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Abstract

We propose a family of statistical models
for social network evolution over time, which
represents an extension of Exponential Ran-
dom Graph Models (ERGMs). Many of the
methods and theorems for ERGMs are read-
ily adapted for this model, including MCMC
maximum likelihood estimation algorithms.
We discuss models of this type and give ex-
amples, as well as a demonstration of its use
for hypothesis testing and classification.

1. Introduction

The field of social network analysis is concerned with
populations of actors, interconnected by a set of re-

lations (e.g., friendship, communication, etc.). These
relationships can be concisely described by directed
graphs, with one vertex for each actor and an edge
for each relation between a pair of actors. This net-
work representation of a population can provide in-
sight into organizational structures, social behavior
patterns, emergence of global structure from local dy-
namics, and a variety of other social phenomena.

There has been increasing demand for flexible statis-
tical models of social networks, for the purposes of
scientific exploration and as a basis for practical anal-
ysis and data mining tools. The subject of modeling
a static social network has been investigated in some
depth. In particular, there is a rich (and growing)
body of literature on the so-called Exponential Ran-

dom Graph Models (ERGM) (Anderson et al., 1999;
Robins & Pattison, 2004; Snijders, 2002; Frank &
Strauss, 1986). Specifically, if N is some representa-
tion of a social network, and N is the set of all possible
networks in this representation, then the probability
distribution function for any ERGM can be written in
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the following very general form.

P(N) =
1

Z(θ)
exp

{

θ
′u(N)

}

.

Here, θ ∈ R
k, and u : N → R

k. Z(θ) is a normal-
ization constant, which is typically intractable to com-
pute. The u function represents the sufficient statistics
for the model, and in a graphical modeling interpreta-
tion can be regarded as a vector of clique potentials.
The representation for N can vary widely, possibly in-
cluding multiple relation types, valued or binary re-
lations, symmetric or asymmetric relations, and actor
and relation attributes. The most widely studied mod-
els of this form are for single-relation social networks,
in which case N is generally taken to be the weight
matrix A for the network (sometimes referred to as
a sociomatrix ), where Aij is the strength of directed
relation between the ith actor and jth actor.

Often one is interested in modeling the evolution of
a network over multiple sequential observations. For
example, one may wish to model the evolution of coau-
thorship networks in a specific community from year to
year, trends in the evolution of the World Wide Web,
or a process by which simple local relationship dynam-
ics give rise to global structure. One would ideally like
a model family that is capable of modeling network
evolution, while maintaining the flexibility of ERGMs.
One would also like such models to build upon ERGMs
as much as possible, so that existing methods and the-
orems developed for ERGMs over the past two decades
are readily adapted to apply to the temporal models
as well. In the following sections, we propose such a
family.

2. Discrete Temporal Models

We begin with the simplest case of the proposed mod-
els, before turning to the fully general derivation. One
way to simplify a statistical model for social networks
is to make a Markov assumption on the network from
one time step to the next. Specifically, if At is the
weight matrix representation of a single-relation social
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network at time t, then we can assume At is indepen-
dent of A1, . . . , At−2 given At−1. Put another way, a
sequence of network observations A1, . . . , At has the
property that

P(A2, A3, . . . , At|A1)

= P(At|At−1)P(At−1|At−2) · · · P(A2|A1).

With this assumption in mind, we can now set
about deciding what the form of the conditional PDF
P(At|At−1) should be. Given our Markov assump-
tion, one natural way to generalize ERGMs for evolv-
ing networks is to assume At|At−1 admits an ERGM
representation. That is, we can specify a function
Ψ : Rn×n×Rn×n → R

k and parameter vector θ ∈ R
k,

such that the conditional PDF has the following form.

P(At|At−1,θ) =
1

Z(θ, At−1)
exp

{

θ
′Ψ(At, At−1)

}

(1)

2.1. An Example

To illustrate the expressivity of this framework, we
present the following simple example model. For sim-
plicity, assume the weight matrix is binary (i.e., an ad-
jacency matrix). Define the following statistics, which
represent density, stability, reciprocity, and transitiv-
ity, respectively.
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The statistics are each scaled to a constant range (in
this case [0, n]) to enhance interpretability of the model
parameters. The conditional probability mass func-
tion (1) is governed by four parameters: θD controls
the density, or the number of ties in the network as a
whole; θS controls the stability, or the tendency of a
link that does (or does not) exist at time t− 1 to con-
tinue existing (or not existing) at time t; θR controls
the reciprocity, or the tendency of a link from i to j
to result in a link from j to i at the next time step;
and θT controls the transitivity, or the tendency of a
tie from i to j and from j to k to result in a tie from i
to k at the next time step. The transition probability
for this temporal network model can then be written

as follows.

P(At|At−1
, θ) =

1

Z(θ, At−1)
exp

8

<

:

X

j∈{D,S,R,T}

θjΨj(A
t
, A

t−1)

9

=

;

2.2. General Models

We can generalize the form of (1) by re-
placing A1, A2, . . . , AT with general networks
N1, N2, . . . , NT ∈ N , which may include multi-
ple relations, actor attributes, etc. Furthermore,
we generalize the Markov assumption to allow any
K-order dependencies, so that the previous discussion
was for K = 1. In this case, the function Ψ is also
generalized by Ψ : NK+1 → R

k. The fully general
model can therefore be written as

P(NK+1, NK+2, . . . , NT |N1, . . . , NK ,θ) =

T
∏

t=K+1

P(N t|N t−K , . . . , N t−1,θ)

where

P(N t|N t−K , . . . , N t−1,θ) =

1

Z(θ, N t−K , . . . , N t−1)
exp

{

θ
′Ψ(N t, N t−1, . . . , N t−K)

}

Note that specifying the joint distribution requires
one to specify a distribution over the first K net-
works. This can generally be accomplished fairly nat-
urally using an ERGM for N1 and exponential fam-
ily conditional distributions for N i|N1 . . . N i−1 for
i ∈ {2, . . . ,K}. For simplicity of presentation, we
avoid these details in subsequent sections by assum-
ing the distribution over these initial K networks is
functionally independent of the parameter θ.

3. Estimation

The estimation task for models of the above
form is to use the sequence of observed networks,
N1, N2, . . . , NT , to find an estimator θ̂ that is close to
the actual parameter values θ in some sensible metric.
As with ERGMs, the intractability of the normaliz-
ing constant Z often makes explicit solution of maxi-
mum likelihood estimation difficult. However, general
techniques for MCMC sampling to enable approximate
maximum likelihood estimation for ERGMs have been
studied in some depth and have proven successful for
a variety of models (Snijders, 2002). By a slight mod-
ification of these algorithms, we can apply the same
general techniques as follows.
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Let

L(θ; N1
, N

2
, . . . , N

T ) =

logP(NK+1
, N

K+2
, . . . , N

T |N1
, . . . , N

K
, θ), (2)

M(t, θ) = Eθ

h

Ψ(Nt
, N

t−1
, . . . , N

t−K)|N t−1
, . . . , N

t−K
i

,

and

C(t, θ) =

Eθ

h

Ψ(Nt
, N

t−1
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t−K)Ψ(Nt
, N

t−1
, ..., N

t−K)′|N t−1
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i

where expectations are taken over the random variable
Nt, the network at time t. Note that

∇L(θ; N1
, ..., N

T ) =

T
X

t=K+1

“

Ψ(N t
, N

t−1
, ..., N

t−K)−M(t, θ)
”

and

∇2L(θ; N1
, . . . , N

T ) =

T
X

t=K+1

`

M(t, θ)M(t, θ)′ − C(t, θ)
´

The expectations can be approximated by Gibbs sam-
pling from the conditional distributions (Snijders,
2002), so that we can perform an unconstrained op-
timization procedure akin to Newton’s method: ap-
proximate the expectations, update parameter values
in the direction that increases (2), repeat until con-
vergence. A related algorithm is described by (Geyer
& Thompson, 1992) for general exponential families,
and variations are given by (Snijders, 2002) that are
tailored for ERG models. The following is a simple
version of such an estimation algorithm.

1. Randomly initialize θ
(1)

2. For i = 1 up until convergence

3. For t = K + 1, . . . , T
4. Sample N̂

t,1
(i) , ..., N̂

t,B

(i) ∼P(Nt|N t−K , ..., N t−1, θ(i))

5. µ̂t
(i) = 1

B

PB

b=1 Ψ(N̂ t,b

(i) , N
t−1, ..., N t−K)

6. Ĥ(i) =
PT

t=K+1

ˆ

µ̂t
(i)µ̂

t′
(i)−

1
B

PB

b=1 Ψ(N̂ t,b

(i) , N
t−1, ..., N t−K)Ψ(N̂ t,b

(i) , N
t−1, ..., N t−K)′

˜

7. update θ by

θ
(i+1) ← θ

(i)−Ĥ
−1
(i)

T
X

t=K+1

h

Ψ(N t
, N

t−1
, ..., N

t−K)− µ̂
t
(i)

i

The choice of B can affect the convergence of this al-
gorithm. Generally, larger B values will give more ac-
curate updates, and thus fewer iterations needed until
convergence. However, in the early stages of the algo-
rithm, precise updates might not be necessary if the

likelihood function is sufficiently smooth, so that a B

that grows larger only when more precision is needed
may be appropriate. If computational resources are
limited, it is possible (though less certain) that the al-
gorithm might still converge even for small B values
(see (Carreira-Perpignán & Hinton, 2005) for an alter-
native approach to sampling-based MLE, which seems
to remain effective for small B values).

To examine the convergence rate empirically, we dis-
play in Figure 1 the convergence of this algorithm on
data generated from the example model given in Sec-
tion 2.1. The simulated data is generated by sam-
pling from the example model with randomly gener-
ated θ, and the loss is plotted in terms of Euclidean
distance of the estimator from the true parameters. To
generate the initial N1 network, we sample from the
pmf 1

Z(θ) exp{θ′Ψ(N1, N1)}. The number of actors

n is 100. The parameters are initialized uniformly in
the range [0, 10), except for θD, which is initialized to
−5θS − 5θR − 5θT . This tends to generate networks
with reasonable densities. The results in Figure 1 rep-
resent averages over 10 random initial configurations
of the parameters and data. In the estimation algo-
rithm used, B = 100, but increases to 1000 when the
Euclidean distance between parameter estimates from
the previous two iterations is less than 1. Convergence
is defined as the Euclidean distance between θ

(i+1) and
θ

(i) being within 0.1. Since this particular model is
simple enough for exact calculation of the likelihood
and derivatives thereof (see below), we also compare
against Newton’s method with exact updates (rather
than sampling-based). We can use this to determine
how much of the loss is due to the approximations
being performed, and how much of it is intrinsic to
the estimation problem. The parameters returned by
the sampling-based approximation are usually almost
identical to the MLE obtained by Newton’s method,
and this behavior manifests itself in Figure 1 by the
losses being visually indistinguishable.

4. Hypothesis Testing

As an example of how models of this type might be
used in practice, we present a simple hypothesis testing
application. Here we see the generality of this frame-
work pay off, as we can use models of this type to rep-
resent a broad range of scientific hypotheses. The gen-
eral approach to hypothesis testing in this framework
is first to write down potential functions representing
transitions one expects to be of some significance in a
given population, next to write down potential func-
tions representing the usual “background” processes
(to serve as a null hypothesis), and third to plug these
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Figure 1. Convergence of estimation algorithm on simu-
lated data, measured in Euclidean distance of the esti-
mated values from the true parameter values. The approx-
imate MLE from the sampling-based algorithm is almost
identical to the MLE obtained by direct optimization.

potentials into the model, calculate a test statistic, and
compute a p-value.

The data involved in this example come from the
United States 108th Senate, having n = 100 actors.
Every time a proposal is made in the Senate, be it
a bill, amendment, resolution, etc., a single Senator
serves as the proposal’s sponsor and there may pos-
sibly be several cosponsors. Given records of all pro-
posals voted on in the full Senate, we create a sliding
window of 100 consecutive proposals. For a particular
placement of the window, we define a binary directed
relation existing between two Senators if and only if
one of them is a sponsor and the other a cosponsor for
the same proposal within that window (where the di-
rection is toward the sponsor). The data is then taken
as evenly spaced snapshots of this sliding window, A1

being the adjacency matrix for the first 100 proposals,
A2 for proposal 31 through 130, and so on shifting the
window by 30 proposals each time. In total, there are
14 observed networks in this series, corresponding to
the first 490 proposals addressed in the 108th Senate.

In this study, we propose to test the hypothesis that
intraparty reciprocity is inherently stronger than in-
terparty reciprocity. To formalize this, we use a model
similar to the example given previously. The main
difference is the addition of party membership indi-
cator variables. Let Pij = 1 if the ith and jth ac-
tors are in the same political party, and 0 otherwise,
and let P̄ij = 1 − Pij . Define the following potential
functions, representing stability, intraparty density, in-

terparty density,1 overall reciprocity, intraparty reci-

procity, and interparty reciprocity.
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The null hypothesis supposes that the reciprocity ob-
served in this data is the result of an overall tendency
toward reciprocity amongst the Senators, regardless of
party. The alternative hypothesis supposes that there
is a stronger tendency toward reciprocity among Sena-
tors within the same party than among Senators from
different parties. Formally, the transition probability
for the null hypothesis can be written as

P0(A
t|At−1,θ(0)) =

1

Z(θ(0), At−1)
exp







∑

j∈{S,WD,BD,R}

θ
(0)
j Ψj(A

t, At−1)







while the transition probability for the alternative hy-
pothesis can be written as

P1(A
t|At−1,θ(1)) =

1

Z(θ(1), At−1)
exp







∑

j∈{S,WD,BD,WR,BR}

θ
(1)
j Ψj(A

t, At−1)







For our test statistic, we use the likelihood ratio. To
compute this, we compute the maximum likelihood es-
timators for each of these models, and take the ratio
of the likelihoods. For the null hypothesis, the MLE is

(θ̂
(0)
S = 336.2, θ̂

(0)
WD = −58.0, θ̂

(0)
BD = −95.0, θ̂

(0)
R = 4.7)

1We split density to intra- and inter-party terms so as
to factor out the effects on reciprocity of having higher
intraparty density.
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with likelihood value of e−9094.46. For the alternative
hypothesis, the MLE is
(θ̂

(1)
S = 336.0, θ̂

(1)
WD = −58.8, θ̂

(1)
BD = −94.3,

θ̂
(1)
WR = 4.2, θ̂

(1)
BR = 0.03)

with likelihood value of e−9088.96. The likelihood ratio
statistic (null likelihood over alternative likelihood) is
therefore about 0.0041. Because the null hypothesis is
composite, determining the p-value of this result is a
bit more tricky, since we must determine the probabil-
ity of observing a likelihood ratio at least this extreme
under the null hypothesis for the parameter values θ

(0)

that maximize this probability. That is, p-value =

sup
θ(0)
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In general this seems not to be tractable to analytic
solution, so we employ a genetic algorithm to perform
the unconstrained optimization, and approximate the
probability for each parameter vector by sampling.
That is, for each parameter vector θ

(0) (for the null hy-
pothesis) in the GA’s population on each iteration, we
sample a large set of sequences from the joint distribu-
tion. For each sequence, we compute the MLE under
the null hypothesis and the MLE under the alternative
hypothesis, and then calculate the likelihood ratio and
compare it to the observed ratio. We calculate the em-
pirical frequency with which the likelihood ratio is at
most 0.0041 in the set of sampled sequences for each
vector θ

(0), and use this as the objective function value
in the genetic algorithm. Mutations consist of adding
Gaussian noise (with variance decreasing on each iter-
ation), and recombination is performed as usual. Full
details of the algorithm are omitted for brevity (see
(Mitchell, 1996) for an introduction to GAs). The
resulting approximate p-value we obtain by this op-
timization procedure is 0.024.

This model happens to be particularly nice in that we
can compute the likelihoods and derivatives thereof
analytically. In fact, it is representative of an in-
teresting subfamily of models, in which the distri-
butions of edges at time t are independent of each
other given the network at time t − 1. In models of
this form, we can compute likelihoods and perform
Newton-Raphson optimization directly, without the
need of sampling-based approximations. However, in
general this might not be the case. For situations in
which one cannot tractably compute the likelihoods,
an alternative possibility is to use bounds on the like-
lihoods. Specifically, one can obtain an upper bound
on the likelihood ratio statistic by dividing an upper
bound on the null likelihood by a lower bound on the
alternative likelihood. When computing the p-value,

one can use a lower bound on the ratio by dividing a
lower bound on the null likelihood by an upper bound
on the alternative likelihood. See (Opper & Saad,
2001; Wainwright et al., 2005) for examples of how
such bounds on the likelihood can be tractably at-
tained, even for intractable models.

In practice, the problem of formulating an appropri-
ate model to encode one’s hypothesis is a bit ill-posed.
One general approach which seems intuitively appeal-
ing is to write down the types of motifs or patterns one
expects to find in the data, and then specify various
other patterns which one believes those motifs could
likely transition to (or would likely not transition to)
under the alternative hypothesis. For example, per-
haps one believes that densely connected regions of the
network will tend to become more dense and clique-like
over time, so that one might want to write down a po-
tential representing the transition of, say, k-cliques to
more densely connected structures.

5. Classification

One can additionally consider using these temporal
models for classification. Specifically, consider a trans-
ductive learning problem in which each actor has a
static class label, but the learning algorithm is only
allowed to observe the labels of some random subset
of the population. The question is then how to use the
known label information, in conjunction with observa-
tions of the network evolving over time, to accurately
infer the labels of the remaining actors whose labels
are unknown.

As an example of this type of application, consider the
alternative hypothesis model from the previous sec-
tion (model 1), in which each Senator has a class label
(party affiliation). We can slightly modify the model
so that the party labels are no longer constant, but
random variables drawn independently from a known
multinomial distribution. Assume we know the party
affiliations of a randomly chosen 50 Senators. This
leaves 50 Senators with unknown affiliations. If we
knew the parameters θ, we could predict these 50 la-
bels by sampling from the posterior distribution and
taking the mode for each label. However, since both

the parameters and the 50 labels are unknown, this
is not possible. Instead, we can perform Expectation
Maximization to jointly infer the maximum likelihood
estimator θ̂ for θ and the posterior mode given θ̂.

Specifically, (ignoring the one independent Senator),
let us assume the two class labels are Democrat and
Republican, and we model these labels as indepen-
dent Bernoulli(0.5) random variables. The distribu-
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tion on the network sequence given that all 100 labels
are fully observed is the same as given in the previ-
ous section. Since one can compute likelihoods in this
model, sampling from the posterior distribution of la-
bels given the network sequence is straightforward us-
ing Gibbs sampling. We can therefore employ a combi-
nation of MCEM and Generalized EM algorithms (call
it MCGEM) (McLachlan & Krishnan, 1997) with this
model to infer the party labels as follows. In each it-
eration of the algorithm, we sample from the posterior
distribution of the unknown class labels under the cur-
rent parameter estimates given the observed networks
and known labels, approximate the expectation of the
gradient and Hessian of the log likelihood using the
samples, and then perform a single Newton-Raphson
update using these approximations.

We run this algorithm on the 108th Senate data from
the previous section. We randomly select 50 Senators
whose labels are observable, and take the remaining
Senators as having unknown labels. As mentioned
above, we assume all Senators are either Democrat
or Republican; Senator Jeffords, the only independent
Senator, is considered a Democrat in this model. We
run the MCGEM algorithm described above to infer
the maximum likelihood estimator θ̂ for θ, and then
sample from the posterior distribution over the 50 un-
known labels under that maximum likelihood distribu-
tion, and take the sample mode for each label to make
a prediction.

The predictions of this algorithm are correct on 70%
of the 50 Senators with unknown labels. Additionally,
it is interesting to note that the parameter values the
algorithm outputs (θ̂S = 336.0, θ̂WD = −59.7, θ̂BD =

−96.0, θ̂WR = 3.8, θ̂BR = 0.28) are very close (Eu-
clidean distance 2.0) to the maximum likelihood es-
timator obtained in the previous section (where all
class labels were known). Compare the above accu-
racy score with a baseline predictor that always pre-
dicts Democrat, which would get 52% correct for this
train/test split, indicating that this statistical model
of network evolution provides at least a somewhat rea-
sonable learning bias. However, there is clearly room
for improvement in the model specification, and it is
not clear whether modeling the evolution of the graph
is actually of any benefit for this particular example.
For example, after collapsing this sequence of networks
into a single weighted graph with edge weights equal
to the sum of edge weights over all graphs in the se-
quence, running Thorsten Joachims’ Spectral Graph
Transducer algorithm (Joachims, 2003) gives a 90%
prediction accuracy on the Senators with unknown la-
bels. These results are summarized in Table 1. Further
investigation is needed into what types of problems

can benefit from explicitly modeling the network evo-
lution, and what types of models are most appropriate
for basing a learning bias on.

Method Accuracy
Baseline 52%
Temporal Model 70%
SGT 90%

Table 1. Summary of classification results.

6. Open Problems and Future Work

One would like to think of this type of model as de-
scribing a process that gives rise to the types of net-
works one observes in reality. In particular, it is inter-
esting to think of a network at a single point in time
as a snapshot of this Markov chain at that time point.
Traditionally one would model a network at a single
time point using an ERGM. It therefore seems nat-
ural to investigate the formal relation between these
Markov chain models and ERGMs. Specifically, any
Markov chain of the form described here has a sta-
tionary distribution which can be characterized by an
ERGM. Can one give a general analytic derivation of
this stationary ERGM for any Markov chain of the
form described here? To our knowledge, this remains
an open problem. One can also ask the reverse ques-
tion of whether, given any ERGM, one can describe an
interesting set of Markov chains having it as a station-
ary distribution. Answering this would not only be
of theoretical interest, but would potentially also lead
to practical techniques for sampling from an ERGM
distribution by formulating a more tractable Markov
chain giving rise to it. Indeed, one can ask these same
questions about general Markov chains (not just net-
works) having transition probabilities in an exponen-
tial family, the stationary distributions of which can
be described by exponential families.

Moving forward, we hope to move beyond these ERG-
inspired models toward models that incorporate la-
tent variables, which may also evolve over time with
the network. For example, it may often be the case
that the phenomena represented in data can most eas-
ily be described by imagining the existence of unob-
served groups or factions, which form, dissolve, merge
and split as time progresses. The flexibility of the
ERG models and the above temporal extensions al-
lows a social scientist to “plug in” his or her knowledge
into the formulation of the model, while still provid-
ing general-purpose estimation algorithms to find the
right trade-offs between competing and complemen-
tary factors in the model. We would like to retain this
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flexibility in formulating a general family of models
that include evolving latent variables in the represen-
tation, so that the researcher can “plug in” his or her
hypotheses about latent group dynamics, evolution of
unobservable actor attributes, or a range of other pos-
sible phenomena into the model representation. At
the same time, we would like to preserve the ability
to provide a “black box” inference algorithm to deter-
mine the parameter and variable values of interest to
the researcher, as can be done with ERG models and
their temporal extensions.
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