A (B
will be isomorphic). If the random surfer is currently
at vertex ai ∈ A, it first takes a backward step along
edge (ai, b) to some vertix b ∈ B. Then if b also has a
edge connected to aj , the surfer will visit aj along the
edge (b, aj).

The two-step transition probability pA(ai, aj) is deter-
mined by the surfer taking one backward step and one
forward step. Therefore,

pA(ai, aj) =
∑

b

p(ai, b)p(b, aj) =
∑

b

w(ai, b)w(b, aj)
d(ai)d(b)

(3)
which is exactly the same as the PA obtained in (1).

The stationary distribution πA of this random walk is

πA(a) =
d(a)

volGA

where volGA =
∑

a∈A d(a). This means∑

ai∈V

πA(ai)pA(ai, aj)

=
∑

ai∈V

d(ai)
volGA

∑

b∈V

w(ai, b)w(b, aj)
d(ai)d(b)

=
1

volGA

∑

ai∈V

∑

b∈V

w(ai, b)w(b, aj)
d(b)

=
1

volGA

∑

b∈V

w(b, aj)
d(b)

∑

ai∈V

w(ai, b)

=
d(aj)
volGA

= πA(aj)

Similarly, we can define the two step transition process
among nodes in B, yielding the transition probability

pB(bi, bj) =
∑

a

p(bi, a)p(a, bj) =
∑

a

w(bi, a)w(a, bj)
d(bi)d(a)

(4)
which corresponds to (2).

Moreover, the stationary distribution πB is,

πB(b) =
d(b)

volGB
(5)

To obtain classification or clustering results on both
subsets simultaneously, we define a smoothness
function f over A from (3) that is measured by SA(f)

=
1

2 volGA

∑
ai,aj

PA(ai, aj)π(ai)

(
f(ai)√
π(ai)

− f(aj)√
π(aj)

)2

Similarly, the smoothness function g over B is defined
as SB(g)

=
1

2 volGB

∑

bi,bj

∑
a

PB(bi, bj)π(bi)

(
g(bi)√
π(bi)

− g(bj)√
π(bj)

)2

We can use (3), (4.1), (4) and (5), to prove that

SA(f) =
1

volGA
〈f, ∆Af〉

SB(g) =
1

volGB
〈g, ∆Bg〉

where

∆A = I −D
−1/2
A WT D−1

B WD
−1/2
A = I −MMT

∆B = I −D
−1/2
B WD−1

A WT D
−1/2
B = I −MT M

where DA = We, DB = WT e and M =
D
−1/2
A WT D

−1/2
B using the all-1 vector e. The solu-

tions for f and g are the eigenvectors of MMT and
MT M with second largest eigenvalues.

It is known the solution of spectral co-clustering on A
and B is the second largest left and right singular vec-
tors of M [12, 3]. It is easy to see that from the singu-
lar value decomposition, that the non-zero left singular
eigenvalues of M are the square roots of the non-zero
eigenvalues of MMT with the same eigenvector space.
The eigenvector space of M ’s right eigenvectors is the
same as the one of MT M . Therefore, the two solutions
are exactly the same, but with different motivations.

The advantage of having marginalized random walk
models on each subset is that we can treat each set in-
dividually while using their mutual relationships. As
expected, the solution is exactly the same as when we
considered the combinatorial cut problem in bipartite
graphs. In spectral co-clustering method, the goal is
to define a cut criterion for the weight matrix that
minimizes the cut over the unmatched edges and max-
imizes the matched vertices in the subgraphs. Such
cuts naturally partition the bipartite graph into two
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parts in each set. The solution is not clear though if
we want different number of partitions on each sub-
set. While using our scheme, we can obtain k-cluster
results using the first k eigenvectors of ∆A and ∆B .
Moreover, as discussed in Section 4, this method can
be easily generalized into more complex graphs, which
would have been difficult from graph cut perspective.

5. Experiments

5.1. Experimental Design

In this section, we demonstrate several problem set-
tings that involve data represented in complex graph
structures. We evaluate our information marginaliza-
tion approach by applying it to two datasets; see Sec-
tion 5.2.

The first dataset is from WebKB
(http://www.cs.cmu.edu/afs/cs.cmu.edu/project
/theo-20/www/data/), which includes pages from
four universities: Cornell, Texas, Washington and
Wisconsin. After removing isolated pages, the Web
pages have been manually classified into seven cat-
egories: student, faculty, staff, department, course,
project and other. We take advantage of the link
structure and page-word relationships for the following
two learning tasks.

a. Given the link structure of all the pages and the
words used in them, discriminate student (course)
pages from non-student (non-course) pages. Here, A
corresponds to the web pages, and Ac to the words.
See Figure 2.

b. Given only the link structure, discriminate student
pages (labeled as 1) from course pages (labeled as -1).
For this task, A corresponds the pages of students and
courses, and Ac to the web pages from other classes.

The second dataset is based on CiteSeer
(http://citeseer.ist.psu.edu/)—a well-known
scientific digital library that catalogues primarily
computer and information science literature. We
construct our citation networks based on paper-paper
and paper-author relationships from CiteSeer. We
extract a set of papers P with authors U . Here, we
focus on two kinds of ranking.

a. Given some papers (i.e., seed papers) in P labeled
as relevant to a specific topic T , rank the rest of the
papers based on their relevance to T . Here, A is P ,
Ac is U .

b. Given some authors (i.e., seed authors) in A identi-
fied as relevant since they share similar research inter-
ests, rank the remaining authors based on how much

they share the research interests with these seed au-
thors. A is U , Ac is P .

To build citation networks, we scout ahead
following the paper citation and correspond-
ing authors information from the OAI records
(http://citeseer.ist.psu.edu/oai.html). We
start a crawl from a set of pre-selected authors (i.e.,
root authors), then collect all their papers and the
co-authors of these papers. The co-authors are added
to a growing set of authors that is used in the next
iteration. We repeat this iteration n = 3 times to
collect a number of related authors and papers. In
our experiment, we choose the root authors from two
different areas:

Root authors # Authors # Papers
“Berhard Scholkopf” +
“John Kleinberg”

7156 4979

“Vladimir Vapnik” +
“Jianbo Shi”

3048 2097

Therefore, the citation network contains authors with
different research subjects, which is more realistic.

5.2. Result

5.2.1. Web Classification

We compare the performance of two algorithms for
Web page classification in transductive setting. The
Web pages and hyperlinks consist as a directed graph.
It is well-known that transductive classification typi-
cally outperforms supervised one because it takes ad-
vantages of unlabled data in the learning procedure.
The first transductive algorithm uses our marginalized
random walk P ∗, and the second one uses hyperlink
structure PAA only. We use canonical 0-1 weights over
the directed hyperlinks. We set the tuning parameter
µ = 2.5 for both algorithms. We increase the size of
the labeled data sample at each iteration. The compar-
ison is based on 0/1 classification error, averaged by 20
iterations. The red and green curves in the figures are
for non-marginalized and marginalized respectively.

Figure 3,4 show the comparison results for problem a,
and Figure 5, for problem b. It is clear that the meth-
ods using information marginalization outperforms the
one with only the local hyperlink information from
subset. Specifically, this implies that the marginalized
random walk is able to convey more global information
onto the subset, efficiently improving the performance
in classification. We also notice that the performance
for non-marginalized could be noisy as increase the la-
beled examples, this is because the telporting factors in
relatively sparse local graphs may be misleading while
if we use other sources of information the noise can be
reduced.
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Figure 3: Classification error on discriminating course
pages from non-course pages and student pages from non-
student pages from Washington.
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Figure 4: Classification error on discriminating course
pages from non-course pages and student pages from non-
student pages from Wisconsin.

5.2.2. Ranking in Citation Networks

Table 1 lists the ranking results of authors with respect
to Vladimir Vapnik in the second citation network.
The information from the citation links moves some
authors—Chris Burges, Bernhard Scholkopf, Olivier
Chapelle and Alex Smola—to higher ranking positions
than only using author-paper relationships. The rea-
son is that these authors also have many citation links
among their papers that strengthen the similarities
with respect to the labeled author.

Table 2 shows the top 20 results of paper ranking with
respect to the labeled paper “Kernel Principal Compo-
nent Analysis”; and Table 3, the top 10 wrt “Author-
itative Sources in a Hyperlinked Environment”. We
can see that the information maginalization method
works better than only using citation links information
as the highly ranked papers are closer to the labeled
paper in information marginalization scheme. If we
only consider citation links, some papers from slightly
different domain may be included in the top ranking
list because they may have citations with similar pa-
pers. With the help of author-paper relationships, the
relationship between the labeled paper and other pa-
pers become more clear thus lead more accurate rank-
ing results.

6. Conclusions

We have proposed an unified mechanism for incorpo-
rating information from multiple object types and re-

10 20 30 40 50 60
0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44
Cornell: course vs student

# labeled points

te
st

 e
rr

or

non−marginalized
marginalized

10 20 30 40 50 60 70 80 90 100
0.18

0.19

0.2

0.21

0.22

0.23

0.24

0.25

0.26

0.27

0.28
Texas: course vs student

# labeled points

te
st

 e
rr

or

non−marginalized

 marginalized

10 20 30 40 50 60 70 80 90 100
0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48
Washington: course vs student

# labeled points

te
st

 e
rr

or

non−marginalized

 marginalized

Figure 5: Classification error on discriminating course
pages from student pages from three different universities.

Table 1: Author ranking result in network 2.

marginalized ran-
dom walk

only author-paper re-
lationships

name name

1.Chris Burges 1.Sayan Mukherjee
2.Bernhard E.Boser 2.Chris Burges
3.Isabelle M. Guyon 3.Bernhard E. Boser
4.Sayan Mukherjee 4.Isabelle M.Guyon
5.Donghui Wu 5.Donghui Wu
6.Bernhard Scholkopf 6.Steven E.Golowich
7.Heinrich H.Bulthoff 7.Volker Blanz
8.Thomas Vetter 8.Bernhard Scholkopf
9.Volker Blanz 9.Thomas Vetter
10.Steven Golowich 10.Chris Watkins
11.Mark Stitson 11.Vladimir Vovk
12.Alex Gammerman 12.Alex Gammerman
13.Vladimir Vovk 13.Mark Stitson
14.Chris Watkins 14.Klaus-Robert Muller
15.Partha Niyogi 15.Federico Girosi
16.Olivier Chapelle 16.Koh.Sung
17.Alex Smola 17.Partha Niyogi
18.Adnan Aziz 18.Jason Weston
19.Jason Weston 19.Olivier Chapelle
20.Koh.Sung 20.Alex Smola

lations when making inferences about a targeted sub-
set. Our technique can be applied to learning problems
with data embedded in complex graphs. We quantify
the performance of our new schemes on two real world
relational data and achieve good results in challenging
inference problems. Future work should deeply explore
more interesting applications of this method.
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