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Abstract
We present a stochastic model for networks with
arbitrary degree distributions and average clus-
tering coefficient. Many descriptions of net-
works are based solely on their computed degree
distribution and clustering coefficient. We pro-
pose a statistical model based on these character-
izations. This model generalizes models based
solely on the degree distribution. We present al-
ternative parameterizations of the model. Each
parameterization of the model is interpretable
and tunable. We present a simple Markov Chain
Monte Carlo (MCMC) algorithm to generate net-
works with the specified characteristics. We pro-
vide a algorithm based on MCMC to infer the
network properties from network data and de-
velop statistical inference for the model. The
model is generalizable to include mixing based
on attributes and other complex social structure.

1. Introduction
In this paper we consider models where individuals are rep-
resented as nodes in a network and edges represent some
form of social contact. We assume that the network is a
realization of a stochastic process characterized by random
mixing between individuals conditional on the individual
activity levels (i.e., the nodal degrees) and clustering (New-
man, 2002b; Dezső & Barabási, 2002). One popular class
are those that exhibit power-law behavior, often loosely
referred to as “scale-free” distributions We also consider
models for the network degree distributions in which the
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variance can greatly exceed the mean.

In Section 2 we develop the general form of the model and
models for the degree distribution. In Section 3 we give
an simple algorithm for the generation of random networks
from the model. In Section 4 we provide an algorithm for
approximating the likelihood function for the model as a
basis for inference. In Section 5 we apply the model to a
protein-protein interaction network. Finally, in Section 6,
we discuss generalizations of the model for more complex
structures.

2. Models for Social Networks
2.1. Exponential Family Models

Let the random matrix X represent the adjacency matrix of
an unvalued network on n individuals. We assume that the
diagonal elements of X are 0 – that self-partnerships are
disallowed. Suppose that X denotes the set of all possi-
ble networks on the given n individuals. The multivariate
distribution of X can be parameterized in the form:

Pη,X(X = x) =
exp [η · t (x)]

c(η, X)
x ∈ X (1)

where η ∈ ϒ ⊆ Rq is the model parameter and t :X →

Rq are statistics based on the adjacency matrix (Frank &
Strauss, 1986; Handcock, 2002). There is an extensive lit-
erature on descriptive statistics for networks (Wasserman &
Faust, 1994; Borgatti et al., 1999). This statistics are often
crafted to capture features of the network (e.g., centrality,
mutuality and betweenness) of primary substantive interest
to the researcher. Often a researcher has have specific set of
statistics in mind. The above model then has the property
of maximizing the entropy within the family of all distri-
butions with given expectation of t (X) (Barndorff-Nielsen,
1978). Paired with the flexibility of the choice of t this
property does provide some justification for the model (1)



A simple model for complex networks

that will vary from application to application.

The denominator c(η, X) is the normalizing function
that ensures the distribution sums to one: c(η, X) =∑
y∈X

exp [η · t (y)]. This factor varies with both η and the

support X and is the primary barrier to simulation and in-
ference under this modeling scheme.

The most commonly used class of random network mod-
els exhibit Markov dependence in the sense of Frank and
Strauss (1986). For these models, dyads that do not share
an individual are conditionally independent; this is an idea
analogous to the nearest neighbor concept in spatial statis-
tics. Typically a homogeneity condition is also added: all
isomorphic networks have the same probability under the
model. Frank and Strauss (1986) show that homogeneous
Markov networks are exactly those having the degree pa-
rameterization:

dk(x) =
the proportion of nodes with

degree exactly k k = 0, . . . , n − 1

N1(x) =
1
6

∑
i, j,k

xi j x jk xkl ,

where dk(x) counts the proportion of individuals with de-
gree k and N1(x) is a count of the complete triads. This
model can be reexpressed in the notation of model (1) by
setting tk(x) = dk(x), k = 1, . . . , n − 1, tn = N1(x),
q = n, η ∈ ϒ = Rn . This parameterization has the advan-
tage that it is directly interpretable in terms of concurrency
of partnerships (i.e. dm(x) for m > 0 is the proportion of
individuals with exactly m concurrent partners).

A popular variant of the statistic N1(x) is the clustering
coefficient defined as

C(x) =
3N1(x)

N3(x)

where N3(x) is the number of connected triples of nodes
(i.e., 2−stars Frank & Strauss, 1986). This describes the
proportion of complete triads in the networks out of the
total number of possible triads.

In the remainder of this paper we focus on the following
novel model

log [Pθ (X = x)] = η(φ) · d(x) + νC(x) − log c(φ, ν, X),
(2)

where x ∈ X, θ = (φ, ν),2 ⊂ Rn,
d(x) = {d1(x), . . . , dn−1(x)}. The parameters φ and ν rep-
resent the network degree distribution and clustering, re-
spectively. Specifically, the ratio of the probability of a
given network to a network with the same degree distri-
bution and correlation coefficient 1% less is 0.01 × exp(ν).
Alternatively, consider the conditional probability of a tie
existing given the rest of the network. If the formation of

the tie increases the correlation coefficient by α% (relative
to the same network without the tie) then the log-odds of
the tie existing is αν%. The degree distribution parameters
have similar interpretations: ηk(φ) is the ratio of the log-
probability of a given network to a network with the same
clustering coefficient and one less node of degree k and
one more isolate. An important property of the model is
the variational independence of the parameters (Barndorff-
Nielsen, 1978).

This model is a curved exponential family if 2 is a smooth
curve in ϒ = Rn (Hunter & Handcock, 2005; Handcock,
2003a). Any degree distribution can be specified by n − 1
or less independent parameters. Typically the number of
parameters is small. As we shall see, this is true for the
models considered below.

If ν = 0 the model corresponds to random networks with
arbitrary degree distributions, as considered by many re-
searchers (Newman et al., 2001). If ηk(φ) = φk, k =

1, . . . , n − 1 the value of φ is interpretable as the log-
probability of a given network to a network with one less tie
and the same clustering coefficient (Hunter & Handcock,
2005). If both ν = 0 and ηk(φ) = φk, k = 1, . . . , n − 1 it
is the classical random network model of Renyi and Erdos
(Bollobas, 1985).

The model (1) has a generative interpretation, which we
illustrate with model (2). Consider a dynamic process for
the network {X (t): t ≥ 0} developing according to the
local rules

logit
[
P(X i j (t) = 1|X i j (t−) = xi j )

]
=η(φ) ·

[
d(x+

i j ) − d(x−

i j )
]

+ ν
[
C(x+

i j ) − C(x−

i j )
]

where x+

i j is the network with a tie between i and j and
the rest of the network equal to xi j . x−

i j is similar with no
tie between i and j. Based on the theory of continuous-
time Markov Chains, the equilibrium distribution is model
(2). Ties are formed (or broken) based on their propensity
to change the network characteristics. This also provides
another interpretation of the parameters φ and ν and their
joint effects.

An alternative parameterization that is usually more inter-
pretable is: (φ, ρ) where the mapping is:

ρ = Eφ,ρ [C(X)] =

∑
y∈X

C(y) exp [η(φ) · d(y) + νC(y)] ≥ 0

(3)
Thus ρ is the mean clustering coefficient over networks in
X. Thus models with higher ρ have higher clustering co-
efficients on average. Note that models with ρ = 0 will
not have any complete triads. The range of ρ is a subset of
[0, 1] and depends on the other parameters and X.

The two parameterizations represent the same model class
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(Handcock, 2003a). Translating between equivalent pa-
rameters is achieved using the MCMC algorithm given in
Section III (Handcock, 2003a; Hunter & Handcock, 2005).

2.2. Models for Degree Distributions

Let Pθ (K = k) be the probability mass function of K , the
number of ties that a randomly chosen node in the network
has. Based on the model (2)

Pθ (K = k) = Eθ [dk(X)] k = 0, . . . , n − 1

Clearly for a given network of size n nodes, the distribution
of K has finite range with upper bound n−1. In some cases
this distribution is approximated by an idealized distribu-
tion with infinite range. Let K ∗ be the degree of a node in a
(possibly hypothetical) infinite population of nodes. Then
K can be thought of as the degree of the node restricted to
nodes in the network. In cases where this conceptualization
is used we will consider the case

Pθ (K = k) = P(K ∗
= k|K ∗ < n) k = 0, . . . , n − 1,

While the model (2) has arbitrary degree distribution, of
particular interest are the various “scale-free,” preferential
attachment and power-law models popular in the physics
literature (see, e.g., Newman, 2003). These models assume
that all networks with the same degree distribution are
equally likely. We say P(K ∗

= k) has power-law behavior
with scaling exponent φ > 1 if there exist constants c1, c2,
and M such that 0 < c1 ≤ P(K ∗

= k)kφ
≤ c2 < ∞ for

k > M .

We focus on a stochastic mechanisms for the formation of
the social networks that is a variation on a preferential at-
tachment process, such as those advocated by several re-
cent authors (Barabási & Albert, 1999; Pastor-Satorras &
Vespignani, 2001). The limiting distributions of this mech-
anism can be characterized by long tails.

2.3. Simple Preferential Attachment Models

A mechanism that has been suggested for the formation of
power-law social networks is preferential attachment (Al-
bert & Barabási, 2000; Liljeros et al., 2001; Dezső &
Barabási, 2002). This and related stochastic processes have
a long history in applied statistics (Simon, 1955; Kendall,
1961; Irwin, 1963). Consider a population of r people
in in which (1) there is a constant probability p that the
r + 1st partnership in the population will be initiated from
a randomly chosen person to a previously sexually inactive
person, and (2) otherwise the probability that the r + 1st
partnership will be to a person with exactly k partners is
proportional to k f (k|r), where f (k|r) is the frequency of
nodes with exactly k connections out of the r total links
in the population. The limiting distribution of this pro-
cess is known as the Waring distribution (Irwin, 1963).

The Yule distribution discussed by Simon (1955) and used
by Jones and Handcock (2003) to model degree distri-
butions is a special case of the Waring distribution with
p = (φ2 − 2)/(φ2 − 1).

The probability mass function (PMF) of the Waring distri-
bution (Johnson et al., 1992) is:

P(K ∗
= k) =

(φ2 − 1)0(φ2 + φ1)

0(φ1 + 1)
·

0(k + φ1)

0(k + φ1 + φ2)
,

(4)

φ1 > −1, φ2 > 2

where 0(·) is the Gamma function and the mixing parame-
ter φ1 is related to p via:

p =
φ2 − 2

φ2 + φ1 − 1
. (5)

The Waring distribution has power-law behavior with scal-
ing exponent φ2. The mean and variance of the Waring dis-
tribution are:

E(K ∗) =
1
p
, V(K ∗) =

(1 − p) (φ2 − 1)

p2 (φ2 − 3)
, φ2 > 3

Thus, the expected value of the Waring distribution is sim-
ply the inverse of the probability of forming a tie to an indi-
vidual lacking existing ties. Both the Waring and the Yule
distributions have been re-discovered, apparently without
awareness of their historical antecedents, by Levene et al.
(2002) and Dorogovtsev et al. (2000) respectively in the
context of modeling growth of the Internet.

3. Generating Random Networks with
Specified Structure

Markov Chain Monte Carlo (MCMC) algorithms for gen-
erating from the model (1) have a long history and been
well studied (see Geyer & Thompson, 1992 for a review).
The basic idea is to generate a Markov chain whose sta-
tionary distribution is given by equation (1). The simplest
Markov chain proceeds by choosing (by some method, ei-
ther stochastic or deterministic) a dyad (i, j) and then de-
ciding whether to set X i j = 1 or X i j = 0 at the next step
of the chain. One way to do this is using Gibbs sampling,
whereby the new value of X i j is sampled from the con-
ditional distribution of X i j conditional on the rest of the
network. Denote “the rest of the network” by X c

i j . Then
X i j |X c

i j = xc
i j has a Bernoulli distribution, with odds given

by

P(X i j = 1|X c
i j = xc

i j )

P(X i j = 0|X c
i j = xc

i j )
= exp{η·1(t (x))i j },
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where 1(t (x))i j denotes the difference between t (x) when
xi j is set to 1 and t (x) when xi j is set to 0. A simple
variant to the Gibbs sampler (which is an instance of a
Metropolis-Hastings algorithm) is a pure Metropolis algo-
rithm in which the proposal is always to change the value of
xi j . This proposal is accepted with probability min{1, π},
where

π =
P(X i j = 1 − xi j |X c

i j = xc
i j )

P(X i j = xi j |X c
i j = xc

i j )
(6)

=

{
exp

{
η·1(t (x))i j

}
if xi j = 0;

exp
{
−η·1(t (x))i j

}
if xi j = 1.

The vector 1(t (x))i j used by these MCMC schemes is of-
ten much easier to calculate directly than as the difference
of two separate values of t (x). For instance, if one of
the components of the t (x) vector is the total number of
edges in the network, then the corresponding component
of 1(t (x))i j is always equal to 1.

The Metropolis scheme is usually preferred over the Gibbs
scheme because it results in a greater probability of chang-
ing the value of xi j , a property thought to produce better-
mixing chains. However, it is well known that these simple
MCMC schemes often fail for various reasons to produce
well-mixed chains (Snijders, 2002; Handcock, 2000; Sni-
jders et al., 2005). More sophisticated MCMC schemes
have been developed and are a topic of ongoing research
(Hunter & Handcock, 2005).

A variant of this algorithm proceeds in two steps:

1. Generate dk
i.i.d.
∼ Pθ (K = k), k = 0, 1, . . . , n − 1.

2. Generate a random network conditional on this degree
distribution:

Pν(X = x |dk(X) = dk) =
exp [νC(x)]
c(ν, dk, X)

x ∈ X(dk)

where X(dk) = {x ∈ X:dk(x) = dk}.

The first generates individual degrees from an arbitrary dis-
tribution, and the second generates networks condition on
those degrees. Note that the structure of the exponential
family in (1) ensure that the samples are from the correct
distribution (Barndorff-Nielsen, 1978). The first step can
be simulated easily as we know Pθ (K = k). Note that not
all degree sequences will be consistent with a network of
size n. For example, sequences with an odd total number of
ties are not realizable. However we can construct a compat-
ible sequence {dk}

n−1
k=0 via a simple rejection algorithm. The

second step is also straightforward: we can conditionally
simulate values using a MCMC holding the degree distri-
bution fixed by using a Metropolis proposal consistent with

this restriction. It is convenient for this algorithm to have
a starting network with the given degree distribution. This
network is easy to construct by a finite algorithm (as it need
not be be a draw from a random distribution). An important
property of this the second step is the independence of the
distribution from φ. It is a simple parameter distribution
depending only on ν (Barndorff-Nielsen, 1978).

As an application of this algorithm, consider a network
model for n = 50 nodes. We choose a degree distribution
which is Yule with scaling exponent φ2 = 3. This corre-
sponds to a “scale-free” degree model. If ν = 0 the net-
work is random with the given degree distribution. This
corresponds to a mean clustering coefficient ρ = 3%. A
realization of this model is given in the left-hand panel of
Fig. 1. The clustering coefficient for this network is 2%.
The right-hand side of the panel is a realization form the
model with mean clustering coefficient ρ = 15% (corre-
sponding to a clustering parameter of ν = 0.46.) The cen-
tralization of the clustering is apparent relative to the first
network.

As an second application we generate a network model for
n = 1000 nodes with the same degree distribution (φ2 =

3). A realization of this model is given in the left-hand
panel of Fig. 2. The clustering coefficient for this network
is 2%. The right-hand side of the panel is a realization
form the model with mean clustering coefficient chosen to
be ρ = 15% (corresponding to a clustering parameter of
ν = 27.) The elongated nature of the resulting network is
apparent as is the centralization of the clustering.

4. Statistical Inference for Network Models
As we have specified the full joint distribution of the net-
work through (1), we choose to conduct inference within
the likelihood framework (Besag, 1975; Geyer & Thomp-
son, 1992). For economy of notation, in this section, we
use φ to represent either η in (1) or the curved exponential
family form (φ, ν) in (2). Differentiating the loglikelihood
function:

`(φ; x) ≡ log
[
Pη(X = x)

]
= η(φ) · t (x) − log [c(φ, X)]

(7)
shows that the maximum likelihood estimate φ̂ satisfies

∇`(φ̂) = ∇η(φ̂) ·

[
t (xobs) − E η(φ̂) t (X)

]
, (8)

where ∇η(φ) is the p × q matrix of partial derivatives of η
with respect to φ and t (xobs is the observed network statis-
tics. We may search for a solution to equation (8) using
an iterative technique such as Newton-Raphson; however,
the exponential family form of the model makes the Fisher
information matrix

I (φ) = ∇η(φ)·
[
Covη(φ) t (X)

]
∇η(φ) (9)
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Figure 1. Two examples of networks generated from model (2) with n = 50. Both networks have degree distribution draw from the
Yule distribution (equation 4) with scaling exponent φ2 = 3. Left: Random network from the model with mean clustering coefficient
ρ = 3%. The example network has clustering coefficient C(x) = 2%. Right: Random network from the model with mean clustering
coefficient ρ = 15%. The example network has clustering coefficient C(x) = 18%.
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Figure 2. Random networks from the model with n = 1000 and the same degree distribution. The largest component is visualized. Left:
Random network from the model with mean clustering coefficient ρ = 3%. The example network has clustering coefficient C(x) = 1%.
Right: Random network from the model with mean clustering coefficient ρ = 15%. The example network has clustering coefficient
C(x) = 14%.
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easier to calculate than the Hessian matrix of second deriva-
tives required for Newton-Raphson. For more about equa-
tions (8) and (9), see Hunter and Handcock (2006) The
method of Fisher scoring is an iterative method analogous
to Newton-Raphson except that the negative Fisher infor-
mation is used in place of the Hessian matrix.

Direct calculation of the log-likelihood by enumerating
X is infeasible for all but the smallest networks. As an
alternative, we approximate the likelihood equations (8)
by replacing the expectations by (weighted) averages over
a sample of networks generated from a known distribu-
tion. This procedure is described in Geyer and Thompson
(1992). To generate the sample we use the MCMC algo-
rithm of Section 3.

5. Application to a Protein-Protein
Interaction Network

As an application of these methods, we fit the model to a
biological network of protein-protein interactions found in
cells. By interact is meant that two amino acid chains were
experimentally identified to bind to each other. The net-
work is for E. Coli and is drawn from the “Database of In-
teracting Proteins (DIP)” (Xenarios et al., 2002). The DIP
database lists protein pairs that are known to interact with
each other. The dataset we use is Ecoli20050403. We
have chosen E. Coli as it is well studied and this will mini-
mize the number of false-negative interactions (that is, two
proteins that interact but are not in the database). For sim-
plicity we focus on proteins that interact with themselves
and have at least one other interaction. We do not represent
the self-interactions as part of the network. This results in a
network in Figure 3 with 108 proteins and 94 interactions.

We consider the model (2) with a clustering coefficient
term and the degree distribution model by a preferential
attachment process (the Yule distribution with scaling ex-
ponent φ). We choose the Yule as it represents the simple
version of preferential attachment that is common in the
literature. The estimates are given in Table 1. They are
derived using the algorithm in Section 4.

Parameter est. s.e.
Scaling decay rate (φ) 3.034 0.3108
Correlation Coefficient (ν) 1.176 0.1457

Table 1. MCMC maximum likelihood parameter estimates for the
protein-protein interaction network.

The estimate of the preferential attachment scaling decay
rate of about three suggests that the network is close to the
so-called “scale-free” range (that is, φ ≤ 3). The stan-
dard error of the scaling rate of suggests some uncertainty.

However the parameter of the correlation coefficient is very
positive. This indicates strong clustering (given the degree
sequence) and hence so-called “small world” behavior in
the network. Thus, this model provides a statistical valid
means to test for small-world characteristics of a network
using the statistics commonly used to characterize small-
world networks.

Finally, we can test if the network is generated by this
preferential attachment model. If preferential attachment
among proteins generated this network then the parame-
ter ν of the clustering coefficient will be zero. However
we see that the estimate is positive. We can test this more
rigorously by comparing the log-likelihood values for the
maximum likelihood fit in Table 1 to the model where ν is
constrained to be zero. The change in the log-likelihood
is 52.3, so that the change in deviance is 104.6. This indi-
cates that deviation from the preferential attachment model
is statistically significant.

6. Discussion
We have presented a simple stochastic model for random
networks that has arbitrary degree distribution and aver-
age clustering coefficient. The clustering component of the
model is directly interpretable via the clustering coefficient
of the realizations from the model. The model places pos-
itive probability over the set of possible networks. Con-
ditional on the degree sequence, the clustering coefficient
covers the full range of values possible. The distribution
over this range is tuned as a monotone function of the clus-
tering parameter.

The model form (1) is very general, and can incorporate
general social structure (Frank & Strauss, 1986; Strauss
& Ikeda, 1990; Handcock, 2003a; Hunter & Handcock,
2005). For example, in disease epidemiology, the two-
sex random network epidemic model is a commonly used
to represent the contact structure of pathogens transmitted
by intimate contact (Newman, 2002a). This model is the
model (2) with ρ = 0 and X is restricted to heterosexual
networks. However, this model contains a major weakness
which ultimately limits its utility. Specifically, it assumes
random mixing conditional on degree. The model (2) is
a simple extension of that allows tunable correlation coef-
ficient. More generally, (1) can be used to include nodal
attributes and other structural characteristics. Such models
have proven to be valuable in epidemiology (Morris, 2003;
Handcock, 2003b).
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