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Abstract

The study of social networks has gained new
importance with the recent rise of large on-
line communities. Most current approaches
focus on deterministic (descriptive) models
and are usually restricted to a preset num-
ber of people. Moreover, the dynamic as-
pect is often treated as an addendum to the
static model. Taking inspiration from real-
life friendship formation patterns, we propose
a new generative model of evolving social net-
works that allows for birth and death of social
links and addition of new people. Each per-
son has a distribution over social interaction
spheres, which we term ”contexts.” We study
the robustness of our model by examining
statistical properties of simulated networks
relative to well known properties of real so-
cial networks. We discuss the shortcomings
of this model and problems that arise during
learning. Several extensions are proposed.

1. Introduction

In 1967, the seminal “small world” study (Milgram,
1967) brought social networks into the public con-
sciousness. Since then, researchers have paid close at-
tention to laws that seem to govern human and busi-
ness networks. How do links between people form?
Is it enough to look at pairs or should triads of indi-
viduals be considered separately? Many approaches
study networks on the scale of links and individuals to
identify key patterns and describe network properties
(Wasserman & Faust, 1994).

Data collection used to be an expensive and tedious
process prone to sampling bias. But as more informa-
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tion are becoming available on-line, networks on the
order of tens of thousands of people have become easily
accessible. Studies of large hyper-link networks reveal
similar behavior to those of large social nets (e.g. co-
authorships). Thus a new modeling approach has ap-
peared from the random graphs community(Barabási
& Albert, 1999; Newman, 2001). Here the goal is not
to model the network on a link-by-link basis but to ad-
dress its overall behavior. The new approach is more
generative in nature, though most models are still
very simplistic. The preferential attachment model
(Barabási & Albert, 1999) describes the mechanism
of network evolution with a focus on power-law degree
distributions. Once the links are established, they re-
main in the network unperturbed. Such simplifying
assumptions make the models feasible for analysis, but
fail to capture the complexity of real social networks.

In this work, we attempt to address several important
issues raised by both communities. First, we directly
model the generative process behind network dynam-
ics. We focus on the evolution of interpersonal rela-
tionships over time, and explicitly model the birth and
gradual decay of social links. Secondly, we demon-
strate that the model generates networks that exhibit
properties commonly observed in many natural topolo-
gies.

We motivate our model with an example. Imagine that
Andy moves to a new town. He may find some new
collaborators at work, make friends at parties, or meet
fellow gym-goers while exercising. In general, Andy
lives in a number of different spheres of interaction or
contexts. As time goes on, he may find himself repeat-
edly meeting certain people in different contexts, con-
sequently developing stronger bonds. Acquaintances
he never meets again may quickly fade away. Andy’s
new friends may also introduce him to their friends (a
well known transitive phenomenon called triadic clo-
sures in social science (Wasserman & Faust, 1994)).

With this example in mind, we begin with a presenta-
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tion of our model in Section 2. Experimental results
are discussed in Section 3. We show how to learn the
parameters of our model using Gibbs sampling in Sec-
tion 4, and Section 6 contains a brief survey of related
work.

2. The Model

2.1. Notation

DCFM allows the addition of new people into the net-
work at each time step. Let T denote the total number
of time steps and Nt the number of people at time t.
N = NT denotes the final total number of people. Let
Mt denote the number of new people added to the
network at time t, so that Nt = Nt−1 + Mt.

Links between people are weighted. Let
{W 1, . . . ,WT } be a sequence of weight matrices,
where W t ∈ ZNt×Nt

+ represents the pairwise link
weights at time t. We assume that W t is symmetric,
though it can be easily generalized to the directed
case.

The intuition behind our model is that friendships are
formed in contexts. There are a fixed number of con-
texts in the world, K, such as work, gym, restaurant,
grocery store, etc. Each person has a distribution over
these contexts, which can be interpreted as the average
percentage of time that he spends in each context.

2.2. The Generative Process

At time t, the Nt people in the network each selects
his current context Rt

i from a multinomial distribu-
tion with parameter θi, where θi has a Dirichlet prior
distribution:

~θi ∼ Dir(~α), ∀i = 1 : N (1)
Rt

i | θi ∼ Mult(θi), ∀t = 1 : T, i = 1 : Nt. (2)

The number of all possible pairwise meetings at time
t is DYADt = {(i, j) | 1 ≤ i ≤ Nt, i < j ≤ Nt} .
For each pair of people i and j who are in the same
context at time t (i.e., Rt

i = Rt
j), we sample a Bernoulli

random variable F t
ij with parameter βiβj . If F t

ij = 1,
then i and j meets at time t. The parameter βi may
be interpreted as a measurement of friendliness and is
a beta-distributed random variable (making it possible
for people to have different levels of friendliness):

βi ∼ Beta(a, b), ∀i = 1 : N (3)
∀(i, j) ∈ DYADt

F t
ij | Rt

i, R
t
j ∼

{
Ber(βiβj) if Rt

i = Rt
j

I0 o.w.
(4)

where I0 is the indicator function for F t
ij = 0.

In addition, the newcomers at time t have the opportu-
nity to form triadic closures with existing people. The
probability that a newcomer j is introduced to exist-
ing person i is proportional to the weight of the links
between i and the people whom j meets in his context.
Let TRIADt = {(i, j) | 1 ≤ i ≤ Nt−1, 1 ≤ j ≤ Mt}
denote the pairs of possible triadic closures. For all
(i, j) ∈ TRIADt, we have:

Gt
ij | W t−1, F t

·j , R
t
· ∼

{
Ber(µt

ij) if Ri 6= Rj

I0 o.w.,
(5)

where µt
ij :=

∑Nt

`=1 W t−1
i` F t

`j/
∑t−1

`=1 W t−1
i` .

Connection weight updates are Poisson distributed.
Our choice of a discrete distribution allows for sparse
weight matrices, which are often observed in the real
world. Pairwise connection weights may drop to zero if
the pair have not interacted for a while (though noth-
ing prevents the connection from reappearing in the
future). If i and j meets (F t

ij = 1 or Gt
ij = 1), then

W t
ij has a Poisson distribution with mean equal to a

multiple (γh) of their old connection strength. γh sig-
nifies the rate of weight increase as a result of the “ef-
fectiveness” of a meeting; if γh > 1, then the weight
will in general increase. (The weight may also decrease
under the Poisson distribution, a consequence perhaps
of unhappy meetings.) If i and j do not meet, their
mean weight will decrease with rate γ` < 1. Thus

W t
ij | W t−1

ij , F t
ij , G

t
ij , γh, γ` ∼{

Poi(γh(W t−1
ij + ε)) if F t

ij = 1 or Gt
ij = 1

Poi(γ`W
t−1
ij ) o.w.

(6)

where W t−1
ij = 0 by default for (i, j) /∈ TRIADt, and ε

is a small positive constant that lifts the Poisson mean
away from zero. As W t−1

ij becomes large, γh and γ`

control the increase and decrease rates, and the effect
of ε diminishes. γh and γ` have conjugate Gamma
priors:

γh ∼ Gamma(ch, dh), (7)
γ` ∼ Gamma(c`, d`). (8)

Figure 1 contains a graphical representation of our
model. The complete joint probability is:

P (~θ, ~β, γh, γ`,W
1:T , R1:T , F 1:T , G1:T ) =

P (~θ)P (~β)P (γh)P (γ`)
∏

t

P (Rt|~θ)P (F t|Rt, ~β)×

P (Gt|Rt, F t,W t−1)P (W t|Gt, F t,W t−1) (9)
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Figure 1. Graphical representation of one time step of the
generative model. Rt is a Nt-dimensional vector indicating
each person’s context at time t. F t is a Nt×Nt matrix indi-
cating pairwise dyadic meetings. Gt is a Nt−1×Mt matrix
that indicate triadic closure for newcomers at time t. W t is
the matrix of observed connection weights at time t. θ, β,
γh, and γ` are parameters of the model (hyperparameters
are not shown).

3. Experiments

We illustrate the behavior of our model under different
parameter settings on a set of established metrics.

3.1. Metrics

Degree distribution:
In an undirected graph, the degree of a node is its
number of neighbors. For node i, we define its degree
di to be

∑N
j=1 I(Wij>0), and the average degree of the

graph
∑N

i=1 di/N .

Node degrees in large natural networks often follow a
power law distribution (Albert & Barabási, 2002), i.e.,
the number of nodes D with degree n roughly con-
forms to the function D(n) = n−ρ for some exponent
ρ. The value of ρ may vary from network to network,
but the overall functional form remains the same. In-
tuitively, this means that there are many people with
a few friends, and very few people with a lot of friends.

Clustering coefficient:
Across different social networks, it has often been
observed that subsets of people tend to form fully-
connected cliques. This inherent clustering tendency
may be quantified by the clustering coefficient (Watts
& Strogatz, 1998). For the i-th node, Ci is defined to
be the ratio between the number of edges Ei that actu-
ally exist between its di neighbors and the number of
edges that would exist if the neighbors form a clique:
Ci = 2Ei

di(di−1) . The clustering coefficient of the whole
network is the average over all nodes: C =

∑
i Ci/N .

Average path length:
We compute the length of the shortest path sij be-
tween every pair of nodes i and j. If i and j are not
connected, then sij = ∞. Let S := {(i, j) | sij < ∞}
be the set of connected pairs. The average path length
of the graph is defined to be s̄ :=

∑
(i,j)∈S sij/|S|.

Effective diameter:
The diameter of a graph is the maximum of the
shortest path distances between any pair of nodes:
max(i,j) sij . If the graph consists of several discon-
nected clusters, its diameter is defined to be the max-
imum over all cluster diameters. Graph diameter can
be heavily influenced by outliers. A more robust quan-
tity is the effective diameter, commonly defined as the
ninetieth percentile of all shortest paths. Let σ(x)
be the empirical quantile function of shortest path
lengths, i.e., σ(x) = argmaxs{s | f(s) < x}, where
f(s) = |{(i, j) : sij < s}|/N2 is the empirical cumula-
tive distribution of sij . The effective diameter is taken
to be σ(.90), linearly interpolated if there is no exact
match for the ninetieth percentile.

3.2. Simulations

We analyze the behavior of the model under differ-
ent parameter settings using the four metrics intro-
duced above. Albert and Barabási (2002) and New-
man (2001) observe a wide range of values for these
metrics in a variety of real social networks. Our model
can generate networks whose clustering coefficient, av-
erage path length, and effective diameter fall within
the range of observed values. Here we discuss how
different parameter settings affect the values of these
metrics, and provide intuition about why this is so.

Unless otherwise specified, the number of contexts K
is set to 10. The context preference parameter θi is
drawn from a peaked Dirichlet prior, where αk∗ = 5 for
a randomly selected k∗, and αk = 1 otherwise. This
means that each person in the network has a slight
preference for one context. The friendliness parameter
βi is drawn from a Beta(a, b) distribution, where a = 1
and b varies. The weights update rates are γh = 2,
γ` = 0.5, and ε = 1. We add one person to the network
at every time step, so that nt = t. All experiments are
repeated with 10 trials.

3.2.1. Friendliness

The parameter βi determines the “friendliness” of the
i-th person and is drawn from a Beta(a, b) distribu-
tion. As b increases from 2 to 10, average friendliness
decreases from 0.33 to 0.09. We wish to test the effect
of b on overall network properties. In order to isolate
the effects of friendliness, we fix the context assign-
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ments by setting Rt
i = R1

i for all t > 1. In this setting,
people do not form triadic closures, and connection
weights are updated only through dyadic meetings.
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Figure 2. Effects of the friendliness parameter on a network
of 200 people with fixed contexts. The x-axes represent
different values of b in Beta(1, b).

As people become less friendly, one expects a corre-
sponding decrease in average node degree. This is
indeed what we observe in the average degree plot
in Figure 2. Interestingly, the clustering coefficient
goes up as friendliness goes down. This is because low
friendliness makes for smaller clusters, and it is eas-
ier for smaller clusters to become densely connected
than it is for bigger clusters. We also observe large
variance in average path length and effective diame-
ter at low friendliness levels. This is due to the fact
that most clusters now contain one to two people. As
small clusters become connected by chance, shortest
path lengths varies from trial to trial.

3.2.2. Frequency of context switching

In the current model, each person draws a new context
at every time step. However, we can easily imagine
a person working on one project for a while and then
switching to the next project. When context switching
is infrequent, people may develop stronger (and more)
within-context relations.

We vary the frequency of context switching from 1 to
200 on a 200 node network. When the frequency is
1, people switch context at every time step; when the
frequency is 200, contexts are fixed once and for all. In
Figure 3, there appears to be a phase transition when
context switching occurs every 30 time steps. This
occurs as the consequence of two effects. First, when
people switch contexts too frequently, they do not have
the opportunity to meet everybody in the same context
before moving on. Thus they have fewer neighbors and

1 5 10 20 30 50 100 200
1

1.5

2

2.5

3

A
v
e
. 
d
e
g
re

e

1 5 10 20 30 50 100 200
3

4

5

6

7

8

A
v
e
 p

a
th

 l
e
n
g
th

1 5 10 20 30 50 100 200
0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

A
v
e
 c

lu
s
t 
c
o
e
ff

context switch at t
1 5 10 20 30 50 100 200

4

6

8

10

12

14

A
v
e
 e

ff
 d

ia
m

context switch at t

Figure 3. Effects of the frequency of context switching on
a network of 200 people. (b = 8)

form smaller clusters on average. (As previously dis-
cussed, smaller clusters can lead to higher clustering
coefficients.) Consequently, the average path length
and effective diameter are also slightly long. On the
other hand, when people never switch contexts (right-
hand end of the x-axes), the number of neighbors is
upper bounded by the number of people in the con-
text. Clustering coefficient is high because everybody
in the same context knows everybody else, and aver-
age path length and diamter are long because there
are few paths to people outside of the current context.

3.2.3. Degree distribution

Under different parameter settings, our model may
generate networks with a variety of degree distribu-
tions. Lower levels of friendliness typically lead to
more power-law-like degree distributions, while higher
levels often result in a heavier tail. In Figure 4, we
show two degree distribution plots for different friend-
liness levels. In the left-hand side plot, the quadratic
polynomial is a much better fit than the linear one.
This means that, when people are more friendly, the
drop off in the number of people with high node de-
gree is slower than would be expected under the power
law. We do observe the power law effect at a lower
level of friendliness. In the right-hand side plot, the
linear polynomial with coefficient −1.6 gives as good
of a fit as a quadratic function. This coefficient value
lies well within the normally observed range for real
social networks (Albert & Barabási, 2002).

3.2.4. Birth and death of links

Our proposed model attempts to capture the dynamics
of the birth and death of links. A link is born when
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Figure 4. Log-log plot of the degree distributions of a net-
work with 200 people. βi is drawn from Beta(1, 3) for the
plot on the left, and from Beta(1, 8) for the right hand side.
Solid lines represent a linear fit and dashed lines quadratic
fit to the data. Contexts are drawn every 50 iterations.

the connection weight becomes non-zero, and the link
dies when the weight returns to zero. Figure 5 shows
link birth rates as the proportion of newly established
ties to the number of possible births, and link death
rates as the proportion of the number of deaths to the
number of links that exist at that point in time.

At the beginning, there are few existing links. There-
fore the birth rate is relatively high. Since one person
is added to the network at each time step, the num-
ber of possible connections grows as t(t − 1)/2. Thus
the birth rate becomes smaller at larger values of t.
We note periodical trends in both births and deaths of
links. This periodicity coincides with changes in con-
text. At each context switch, a fresh pool of possible
connections becomes available, and weaker links from
previous connections are now more likely to die out.

3.2.5. Weight distributions

One of the main strengths of our model lies in its abil-
ity to represent weighted links. In real life, friendships
are not simply existent or absent. A strong connec-
tion should take longer to dissipate than would a weak
connection. Link weights act as memory in preserving
friendships. Old friendships may be rekindled if the
pair rotate within similar contexts. We compare the
evolution of simulated weights with email exchange in
the well-known Enron dataset. Figure 6 shows typical
weight progressions over time in a simulated network.
Figure 7 plots typical patterns of weekly email ex-
change counts between Enron employees. Our model
is clearly capable of reproducing both long-lasting and
short-range connections. Previously severed links can
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Figure 5. Birth (top) and death (bottom) of links in a net-
work of 600 people over 600 time steps. Contexts switches
occur every 50 iterations, K = 20 and b = 10.

be renewed, as is the case for the pair (45, 47).

4. Learning Parameters via Gibbs
Sampling

Parameter learning in DCFM is possible via Gibbs
sampling. We leave a detailed investigation of learning
results to another paper, but give the Gibbs updates
here for reference. Using . . . as a shorthand for “all
other variables in the model,” we have:

~θi | . . . ∼ Dir(~α + ~α′i), (10)

P (βi | . . .) ∝ βAi+a−1
i (1− βi)b−1

∏
j 6=i

(1− βiβj)Bij ,

(11)
γh | . . . ∼ Gamma(ch + wh, (vh + 1/dh)−1),

(12)
γ` | . . . ∼ Gamma(c` + w`, (v` + 1/d`)−1). (13)

In Equation 10, α′ik :=
∑T

t=1 I(Ri=k) is the total num-
ber of times person i is seen in context k. In Equa-
tion 11, Ai := |{(j, t) | Rt

i = Rt
j and F t

ij = 1}| is the
total number of dyadic meetings between i and any
other person, and Bij := |{t | Rt

i = Rt
j and F t

ij = 0}|
is the total number of times i has “missed” an op-
portunity for a dyadic meeting. Let H := {(i, j, t) |
F t

ij = 1 or Gij = 1} represent the union of the set
of dyadic and triadic meetings, and L := {(i, j, t) |
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Figure 6. Weight dynamics for 4 different pairs in a net-
work of 600 people over 600 time steps. Contexts switches
occur every 50 iterations and b = 3.

(i, j) ∈ DYADt and F t
ij = 0} the set of missed

dyadic meeting opportunities. wh :=
∑

(i,j,t)∈H W t
ij

is the sum of updated weights after the meetings, and
vh :=

∑
(i,j,t)∈H(W t−1

ij + ε) is the sum of the original
weights plus a fixed constant. wl :=

∑
(i,j,t)∈L W t

ij

is the sum of weights after the missed meetings, and
vl :=

∑
(i,j,t)∈L W t−1

ij is the sum of original weights.
(Here we use zero as the default value for W t−1

ij if j is
not yet present in the network at time t− 1.)

Due to coupling from the pairwise interaction terms
βiβj , the posterior probability distribution of βi can-
not be written in a closed form. However, since βi

lies in the range [0, 1], one can perform coarse-scale
numerical integration and sample from interpolated
histograms. Alternatively, one can design Metropolis-
Hasting updates for βi, which has the advantage of
maintaining a proper Markov chain.

The variables F t
ij and Gij are conditionally dependent

given the observed weight matrices. If a pairwise con-
nection Wij increases from zero to a positive value at
time t, then i and j must either have a dyadic or a
triadic meeting. On the other hand, dyadic meetings
are possible only when i and j are in the same con-
text, and triadic meetings when they are in different
contexts. Hence F t

ij and Gt
ij may never both be 1.

In order to ensure consistency, F t
ij and Gij must be
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Figure 7. Weekly email exchange counts for four randomly
selected pairs between 136 Enron employees.

updated together. For (i, j) ∈ TRIADt,

P (F t
ij = 1, Gij = 0 | . . .) ∝

I(Rt
i=Rt

j)
(βiβj)Poi(W t

ij ; γhε),

P (F t
ij = 0, Gij = 1 | . . .) ∝ I(Rt

i 6=Rt
j)

µijPoi(W t
ij ; γhε),

P (F t
ij = 0, Gij = 0 | . . .) ∝[

I(Rt
i=Rt

j)
(1− βiβj) + I(Rt

i 6=Rt
j)

(1− µij)
]
I(W t

ij=0).

(14)

For (i, j) ∈ DYADt\TRIADt,
P (F t

ij = 1 | . . .) ∝
I(Rt

i=Rt
j)

(βiβj)Poi(W t
ij ; γh(W t−1

ij + ε)),

P (F t
ij = 0 | . . .) ∝

(I(Rt
i=Rt

j)
(1− βiβj) + I(Rt

i 6=Rt
j)

)Poi(W t
ij ; γ`W

t−1
ij ).

(15)

There are also consistency constraints for Rt. For ex-
ample, if F t

ij = F t
jk = 1, then i, j, and k must all

lie within the same context. If Gkl = 1 in addition,
then l must belong to a different context from i, j, and
k. The F variables propagate transitivity constraints,
whereas G propagates exclusion constraints.

To update Rt, we first find connected components
within F t. Let p denote the number of components
and I the index set for the nodes in the i-th com-
ponent. We update each Rt

I as a block. Imagine an
auxiliary graph where nodes represent these connected
components and edges represent exclusion constraints
specified by G, i.e., I is connected to J if Gij = 1 for
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some i ∈ I and j ∈ J . Finding a consistent setting
for Rt is equivalent to finding a feasible K-coloring of
the auxiliary graph, where K is the total number of
contexts. We sample Rt

I sequentially according to an
arbitrary ordering of the components. Let π(I) denote
the set of components that are updated before I. The
posterior probabilities are:

P (Rt
I = k | Rt

π(I), G) ∝{
0 if GIJ = 1 and Rt

J = k for some J ∈ π(I)∏
i∈I θik o.w.

(16)

These sequential updates correspond to a greedy K-
coloring algorithm; they are approximate Gibbs sam-
pling steps in the sense that they do not condition on
the entire set of connected components.

5. Extensions

5.1. Evolution of contexts preferences

A person’s context distribution is influenced by the so-
cial groups to which he belongs. People who hang out
with gym-goers may start to frequent the gym them-
selves. Thus it could be desirable to incorporate evo-
lution of the θ parameters (indicating context prefer-
ence) into our model. We propose to update θ for
each person using the θ parameters of his neighbors,
weighted by the connection strengths:

θt
i = λθt−1

i + (1− λ)
1∑

j W t
ij

∑
j

W t
ijθ

t−1
j . (17)

The larger λ (person’s independence) is, the less sus-
ceptible the person is to the preference of his friends.

5.2. Long term memory

The ability to model weighted links allows to capture
the effect of short term memory, i.e. if a pair of people
met at time t they are more likely to meet at time t+1.
Once the weight goes to zero, renewal of the link for
the pair becomes as likely as a ‘birth’ of a new link. To
solve this problem, we could model weights as a con-
tinuous gamma distribution, thus if people have had
a link in the past there will likely be a tiny weight re-
maining even if the interaction disappeares. In this
case we will need a thresholding parameter for the
‘death’ of a link. A drawback of this approach is that
it will make the weight matrices less sparse. A more
flexible model would have a parameter for each person
that is proportional to the strength and the duration
of the past connections. This approach will introduce
N new parameters to the model. We believe that cap-
turing the long term memory effect is important. It is

critical however to minimize the number of parameters
needed to still capture realistic trends.

6. Related Work

The principles underlying the mechanisms by which re-
lationships evolve are still not well understood (Liben-
Nowell & Kleinberg, 2003). Current models aim at
either describing observed phenomena or predicting fu-
ture trends. A common approach is to select a set of
graph based features, such as degree distribution or
the number of dyads and triangles, and create mod-
els that mimic observed behavior of the evolution of
these features in real life networks. Works of Jin et al.
(2001); Barabasi et al. (2002); Davidsen et al. (2002)
in physics and Van De Bunt et al. (1999); Huisman
and Snijders (2003) in social sciences follow this ap-
proach. However, under models of average behavior,
the actual links between any two given people might
not have any meaning. Consequently, these models are
often difficult to interpret.

Another approach aims to predict future friends and
collaborators based on the properties of the network
seen so far (Newman, 2001; Liben-Nowell & Kleinberg,
2003). These models often cannot encode common
network dynamics such as mobility and link modifi-
cation. Moreover, these models usually do not take
into account triadic closure, a phenomenon of great
importance in social networks (Wasserman & Faust,
1994; Kossinets & Watts, 2006).

Sarkar and Moore (2005) presents an interesting dy-
namic social network model (with fixed number of peo-
ple). This work builds on Hoff et al. (2002), which
introduces latent positions for each person in order
to explain observed links. If two people are close in
the latent space, they are likely to have a connection.
Hoff et al. (2002) estimate latent positions in a static
data set. Sarkar and Moore (2005) adds a dynamic
component by allowing the latent positions to be up-
dated based on both their previous positions and on
the newly observed interactions. One can imagine a
generative mechanism that governs such perturbations
of latent positions. In fact, the DCFM model pre-
sented in this paper can be seen as a generative model
for the latent mapping function.

7. Discussion

Our focus on generative modeling in this paper is
prompted by the need to provide a plausible expla-
nation for how networks form and evolve. It is flexi-
ble and can be adapted to alternative theories of the
friend evolution process. For example, in our model,
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the decision to allow links to decay is made indepen-
dently on each pair. However, theory of Simmelian
ties (Krackhardt, 1999) suggest that two people who
are no longer friends may nevertheless remain so due
to influence from a third party. This is a plausible
alternative to our current model.

Our choice of modeling weighted networks is motivated
by the fact that friednships between people are not bi-
nary. Stronger links tend to last longer periods of time;
temporary connections cease to exist once the cause
disappears. However, it is often difficult to obtain real
datasets with weighted connections. We propose to use
the number of email, sms and phone call exchanges in
preset time intervals as a proxy to the weight of links
between people. This is a very coarse representation of
a relationship weight, since non-communication does
not necessarily imply change in link weight. Hence
the DCFM model may predict smoother connection
weights than the observed values.

To show that our model is capable of generating realis-
tic social environments, we provide simulation results
that adhere to observations made on realistic datasets
in (Albert & Barabási, 2000). However, there is no
groundtruth for the parameters in the hidden layer.
Variables that address context choice and meeting oc-
currance at time step t have to be inferred from the
previous and currently observed weights alone. This
brings up the question of identifiability. Unfortunately,
the complexity of the model makes it difficult to an-
swer this question and we are currently exploring pos-
sible solutions to this problem.

Another interesting question is exchangeability. The
earlier a person appears in the network, the more
chances he has to establish connections. People who
have been in the network longer are expected to have
more connections and thus nodes (people) are not ex-
changeable over time.

The current model does not place any explicit upper
bounds on the number of links a person can establish.
It is effectively limited by the number of people in the
same context. Unless a person is very friendly and
has uniform distribution, the number of links is not
expected to be high. In realistic networks, we expect
the context preference distribution and friendliness to
be skewed, because a person has a limited amount of
time and energy to build and maintain relationships.

In conclusion, we provide an exploratory study of a
new generative model for dynamic social networks in
this paper. Simulation results demonstrate the advan-
tages as well as shortcomings of this model. In future
work, we hope to address issues of identifiability and

investigate possible extensions of this work.
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