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Abstract

We consider the statistical analysis of a col-
lection of unipartite graphs, i.e., multiple ma-
trices of relations among objects of a single
type. Such data arise, for example, in biolog-
ical settings, collections of author-recipient
email, and social networks. In many appli-
cations, clustering the objects of study or
situating them in a low dimensional space
(e.g., a simplex) is only one of the goals of
the analysis. Begin able to estimate rela-
tional structures among the clusters them-
selves is often times as important. For ex-
ample, in biological applications we are inter-
ested in estimating how stable protein com-
plexes (i.e., clusters of proteins) interact. To
support such integrated data analyses, we de-
velop the family of “stochastic block models
of mixed membership”. Our models combine
features of mixed-membership models (Ero-
sheva & Fienberg, 2005) and block models
for relational data (Holland et al., 1983) in
a hierarchical Bayesian framework. We de-
velop a novel “nested” variational inference
scheme, which is necessary to successfully
perform fast approximate posterior inference
in our models of relational data. We present
evidence to support our claims, using both
synthetic data and biological case study.

1. Introduction
In many applications, clustering the objects of study or

situating them in a low dimensional space (e.g., a sim-
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plex) is only one of the goals of the analysis. Begin able
to estimate relational structures among the clusters
themselves is often times as important. For example,
in biological applications we are interested in perform-
ing two tasks: identifying stable protein complexes,
i.e., clusters of proteins, and estimating how such com-
plexes interact with one another. In social network
analysis the two tasks above translate in to identifying
groups of people, and estimating how groups them-
selves communicate, from observations about email
communications. This latter piece of information may
reveal, for example, the informal structure of an orga-
nization.

To support such integrated data analyses, we intro-
duce the family of “stochastic block models of mixed
membership”. Models in this family combine features
of mixed-membership models (Erosheva & Fienberg,
2005) and block models for relational data (Holland
et al., 1983; Anderson et al., 1992; Nowicki & Snijders,
2001) in a hierarchical Bayesian framework.

In this paper we make the following contributions:
(a) we introduce a general formulation of stochastic
block models of mixed membership, which is amenable
to theoretical analysis; and (b) we develop a novel
“nested” variational inference scheme, which is nec-
essary to successfully perform fast approximate poste-
rior inference in our models of relational data, which
does not depend on the support of the data, and which
scales to large problems. We explore theoretical and
computational issues associated with these models via
simulations and a biological case study.

2. The Scientific Problem
2.1. The Data

The data we are interested in modeling is a collection
of directed, unipartite graphs. A unipartite graph, is
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a graph whose constituent nodes are of a single type,
e.g., proteins; as opposed to bipartite and multipar-
tite graphs, whose constituent nodes are of a two and
multiple types, respectively.

Four examples follow. 1. Consider the set of hand
curated protein interactions produced by the Munich
Institute for Protein Sequencing (Mewes et al., 2004).
A single set of interactions between proteins has been
experimentally verified. This information is repre-
sentable as a single graph where the random variables
associated with the edges are binary. 2. Consider the
output of a battery of yeast-two-hybrid experiments,
on the same set of proteins, A/, and different, R, ex-
perimental conditions (?). Without entering in the
biological details!, a typical output consists of proba-
bilities of interactions between pairs of proteins, on the
logarithmic scale with base two. This information is
representable as a collection of R graphs, one for each
run, where the random variables associated with the
edges are real-valued. 3. Consider a collection of email
communications within a company, say, Enron. Our
observations consists of weekly summaries about how
many emails each pair of employees exchange (Priebe
et al., 2005). This information is representable as a col-
lection of graphs with non-negative, integer edges, i.e.,
the number of emails. Equivalently, this information
is representable as the collection of adjacency matrices
corresponding to such graphs. 4. Consider a collec-
tion of sociometric relations among a group of monks
(Sampson, 1968). We observe responses to multiple,
J, questions about social relations between pairs of
monks, e.g., “Do you like X?” or “Do you trust X?”,
and multiple replicates for each response, R;, where
7 =1,...,J. These relations are typically asymmet-
ric. This information is representable as a collection of
J collections of Ry.; graphs, where the edges encode,
say, binary responses. Alternatively, this information
is representable as a collection of Zj R; graphs where
the random variables associated with the edges have
support {0,1}7.

From a modeling perspective, it is useful to give an ab-
stract representation of the data we plan to analyze.
Say we observe a collection of unipartite graphs, whose
edge encode measurements on pair of nodes according
to different, J, response variables, and we observe mul-
tiple, R;, replicates of each graph,

g:{GjT:jzl,...,J, andr:l,...,Rj}

where each graph Gj, = (Y;,,N), is defined over a
common set of nodes, N'. The random quantities that

1Such details are very important as we may want to
perform the analysis on data with different degrees of pre-
processing.

encode the edge weights, e.g., Yjrnm, where (n,m) is a
pair of nodes in V', have support in a separable, metric
space. It is possible that each of the J response vari-
ables has support in a different spaces. The collection
contains ) ; R; graphs in total. Such a collection may
contain missing values.

2.2. The Goals of the Analysis

There are three main goals: (1) identifying clusters of
nodes; (2) determining the number of clusters; (3) esti-
mating the probabilities of interaction among clusters.

Let us consider the first protein example above. We
analyze the set f protein-protein interactions with the
goal of identifying stable protein complexes, i.e., clus-
ters of proteins, since they have been shown to be im-
portant for carrying out cellular processes (7). Fur-
ther, we want to know how many protein complexes
are needed to explain the collection of protein inter-
actions. Last, we want to estimate the probabilities
according to which pairs of such protein complexes in-
teract with one another.

Typically, we perform unsupervised learning experi-
ments, or semi-supervised learning experiments with
minimal information available in terms of membership
of proteins to known protein complexes. Working in
the hierarchical Bayes framework, we choose to esti-
mate the constants underlying the distribution of ran-
dom quantities at the top level of the hierarchy (i.e.,
the hyper-parameters) via empirical Bayes. It is pos-
sible for researchers to fix the probabilities according
to which clusters interact (elements of the stochastic
block model) to test hypotheses in various ways. Alter-
native strategies are possible, e.g., supervised learning,
but we do not discuss them here.

2.3. Notation

In the remainder of this paper, we index random
quantities with up to five sub-script. Typically, the
first subscript refers to the response variable, j =
1,...,J, the second subscript refers to the replicate,
r=1,...,R;. The next (next two) subscript refers to
a node (pair of nodes), n,m € N. In particular, when
we work with quantities over pairs of nodes it is some-
times easier to outline an algorithm by substituting
the pair of subscripts (n — m,n < m) for the original
ones (nm, mn). The fifth subscript refers to the num-
ber of latent clusters, k =1, ..., K, in those few cases
where a vector has to be indexed by jrnm; see Equa-
tion 9 for an example. At times we will need two sub-
scripts to index pairs of latent clusters, g,h=1,..., K
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3. General Model Formulation

We characterize the stochastic block models of mixed-
membership in terms of assumptions at four levels.

Al-Population Level. Assume that there are K
classes or sub-populations in the population of interest.
We denote by f(yjnm|ngn) the probability distribution
of the j-th response graph at the pair of nodes (n,m),
where the n-th node is in the h-th sub-population, the
m-th node is in the k-th sub-population, and 74, con-
tains the relevant parameters. The indices n,m run
in NV, and the indices g, h run in [1, K]. Within sub-
population pairs, the observed paired responses are as-
sumed independent.

A2-Node Level. The components of the member-
ship vector 6,, = (0n1,...,0,k) encodes the mixed-
membership of the n-th node to the various sub-
populations. The distribution of the observed re-
sponse ¥;jnm given the relevant, node-specific member-
ship scores, (0,,,6,,), is then

K
Pr (Yjnm|0n; Om,n) = Z Ong f (Yjnm|gn)Omn- (2)
g,h=1

Conditional on the mixed-membership scores, the re-
sponse edges yjnm, are independent of one another,
both across distinct graphs and pairs of nodes.

A3-Latent Variable Level. Assume that the vec-
tors 6,,, i.e., the mixed-membership scores of the n-th
subject, are realizations of a latent variable with dis-
tribution D, parameterized by vector a. The proba-
bility of observing jnm, given the parameters, is then

Pr (yjnmlaun) =

K
B / D Ongf (WinmIngn)0mn | Da(d).  (3)

g,h=1

A4-Sampling Scheme Level. Assume that the R
independent replications of the J distinct response
graphs are independent of one another. The prob-
ability of observing the whole collection of graphs,
{Yjrnm}, given the parameters, is then given by Equa-
tion 1. The number of replications is not necessarily
the same across different response graphs, i.e., R = R;.
Likewise, the block model can be response specific, i.e.,
1 = n;. More variations along these lines are possible.

1lr=1n,

Z Ong f (Yjrnm|ngn)Omn

1g,h=1

Da(d6). (1)

A graphical representation of models in this family is
given in Figure 1, left panel.

3.1. Example: Admixture of Latent Blocks

A vanilla data mining model that is encompassed by
our general formulation is the “Admixture of Latent
Blocks” introduced by Airoldi et al. (2006) for the
analysis of a collection of protein-protein interactions.

Using this model on protein-protein interaction data:
sub-populations correspond to non-observable “stable
protein complexes”, indexed by k; nodes correspond
to “proteins”, indexed by n; there is only one response
variable that encodes whether a pair of proteins in-
teracts or not, so that j is omitted; there is only one
replicate, since the interactions have been measured
with an experimental procedure such as “Yeast Two
Hybrid” under a single experimental condition. The
model assumes that each interaction in the collection
is either present or absent given the memberships to
specific protein complexes of the pair of single proteins
involved. That is, each protein participates in the var-
ious interactions as a member of possibly different pro-
tein complexes. In order to simplify the inference, an
explicit pair of indicator variables (z,,.,, z5,,) is intro-
duced for each interaction in the observed collection,
which indicates the protein complexes that the two
proteins are members of as they interact. The func-
tion f(ynm|77gh) = Pr (ynm = 1|Z1Tm =9, %nm = h)
= Bernoulli (ngn), where ng, is the probability that
a protein in complex ¢ interacts with a protein in
complex h. A mixed-membership vectors 6.y en-
code the expected protein complex proportions. They
are distributed according to D,, i.e., a Dirichlet dis-
tribution. We obtain equation 2 integrating out the
protein complex indicator variables (z,,.,, z5,) at the
interactions level—the latent indicators z,,, are dis-
tributed according to a Multinomial (1,6,,), whereas
the latent indicators z,,,, are distributed according to
a Multinomial (1,0,,).

A graphical representation of this specific model is
given in Figure 1, right panel.

4. Nested Variational Inference

In order to learn the hyper-parameters, («, ), and in-
fer the mixed-membership vectors, #1.n, we need to
be able to evaluate the likelihood, which involves the
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Figure 1. The graphical representation of stochastic block models of mixed membership using plates (left panel), and the

graphical representation of the admixture of latent blocks introduced by Airoldi et al.

(2006) (right panel). Notes: (i)

the mixed-membership vectors, 61.n, are sampled once for all response graphs, we plotted two sets of them, for clarity;
(ii) we did not draw all the arrows out of 7, for clarity, since all the interactions ynm depend on it.

non-tractable integral in Equation 1. Using variational
methods, we find a tractable lower bound for the likeli-
hood that can be used as a surrogate for our inference
purposes. This leads to approximate MLEs for the
hyper-parameters and approximate posterior distribu-
tions for the mixed-membership vectors.

The variational method prescribes the use of a mean-
field approximation to the posterior distribution of
the latent variables given data and hyper-parameters,
which we described below. Such an approximation
leads to a lower bound for the likelihood of a docu-
ment, which depends upon an set of free parameters,
{¥n,s ¢Jmm, ®5rnm }- These free parameters are intro-
duced in the mean-field approximation, and are set to
minimize the Kullback-Leibler (KL henceforth) diver-
gence between true and approximate posteriors.

The “variational EM” algorithm we develop for per-
forming posterior inference is then an approximate EM
algorithm. During the M step, we maximize the lower
bound for the likelihood over the hyper-parameters of
the model, (e, 71.7), to obtain to (approximate) maxi-
mum likelihood estimates (Carlin & Louis, 2005). Dur-
ing the E step, we tighten the lower bound for the

likelihood by minimizing the KL divergence between
the true and the approximate posteriors over the free
parameters, {Vn, @}, ms Pjrnm }» given the most recent
estimates for the hyper-parameters.

In the M step, we update the hyper-parameters of the
model, (a,71.7), by maximizing the tight lower bound
for the likelihood over such hyper-parameters, given
the most recent updates of the free parameters the
bound depends on, {vn, #7;m> Pjrnm }- In the case of
F(Yjrnm|ngn) = Bernoulli (ng), for example, this ar-
gument leads to the following (approximate) maximum
likelihood estimates for the parameters:

quh R Zl

It is not possible to derive closed form expression for
the approximate maximum likelihood estimates of the
parameters underlying f(yjrnm|ngn), in general, al-
though closed form expressions exist in many cases,
Bernoulli, Poisson and Gaussian among them. Fur-
ther, a closed form solution for the approximate max-
imum likelihood estimates of a does not exist (Minka,
2000; Blei et al., 2003). We can produce a method that

n m=1 ¢jrnmg jrnmh Yjrnm (9)

an 1¢Jrnmg jrnmh
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oL K
day = N(‘IJ(Z(M) >+Z< (Ynk) Z”ynk > (4)
k=1 n=1
oL K
8051610%2 = (5/91 k2 \I] ak1 kgl A, )7 (5)
K d)H
(b:mq X  exp { w /an Z’}/nq } H f Ynm ’ 77qh nmh (6)
= h=1
K K -
Oamn 0 XD { ¥ (ymn) = ¥ Z'th I H F (ynm | ngn )%mg (7)
h=1 g=1
J Rj N N
Yng = gt (Z Oirnmg + qs;nmg) . (8)
j=1r=1 \m=1 m=1

is linear in time by using Newton-Raphson, with the
gradient and Hessian for the log-likelihood in Equa-
tions 4 and 5.

In the approximate E step we update the free
parameters for the mean-field approximation of
the posterior distribution of the latent variables,
{¥ns jrnms Pirnm > given the most recent estimates of
the hyper-parameters of the model, («,71.7), accord-
ing to Equations 6, 7 and 8. This minimizes the poste-
rior KL divergence between true and approximate pos-
teriors, at the document level, and leads to a new lower
bound for the likelihood of the collection of graphs.
Note that the free parameter updates above use ob-
servations in a single graph only, hence we suppressed
the indices j, r. Further, they are fairly general in that
they do not depend on a specific observation model.
However, our derivations do assume a fully factorized
variational distribution.

In order to develop the mean-field approximation for
the posterior distribution over the latent variables we
used in the E step above, we posit a fully-factorized
joint distributions over the latent variables,

“Letob) I 11

neN j=lr=1n,meN
(q ( Zirnm | ¢Jrnm ) q (Z;nm ‘ (b;nm )>7

which depends on the set of previously mentioned free
parameters, {yn, qﬁjmm, irnm ). The mean-field ap-
proximation consists in finding an approximate poste-
rior distribution,

ﬁ ( {9n727_r)nm7z_;nm} ‘ {7n7¢;nm7¢_(j_rnm}7a7n1:J)

where the conditioning on the data is now obtained
indirectly, trough the free parameters,

ﬁn = ~n({Y]T0§]§J70§TSRJ})7

The factorized distribution leads to a lower bound for
the likelihood; in fact it is possible to find a closed
form solution to the integral in Equation 1 by apply-
ing Jensen’s inequality, and then integrating the la-
tent variables out with respect to the factorized distri-
bution. An approximate posterior, p, is obtained by
substituting the lower bound for the likelihood in the
calculations, as appropriate. The mean-field approxi-
mation in then obtained by minimizing the Kullback-
Leibler divergence between the true and the approxi-
mate posteriors, over the free parameters.

4.1. The Algorithms: Naive vs. Nested

The variational inference algorithm presented in Fig-
ure 2 is a novel “nested” variational inference algo-
rithm. The difference from the naive version of the al-
gorithm at a glance is that to carry out the latter, we
initialize the variational Dirichlet parameters v, and
the variational Multinomial parameters ¢;; to non-
informative values, then we iterate until convergence
the following two steps: (i) update ¢, and ¢, for
all edges (n,m), and (ii) update v, for all nodes n. In
such algorithm, at each variational inference cycle we
need to allocate NK + 2N2K scalars. In our exper-
iments the naive variational algorithm often failed to
converge, or converged after a large number of itera-
tions. We attribute this behavior to a dependence that
our two main assumptions (block model and mixed
membership) induce between {v,,} and {n;4s}, which
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initialize 729 = % for all n, g
repeat
forne N
for me N

—

partially update ¥4, 45t and ntt?

until convergence

NSOt W=

get variational ¢,/ ! and ¢5,, " = 9 Ynm, Yh, ey 1)

initialize ¢y = Gpmp = = for all g, h
repeat
forg=1to K

update ¢;n;+1 X g1 (Qb'r;nsv Y, 77)
normalize ¢,,° Tt to sum to 1
for h=1to K
update ¢ 5 o g2(dnm®, 7, 1)
normalize ¢5,,° ! to sum to 1
until convergence

i e I AN R

Figure 2. Left: The nested (two-layered) variational inference algorithm for v and (¢, ¢ ). The inner layer consists of
Step 5. The function g is described in details in the right panel. Right: Details Step 5. in the left panel; inference for
the variational parameters (¢, ®rrm) corresponding to the basic observation ynm. The functions ¢g; and g2 are updates

for ¢rumg and ¢y, described in the text of Section 4.

is not satisfied by the naive algorithm. Some intu-
ition about why this may happen follows. From a
purely algorithmic perspective, the naive variational
EM algorithm instantiates a large coordinate ascent
algorithm, where the parameters can be semantically
divided into coherent blocks. Blocks are processed in
a specific order, and the parameters within each block
get all updated each time?. At every iteration the
naive algorithm sets all the elements of {vn4} equal
to the same constant. This dampens the likelihood by
suddenly breaking the dependence between the esti-
mates of parameters in {7,4} and in {n;¢,} that was
being inferred from the data.

Instead, the “nested” variational inference algorithm
maintains some of this dependence that is being in-
ferred from the data across the various iterations. This
is achieved mainly through a different scheduling of
the parameter updates in the various blocks. To a mi-
nor extent, the dependence is maintained by always
keeping the block of free parameters, {¢, , ¢5 1, op-
timized given the other variational parameters. Note
that these parameters are involved in the updates of
parameters in {yn4} and in {n;sn}, thus providing us
with a channel to maintain some of the dependence
among them, i.e., by keeping them at their optimal
value given the data. Further, the nested algorithm
has the advantage that it trades time for space thus
allowing us to deal with large graphs; at each vari-
ational cycle we need to allocate NK + 2K scalars.
The increased running time is partially offset by the
fact that the algorithm can be parallelized and leads
to empirically observed faster convergence rates. This
algorithm is also better than MCMC variations (i.e.,
blocked and collapsed Gibbs samplers) in terms of
memory requirements and/or convergence rates.

*Within a block, the order according to which (scalar)
parameters get updated is not expected to affect conver-
gence.
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