
Distributed Theorem Proving
for Distributed Hybrid Systems?

David W. Renshaw, Sarah M. Loos, and André Platzer

Carnegie Mellon University, Computer Science Department, Pittsburgh, PA, USA

Abstract. Distributed hybrid systems present extraordinarily challenging prob-
lems for verification. On top of the notorious difficulties associated with dis-
tributed systems, they also exhibit continuous dynamics described by quanti-
fied differential equations. All serious proofs rely on decision procedures for real
arithmetic, which can be extremely expensive. Quantified Differential Dynamic
Logic (QdL) has been identified as a promising approach for getting a handle in
this domain. QdL has been proved to be complete relative to quantified differ-
ential equations. But important questions remain as to how best to translate this
theoretical result into practice: how do we succinctly specify a proof search strat-
egy, and how do we control the computational cost? We address the problem of
automated theorem proving for distributed hybrid systems. We identify a simple
mode of use of QdL that cuts down on the enormous number of choices that it
otherwise allows during proof search. We have designed a powerful strategy and
tactics language for directing proof search. With these techniques, we have im-
plemented a new automated theorem prover called KeYmaeraD. To overcome the
high computational complexity of distributed hybrid systems verification, KeY-
maeraD uses a distributed proving backend. We have experimentally observed
that calls to the real arithmetic decision procedure can effectively be made in par-
allel. In this paper, we demonstrate these findings through an extended case study
where we prove absence of collisions in a distributed car control system with a
varying number of arbitrarily many cars.

1 Introduction

Hybrid systems with joint discrete and continuous dynamics have received considerable
attention by the research community, including numerous model checking [11, 2, 9] and
some theorem proving approaches [18, 22, 23]. Unfortunately, even though hybrid sys-
tems verification is already very challenging, not all relevant cyber-physical systems
can be modeled as hybrid systems. Hybrid systems cannot represent physical control
systems that are distributed or form a multi-agent system, e.g., distributed car control
systems. Such systems form distributed hybrid systems [8, 15, 25] with discrete, contin-
uous, and distributed dynamics. Distributed hybrid systems combine the challenges of

? This material is based upon work supported by the National Science Foundation under NSF
CAREER Award CNS-1054246, Grant Nos. CNS-0926181, CNS-0931985, CNS-1035800,
by the ONR award N00014-10-1-0188, by DARPA FA8650-10C-7077. The second author
was supported by an NSF Graduate Research Fellowship.

hybrid systems and distributed systems, which are both undecidable. Validation tech-
nology for distributed hybrid systems had been mostly limited to simulation [8, 20] and
semantic considerations [28, 15]. Very recently, a verification logic, called quantified
differential dynamic logic (QdL) has been introduced, along with a proof calculus for
distributed hybrid systems [25]. This calculus is compositional and has been proved to
be complete relative to quantified differential equations [25]. Yet, several questions need
to be addressed to translate this theoretical result into practice. We consider questions
of automation in a theorem prover in this paper.

The most important question is how to structure and traverse the proof search space
for distributed hybrid systems. We develop a range of techniques to control the proof
search space in practice. Our first improvement over the QdL base calculus [25] is
that we cut down the branching factor during proof search significantly. The QdL base
calculus allowed rules to be applied anywhere within a formula, which leads to a sub-
stantial amount of unnecessary nondeterminism in proof search. We develop a proper
sequent calculus and reduce rule application to top-level formulas in the sequent when-
ever possible. We dispense with the big step arithmetic rule from [25] and introduce
modular arithmetic rules that are more amenable to automation. Instead of recursive
first-order substitutions [25], we introduce new proof rules for quantified assignments,
which are the distributed and first-order equivalent of Hoare’s assignment rule.

These improvements reduce the unnecessary nondeterminism in proof search sub-
stantially. Yet, the distributed hybrid systems verification problem also leads to inher-
ent nondeterminisms during proof search. In theory, this concerns only the (in)variant
search [25], but, in practice, there are also influential choices in how to handle the arith-
metic [24]. The heavy computational cost (doubly exponential) of real arithmetic places
quite a burden on the proof search procedure. Especially, common heuristics like “if this
branch does not close after 5 min, it (practically) never will” are remarkably unsuccess-
ful in distributed hybrid systems. We need more advanced strategies that consider all
proof options in a fair way and timeshare limited computation resources efficiently.

For hybrid systems theorem proving [22], we know several proof strategies that can
be successful depending on the property to be shown [24]. We expect different and even
more varied proof search strategies to be of relevance in distributed hybrid systems
theorem proving. We, thus, develop a strategy language in which new strategies can be
expressed easily. In an extended case study, we also show that this strategy language
has its merits for scripting local proof tactics for arithmetically difficult parts of a proof.

We take the nondeterminisms in proof search at face value. We develop a proof pro-
cedure with built-in and/or-branching. Alternatives in proof rule application produce or-
branches. The premises of a particular proof rule produce and-branches. Our approach
follows all proof search alternatives in parallel. An alternative will only be discarded if
it became irrelevant (an or-sibling has been proved or an and-sibling disproved). Proof
search may also temporarily disfavor a proof branch that it considers less promising at
the moment but may dynamically revisit this choice later.

We have implemented this approach in a new automated theorem prover called
KeYmaeraD that has a distributed (multiple cores and computers) proof engine for
distributed (multi-agent) hybrid systems. Note that our distributed prover does not just
prove one of the distributed agents on each of the distributed cores. This coarse-grained

parallelism is terribly inefficient and not even sufficient, because the systems we con-
sider have an unbounded number of agents, which then could not be proved on a finite
computer.

To show that our approach is successful in practice, we consider an extended case
study and prove collision freedom in a distributed car control system. Thanks to the
distributed proof search procedures in KeYmaeraD, we found a simpler proof than we
previously found manually [16]. This observation shows that the approach presented in
this paper can be quite useful. Our previous prover, KeYmaera [27], for hybrid systems
cannot handle distributed hybrid systems. In previous work on car control verification
[16], we, thus, came up with a proof about two cars in KeYmaera and then used a
sophisticated modular proof argument showing how safety of the distributed system
could be concluded in a modular way. This lifting effort was a formal but fully manual
paper-proof and required modularization proof rules that can only be used in some
scenarios. In this paper we consider a more systematic approach that makes it possible
to verify systems like distributed car control in a fully mechanized theorem prover for
distributed hybrid systems, not just hybrid systems. Our contributions are as follows:

– We identify a mode of using QdL proof rules that is suitable for automation and lim-
its the proof search space significantly by reducing unnecessary nondeterminisms.

– We present a systematic proof search framework with and/or-branching that reflects
the problem structure in distributed hybrid systems verification naturally.

– We implement our framework in KeYmaeraD, the first verification tool for dis-
tributed hybrid systems.

– We present a flexible combinator approach to proof strategies.
– We formally verify collision freedom in a challenging distributed car control system

and present the first mechanized proof of distributed car control.

2 Related Work

Hybrid Systems Process-algebraic approaches, like χ [3], have been developed for mod-
eling and simulation. Verification is still limited to small fragments that can be trans-
lated directly to other verification tools like PHAVer or UPPAAL, which do not support
distributed hybrid systems.

Automated Theorem Proving Theorem provers designed in the so-called LCF style
focus on the construction of objects of a distinguished type called thm, the constructors
of which correspond exactly to the proof rules of the logic of interest. This provides an
intrinsic mechanism for ensuring that any theorem object represents a valid proof, and
it reduces the trusted code base to the implementation of the proof rules. Proof search
then centers on the use of tactics, which are high-level scripts succinctly describing the
expected structure of a proof.

Prominent examples of provers in the LCF style include Isabelle [21] and NuPRL
[13]. These systems can be used to encode and reason about object logics such as QdL,
they permit users to call external decision procedures, and there has been serious work
in using parallelism to improve Isabelle’s performance [19]. For these reasons, Isabelle

is an attractive candidate for our intended applications. However, the work on paral-
lelism has primarily focused on speeding up the checking of proofs, rather than assist-
ing in the construction of proofs. We would like to use a parallelism model tuned to our
particular workflow, and to retain flexibility to modify it in the future. Moreover, we
want to move away from the command-line interfaces common to LCF-style provers,
instead opting for a more point-and-click interface, akin to that of KeYmaera [27].

Car Control Case Study Major initiatives have been devoted to developing safe next-
generation automated car control systems, including the California PATH project, the
SAFESPOT and PReVENT initiatives, the CICAS-V system, and many others. With
the exception of [16], safety verification for car control systems has been for specific
maneuvers or systems with a small number of cars [29, 1, 6, 17]. Our formal verification
of collision-freedom applies to a generic, distributed control for arbitrarily many cars.

Other projects have attempted to ensure the safety of more general systems with
simulation and other non-formal methods [7, 10, 5, 14]. Our techniques follow a for-
mal, mechanized, proof calculus, which tests safety completely, rather than using a
finite number of simulations which can only test safety partially. We build on the work
of [16], which presented a cumbersome, manual proof of collision-freedom for a high-
way system. We generate a semi-automated, mechanized proof safety for a lane of an
arbitrary number of cars, where cars may merge into and exit the system. In this case
study, mechanization not only provides a more convincing proof, but also allows us to
find simpler proofs of safety.

3 Preliminaries: Quantified Differential Dynamic Logic

As a system model for distributed hybrid systems, QdL uses quantified hybrid pro-
grams (QHP) [25]. Note that we use a slightly simplified fragment of QdL here that is
more amenable to automation. QHPs are defined by the following grammar (α, β are
QHPs, θ terms, i a variable of sort C, f is a function symbol, s is a term with sort
compatible to f , and H is a formula of first-order logic):

α, β ::= ∀i : C A | ∀i : C {D & H} | ?H | α ∪ β | α; β | α∗

whereA is a list of assignments of the form f (s) := θ and nondeterministic assignments
of the form f (s) := ∗, and D is a list of differential equations of the form f (s)′ = θ.
When an assignment list does not depend on the quantified variable i, we may elide the
quantification for clarity.

The effect of assignment f (s) := θ is a discrete jump assigning θ to f (s). The ef-
fect of nondeterministic assignment f (s) := ∗ is a discrete jump assigning any value
to f (s). The effect of quantified assignment ∀i : C A is the simultaneous effect of all
assignments in A for all objects i of sort C. The QHP ∀i : C a(i) := a(i) + 1, for exam-
ple, expresses that all cars i of sort C simultaneously increase their acceleration. The
effect of quantified differential equation ∀i : C D& H is a continuous evolution where,
for all objects i of sort C, all differential equations in D hold and formula H holds
throughout the evolution (i.e. the state remains in the region described by evolution do-
main constraint H). The dynamics of QHPs changes the interpretation of terms over

time: for an R-valued function symbol f , f (s)′ denotes the derivative of the interpreta-
tion of the term f (s) over time during continuous evolution, not the derivative of f (s)
by its argument s. We assume that f does not occur in s. In most quantified assign-
ments/differential equations s is just i. For instance, the following QHP expresses that
all cars i of sort C drive by ∀i : C x(i)′′ = a(i) such that their position x(i) changes con-
tinuously according to their respective acceleration a(i).

The effect of test ?H is a skip (i.e., no change) if formula H is true in the current state
and abort (blocking the system run by a failed assertion), otherwise. Nondeterministic
choice α ∪ β is for alternatives in the behavior of the distributed hybrid system. In the
sequential composition α; β, QHP β starts after α finishes (β never starts if α continues
indefinitely). Nondeterministic repetition α∗ repeats α an arbitrary number of times,
possibly zero times.

The formulas of QdL [25] are defined as in first-order dynamic logic plus many-
sorted first-order logic by the following grammar (φ, ψ are formulas, θ1, θ2 are terms of
the same sort, i is a variable of sort C, and α is a QHP):

φ, ψ ::= θ1 = θ2 | θ1 ≥ θ2 | ¬φ | φ ∧ ψ | φ ∨ ψ | ∀i : C φ | ∃i : C φ | [α]φ | 〈α〉φ

We use standard abbreviations to define ≤, >, <,→. The real numbers R form a distin-
guished sort, upon which are defined the rigid functions + and ×. Sorts C , R have no
ordering and hence θ1 = θ2 is the only relation allowed on them. For sort R, we abbre-
viate ∀x : R φ by ∀x φ. In the following, all formulas and terms have to be well-typed.
QdL formula [α]φ expresses that all states reachable by QHP α satisfy formula φ. Like-
wise, 〈α〉φ expresses that there is at least one state reachable by α for which φ holds.

For the formal semantics of QdL and QHPs, we refer to [25].

Example 1. Let C be the sort of all cars. By x(i), we denote the position of car i, by v(i)
its velocity and by a(i) its acceleration. Then the QdL formula

(∀i : C x(i) ≥ 0)→ [∀i : C {x(i)′ = v(i), v(i)′ = a(i) & v(i) ≥ 0}](∀i : C x(i) ≥ 0)

says that, if all cars start at a point to the right of the origin and we only allow them to
evolve as long as all of them have nonnegative velocity, then they end up to the right
of the origin. In this case, the QHP just consists of a quantified differential equation
expressing that the position x(i) of car i evolves over time according to the velocity v(i),
which evolves according to its acceleration a(i). The constraint v(i) ≥ 0 expresses that
the cars never move backwards, which otherwise would happen eventually in the case
of braking a(i) < 0. This formula is indeed valid, and KeYmaeraD would be able to
prove it.

4 Revised QdL Proof Calculus

Our desire during verification is to prove that a given formula is valid, that is, true under
all interpretations of function symbols. We do this by finding a tree of rule applications
(i.e. a proof) within a formal proof calculus (i.e. a set of proof rules), reducing our
formula to known facts. In broad strokes, our typical approach is to divide proof search

Γ, φ⇒ φ, ∆
(close)

Γ ⇒ ∆

Γ, φ⇒ ∆
(hide-L)

Γ ⇒ ∆

Γ ⇒ φ, ∆
(hide-R)

Γ, φ⇒ ∆

Γ ⇒ ¬φ, ∆
(¬R)

Γ ⇒ φ, ψ, ∆

Γ ⇒ φ ∨ ψ, ∆
(∨R)

Γ ⇒ φ, ∆ Γ ⇒ ψ, ∆

Γ ⇒ φ ∧ ψ, ∆
(∧R)

Γ, φ⇒ ψ, ∆

Γ ⇒ φ→ ψ, ∆
(→R)

Γ ⇒ φ, ∆

Γ,¬φ⇒ ∆
(¬L)

Γ, φ⇒ ∆ Γ, ψ⇒ ∆

Γ, φ ∨ ψ⇒ ∆
(∨L)

Γ, φ, ψ⇒ ∆

Γ, φ ∧ ψ⇒ ∆
(∧L)

Γ ⇒ φ, ∆ Γ, ψ⇒ ∆

Γ, φ→ψ⇒ ∆
(→L)

x1 fresh Γ ⇒ φ(x1), ∆

Γ ⇒ ∀x : C φ(x), ∆
(∀R)

Γ,∀x : C φ(x), φ(θ)⇒ ∆

Γ,∀x : C φ(x)⇒ ∆
(∀L)

[α][β]φ

[α; β]φ
(;)

[α]φ∧[β]φ

[α ∪ β]φ
(∪)

χ→φ

[?χ]φ
(?)

Γ ⇒ ψ, ∆ ψ⇒ [α]ψ ψ⇒ φ

Γ ⇒ [α∗]φ, ∆
(∗)

Fig. 1. Common rules for QdL.

into three phases. First we transform and decompose our formula according to any
QHPs that it contains. Then we use the nullarize rule (cf. Section 4.6) to get rid of
index variables. Finally, we deal with the remaining first-order real arithmetic using
quantifier elimination in real-closed fields (which does not support general function
symbols [22]).

Taking the proof rules in [25] as a starting point, we have designed new proof rules
with several aims in mind. Primarily, we have aimed for a set of proof rules that makes
proof search amenable to automation. We have also favored rules that are simple enough
that their proof of soundness is readily understood. Pictured in Figure 1 are the proof
rules that we leave unmodified (but cf. the caveat in the next subsection), and the stan-
dard rules for a classical sequent calculus. Instead of dealing with raw formulas, we
deal with sequents of the form Γ ⇒ ∆, denoting that the conjunction of the formulas
in the list Γ implies the disjunction of the formulas in ∆, where Γ and ∆ are finite sets
of formulas. Note that in this paper we concentrate on the [α] modality and universal
quantification. Similar ideas apply to the 〈α〉 modality and existential quantification.

4.1 Working Outside-In

In the proof calculus given in [25], most of the rules for dealing with QHPs can be
applied deep within formulas. For example, if we were trying to prove the formula

[?x > 30][y := 0 ∪ y := x][x := x + 1; ?(y < 10)] x = y

we could apply the (?) rule, the (∪) rule, or the (;) rule. (In this formula, x and y
are nullary functions. For brevity, we do not notationally distinguish between nullary
functions and free variables.) In our approach, we only consider the outermost part of a

formula unless we are forced otherwise. So we would use the (?) rule on this formula.
This greatly cuts down on the number of choices at each step of proof search. One
downside is that sometimes our approach (and-)branches more than is strictly necessary.
We find in practice that the benefit from reducing the (or-)branching factor outweighs
this cost.

4.2 A Note about Capture

Recall that instead of having a separate syntactic category for state variables, we allow
functions to change their interpretation during the execution of a QHP; this is where a
program’s state is stored. One consequence of this setup is that performing a substitu-
tion is not as straightforward as in ordinary first-order logic. We have to worry about
functions being captured by assignments inside of modalities. For example, we can
incur capture by “substituting” the term x(i) for the variable Y in the formula

[∀ j : C x(j) := x(j) + 1] 0 = Y,

even though x(i) does not appear in this formula. If we are not careful, this could lead to
unsoundness of our proof rules. Therefore, we use a notion of substitution admissibility
that excludes substitutions like the above one. We will not formally define admissibility
here, but refer to [25].

4.3 Assignment

Proof rules for assignment are central to our approach. We want a proof rule to allow us
to work on formulas such as [x := 1]φ. This formula means that φ holds after execution
of the QHP x := 1. One approach to working on this formula would substitute 1 for
x in φ. Indeed, when doing so is an admissible substitution, this gives us a sound rule.
This rule should be familiar to readers familiar with Hoare Logic. If the substitution is
not admissible, as in the case when we are trying to prove [x := 1][x := 0]x = 1, then
this approach fails. In this case, however, we can introduce a new nullary function x1,
rename x to x1 in φ, and instead prove [x := 1][x1 := 0]x1 = 1, by applying a now-trivial
substitution. But then what should we do with formulas such as

[x := 1][x := 1∪?(true)]x = 1

where it is not clear how to rename in a way that will make the substitution admissible?
The approach that we take is to delay substitution, encoding its information into a new
assumption. Thus, to prove the above formula, we can prove the equivalent

(x1 = 1)→ [x1 := 1∪?(true)]x1 = 1.

We can write our rule as follows:

A fresh Γ, updates(A,A)⇒ rename(A,A, φ), ∆

Γ ⇒ [A]φ, ∆
(:=)

where A is a set of fresh names forA’s assigned functions. The formula rename(A,A, φ)
is φ with all occurences of A’s assigned functions renamed by their fresh counterparts
(from A). Also, updates(A,A) is a set of formulas that relates A’s assigned functions
to their fresh counterparts in the appropriate way. The exact form updates(A) depends
on the form of the assignments contained in it. We show some examples in Figure 2.

A A updates(A,A) rename(A,A, x = f (k))
x := x + 1 x1 x1 = x + 1 x1 = f (k)

x := y + 1, y := x x1, y1 x1 = y + 1 and y1 = x x1 = f (k)
∀i : C f (i) := f (i) + 1 f1 ∀i : C f1(i) = f (i) + 1 x = f1(k)

f (j) := 3 f1 f1(j) = 3 and ∀i : C i , j→ f1(i) = f (i) x = f1(k)

Fig. 2. Examples for the (:=) rule.

4.4 Equality Substitution

The assignment rule ends up adding many new function symbols along with assump-
tions about them. It is desirable that we have a way to simplify this information. Suppose
that θ1 and θ2 are closed terms and we know θ1 = θ2. Suppose furthermore that we are
trying to prove Γ ⇒ ∆, where Γ and ∆ are modality-free. Then we may replace any
occurrence of θ1 in Γ or ∆ with θ2. Often we want to perform all possible replacements
so as to eliminate a particular function. For this common case, we have the following
proof rule:

Γθ2
θ1
⇒ ∆θ2

θ1

θ1 =θ2, Γ ⇒ ∆
(=)

Here, Γθ2
θ1

means Γ with every occurrence of θ1 replaced by θ2. This is not a sub-
stitution in the ordinary sense of the word, because θ1 is a term, not a variable. We
emphasize that it is important that Γ and ∆ be modality-free. Otherwise the rule could
incur capture and be unsound.

4.5 Differential Equations

Suppose that the QHP we need to deal with is a set of quantified differential equations
D, and suppose furthermore thatD has a set of symbolic solutions S (t). The usual proof
rule to apply in this situation, as put forth in [25], is

∀t ≥ 0 ((∀0 ≤ t̃ ≤ t [S (t̃)]H)→ [S (t)]φ)

[∀i : C {D & H}]φ
(=′)

which is essentially a direct translation of the semantics of D. The premise can be
understood informally as follows: for all future times t, if the solution remains in the

domain constraint H up to time t, then the postcondition is true at time t. This premise
has the undesirable characteristic of containing a nested quantification on the left of an
implication. Often, the following rule (with a simpler, but stronger premise) suffices:

∀t ≥ 0 [S (t)](H → φ)

[∀i : C {D & H}]φ
(=′endpoint)

This premise states that, for all future times t, if the solution is in the domain constraint
H at t, then the postcondition is true at t. We call this the endpoint version of the rule.

4.6 Eliminating Index Variables

The first order theory of real numbers is decidable only for formulas that have no unin-
terpreted non-nullary function symbols. Therefore, in order to use a backend decision
procedure, we need to get rid of such functions. In [25], this task was accomplished in
a proof rule that eliminated all non-nullary functions in a single proof rule application.
This had the potential to cause an exponential blowup in the size of the sequent.

In contrast, we take a more local approach. We use what we call the nullarize proof
rule, which looks for occurrences of a given closed term θ, and replaces them with a
new nullary function. We write the rule as follows.

g1 fresh Γ
g1
θ ⇒ ∆

g1
θ

Γ ⇒ ∆
(null)

Recall that this is not substitution—it is a replacement operation. It is important that
θ be a closed term. We may not, for example, use the rule to get rid of f (i) in the formula

∀i : C f (i) > 0,

If this formula occurred on the left of the sequent, then we can nullarize f only after we
have used the (∀L) rule to instantiate i.

4.7 Real Arithmetic

Nullary functions can be understood as being implicitly universally quantified. In con-
trast, we consider any variables that are free to be implicitly existentially quantified
(inside of the universal quantification of functions). For example, if Y is a free variable
and x is a nullary function, then the formula x = Y means for all interpretations of x
there exists a value for Y such that x = Y . This particular formula is valid.

Thus, once we have eliminated modalities and non-nullary functions, we are left
with a sequent that is equivalent to a formula in the first-order theory of real closed
fields. This is a decidable theory. Note that there is a subtle distinction here—first-order
logic over the reals, with uninterpreted functions, is undecidable. However, first-order
arithmetic, with only the rigid arithmetic functions, is decidable. Therefore, when we
have reached this point, we invoke a decision procedure for this theory.

5 Proving in KeYmaeraD

In order to make use of the above proof calculus, we have implemented KeYmaeraD, a
new theorem prover. KeYmaeraD’s design is inspired by the LCF approach to theorem
proving. At any given time there is a tree called the proof state, which the user is trying
to build into a proper proof. Each node in the tree represents a proof goal (i.e. a sequent).
The only way the user has of changing the proof state is to apply one of the proof rules,
as pictured in Figure 3. Applying a proof rule to a goal does one of three things:

1. fails, in which case the proof state is left unchanged,
2. succeeds in closing the goal,
3. breaks the goal into one or more conjunctive subgoals.

Fig. 3. Application of proof rules to nodes (the circles) leads to and-branching (the squares).

One way in which KeYmaeraD differs from many LCF-style provers is that it al-
lows or-branching on the proof state itself, rather than only at the level of tactics. (We
will discuss tactics later.) This allows the user to explore multiple possible proofs si-
multaneously, as pictured in Figure 4. If any or-branch successfully closes, KeYmaeraD
automatically marks the others as irrelevant, as pictured in Figure 5.

Fig. 4. Application of different rules at the same
node leads to or-branching, shown here as circle
nodes with two children.

Fig. 5. Closing an or-branch.

The typical strategy we use to try to prove a QdL formula in KeYmaeraD is as
follows: We want to use the proof rules to get rid of modalities and the indices. Then
we will be left with arithmetic, which is decidable. For dealing with the QHPs in the
modalities, we have found that it often suffices to work from the outside in, as discussed

in the previous section. In this way, we do not have to think about which rule to apply.
The hard part in this phase is choosing invariants for loops and differential equations
(if they do not have symbolic solutions; see [26]). The or-branching is useful for trying
different invariants and remembering why particular branches fail to close.

Next, we get rid of indices. The hard part here is choosing instantiations. If our
goal has no modalities and no indices, we can pass it to the arithmetic backend. This
procedure will return asynchronously and KeYmaeraD will appropriately update the
proof state to reflect its success or failure.

One key observation is that giving the arithmetic solver too much information can
cause it to take too long (even by > 3 orders of magnitude). We often need to decide
what parts of the sequent to include. A common pattern in our workflow is the follow-
ing. We let the arithmetic decision procedure work on a sequent as soon as we have
gotten rid of modalities and indices. In the meantime, we start an or-branch that hides
believed-to-be-irrelevant formulas in the sequent before again invoking the procedure.
Sometimes the original call returns before we even get to making a second call. Some-
times the second call returns immediately and makes the first call irrelevant.

6 Strategy Language

Using KeYmaeraD to apply proof rules one by one—a task that is already much easier
than manipulating QdL formulas on paper—quickly becomes tedious. To increase the
user’s power, we introduce tactics, which are a way to script proof search. Our ultimate
aim is to allow QdL theorem proving to be as automated as possible. We envision that
future versions of KeYmaeraD will be able to perform successful proof searches that
take on the order of days or weeks using a cluster of tens or hundreds of computers
running the arithmetic backend. Carefully designed tactics should provide a modular
way to work toward this aim.

KeYmaeraD has an embedded language of base tactics and tactic-combinators (“tac-
ticals” in the jargon). Tactics can be built from provided tactics. We also allow tactics
to use arbitrary code in the Scala language, which is the implementation language of
KeYmaeraD. In this latter case, tactics can read and do whatever analysis they like on
the entire proof state. In keeping with our LCF-style design, the only way that a tac-
tic can change the proof state, however, is to apply proof rules. Hence, tactics are not
soundness-critical, only important for completeness.

The type of a tactic is as follows:

Node→ Option[List[Node]]

A tactic takes a node of the proof state. It does some computation that might have
effects on the proof state. Then, it either returns None, signaling failure, or it succeeds
and returns a list of nodes. Note that this success does not necessarily signify that the
tactic has proved any particular goal—it just means that the tactic did what it was meant
to do on this node. The list of returned nodes is intended to be used for the composition
of tactics. A typical mode of use is for this list to be a conjunctive list of subgoals— if
they are all valid then the original sequent is valid. However, the soundness of the sys-
tem does not depend on tactics being used only in this way. Indeed, the tactic arithT,

as explained below, does not follow this pattern. Some common tactics and tactic com-
binators are shown in Figure 6.

Tactics
nilT Always fails.
unitT Always succeeds, returning the given node (no-op).
tryruleatT(rl,pos) Tries to apply the rule rl at the position pos.
tryruleT(rl) Tries to apply the rule rl at all positions until it succeeds.
tryrulepT(rl,prd) Tries the rule on a top-level formula where the predicate is true.
Tactic Combinators
eitherT(t1,t2) First tries t1. Upon failure, tries t2.
composeT(t1,t2) Tries t1 and then, upon success, applies t2 to all the returned nodes.
repeatT(t) Tries t until it fails, returning the result of the final success.
branchT(t,ts) Tries t. Upon success, maps the returned nodes to ts.

Fig. 6. Tactics and Tactic Combinators

6.1 Example: Instantiation

Here we explain one kind of tactic that we have found useful. Suppose we have several
formulas with universal quantifiers on the left in our sequent. To make use of these
formulas, we will need to use the (∀L) rule, which instantiates the formulas. We may
want to think carefully about what terms we will use for the instantiations. If so, we
might, e.g. use a tactic that looks for formulas of the form i = j uses these matched terms
to instantiation. At the other extreme, we may just want to instantiate the quantified
formulas with any and all terms that could possibly make sense. (This is often feasible
for sorts other than the real numbers, where no functions are predefined and the only
relation is equality.) This is often useful in sequents that are light on arithmetic. But
exhaustive instantiation quickly chokes the arithmetic solvers. Tactics that take either
of these tacks are used heavily in our case study.

6.2 Arithmetic

The decision procedure for arithmetic returns asynchronously. We have a tactic called
arithT that fails if the goal cannot be passed to the procedure. (This happens if there are
any modalities or indices left.) Otherwise it succeeds, returning the empty list. When
the procedure returns with a result, KeYmaeraD will automatically update the proof
state to reflect the new information. To better understand this protocol, consider the
composed tactic eitherT(arithT, myOtherTactic). If arithT fails, then we need
to continue to work on the sequent to get rid of modalities or indices. Therefore, in
that case we continue with myOtherTactic. Otherwise, we do not need to do anything
other than wait for the decision procedure to return. So the tactic succeeds, even if the
procedure eventually returns “false.”

6.3 Input Formulas

Some important proof rules such as (∗) are parametrized by a formula. Because of our
renaming method for dealing with assignments, sometimes it is impossible for the writer
of a proof script to know in advance what name some functions will have when such a
rule needs to be applied. Therefore, we provide a unification function unify that can
be invoked in tactics. The result of unify(fm1,fm2) is either failure or a substitution
function which, when applied to fm2 will return fm1. Note that we do not use unify to
synthesize invariant formulas, we merely use it to get a handle on formulas as they shift
names.

7 Case Study

In this section we present a mechanized, formal verification of a distributed adaptive
cruise control and automatic braking system as a complex case study of the KeYmaeraD
theorem prover. Major initiatives have been devoted to developing safe next-generation
automated car control systems, including the California PATH project, the SAFESPOT
and PReVENT initiatives, the CICAS-V system, and many others. Chang et al. [4], for
instance, propose CICAS-V in response to a report that crashes at intersections in the
US cost $97 Billion in the year 2000.

Providing a formal verification of safety-critical cyber-physical systems is vital to
ensure safety as the public adopts these systems into daily use. However, before KeY-
maeraD, formal verification of large-scale, distributed, hybrid systems was only pos-
sible manually. Manual proofs not only require ample skilled man-power, but are also
prone to errors. Applying the powerful verification methods of QdL to a broad range
of distributed hybrid systems is not possible without automation and mechanization,
which KeYmaeraD provides.

In this section, we present the first semi-automated and fully mechanized proof of
an arbitrary number of cars driving under distributed controllers along a straight lane.

Modeling Model 1 is a QHP for an arbitrary number of cars following distributed, dis-
crete and continuous dynamics along a straight lane. In addition, the model allows cars
to appear and disappear at any time and in any safe location, simulating lane changes.
The discrete control consists of three possible choices, modeled as a nondeterminis-
tic assignment in ctrl(i); see line (3). Braking is allowed at all times, and is the only
option if certain safety constraints are not met. Car i may accelerate only if the con-
straint Safeε(i) holds, meaning that the cars in front of car i are far enough away for
car i to accelerate for at least ε time units. Here, ε represents the upper bound on
sensor/communication update delay. Additionally, if the car is stopped, it can always
continue to stand still.

Every car on the lane is associated with three real values: position, velocity, and
acceleration. Since cars may also appear and disappear, we add a fourth element: ex-
istence. The existence field is a bit that flips on (

∃

(n) B 1) when a car appears on the
lane and off (

∃

(n) B 0) when a car disappears. Any number of cars may disappear from
the road (simulating merging into an adjacent lane or exiting the highway) at any time.

Model 1 Local highway control (lhc)

lhc ≡ ((ctrln; dynn)∗ ∪ delete∗ ∪ create∗)∗ (1)

ctrln ≡ ∀i : C a(i) := ∗; ?(∀i : C

∃

(i) = 1→ ctrl(i)) (2)

ctrl(i) ≡ a(i) = −B ∨ (Safeε(i) ∧ a(i) = A) ∨ (v(i) = 0 ∧ a(i) = 0) (3)

Safeε(i) ≡ ∀ j : C x(i) ≤ x(j) ∧ i , j→ (4)

x(i) +
v(i)2

2B
+

(A
B

+ 1
) (A

2
ε2 + εv(i)

)
< x(j) +

v(j)2

2B
(5)

dynn ≡ (t B 0; ∀i : C {dyn(i)}) (6)

dyn(i) ≡ x(i)′ = v(i), v(i)′ = a(i), t′ = 1 & (t ≤ ε ∧ (

∃

(i) = 1→ v(i) ≥ 0)) (7)

delete ≡ n B ∗; ?(

∃

(n) = 1);

∃

(n) B 0 (8)

create ≡ n B new; ?(∀i : C E(i) = 1→ (i � n) ∧ (n � i)) (9)

(n B new) ≡ n B ∗; ?(

∃

(n) = 0 ∧ v(n) ≥ 0);

∃

(n) B 1 (10)

(i � n) ≡ (x(i) ≤ x(n) ∧ i , n)→
(
x(i) < x(n) ∧ x(i) +

v(i)2

2B
< x(n) +

v(n)2

2B

)
(11)

To accomplish this, the model non-deterministically chooses an existing car and flips
its existence bit to off; see line (8). Modeling cars merging into the lane is almost as
simple; however, before a car can merge, it must check that it will be safely in front of
or behind all previously existing cars on the lane; see line (9).

This model is similar to the lhc model proved manually in [16], but with a few
simplifications. First, we assume in line (4) that the cars have omniscient sensing, i.e.,
each car receives data about the position and velocity of all the cars on the lane, as
opposed to just the car directly ahead. Second, we assume that when the car accelerates,
it applies maximum acceleration, and when it brakes it applies maximum braking, rather
than choosing from a bounded range of acceleration and braking forces.

Verification Now that we have described a suitable model for a lane of cars in a high-
way (Model 1), we identify a set of safety requirements and prove that the model never
violates them. Safety verification must ensure that, at all times, every car on the road is
safely behind all the cars ahead of it in its lane. We say that car i is safely following car
j if (i � j), as defined in line (11). To capture the notion that the cars should be safe at
all times, we use the [α] modality, as shown in Proposition 1.

Proposition 1 (Safety of local highway control lhc). Assuming the cars start in a
controllable state (i.e. each car is a safe distance from the cars ahead of it on the lane),
the cars may move, appear, and disappear as described in the (lhc) model, then no
cars will ever collide. This is expressed by the following provable QdL formula:

(∀ i : C ∀ j : C (

∃

(i) = 1 ∧

∃

(j) = 1)→ ((i � j) ∧ v(i) ≥ 0 ∧ v(j) ≥ 0)) →
[lhc](∀i : C ∀ j : C (

∃

(i) = 1 ∧

∃

(j) = 1)→ ((i � j) ∧ v(i) ≥ 0 ∧ v(j) ≥ 0)))

Our final tactic script is about 400 lines. At the end of its execution, the proof state
has 1134 nodes. On a MacBook Pro with a 2.86GHz Core 2 Duo processor, using Math-

ematica 7.0.0 for the real arithmetic backend, the proof takes 40 seconds to complete
with one worker, and 33 seconds with two workers. This includes the time it takes to
compile and load the tactic script— approximately 13 seconds.

In the course of developing this proof, we discovered that the endpoint rule for
differential equations suffices for this formula—a simplification which greatly increases
the computational efficiency of our proof.

Because KeYmaeraD uses a tactics-based approach rather than real-time interac-
tions, verification requires fewer human inputs and lends itself to reusability. The two
car case for this model, for instance, required far fewer tactics when implemented in
KeYmaeraD than the hundreds of human-interactions needed by KeYmaera. The tac-
tics were also robust enough to be applied to multiple proof branches. Moreover, we
initially proved a version that omitted x(i) < x(j) in the invariant. Then, after realizing
that the invariant did not obviously imply the safety condition we wanted, we added
this condition. With only minimal changes to the tactics script, the updated model was
easily verified.

The manual proof presented in [16] relies heavily on modular proof structure prin-
ciples to get the proof complexity to a manageable size. With KeYmaeraD, we can
improve on that modular structure by employing modular proof tactics. This approach
still simplifies the resulting proof structure as before, but, unlike dedicated modularity
arguments, it also maintains better robustness to changes in the model.

8 Conclusions and Future Work

We introduce automation techniques for theorem proving for distributed hybrid systems
using quantified differential dynamic logic. We have implemented KeYmaeraD, the
first formal verification tool for distributed hybrid systems. As a major case study in
KeYmaeraD, we have formally verified collision freedom in a sophisticated distributed
car control system with an unbounded (and varying) number of cars driving on a straight
lane.

References

1. Althoff, M., Althoff, D., Wollherr, D., Buss, M.: Safety verification of autonomous vehicles
for coordinated evasive maneuvers. In: IEEE IV’10. pp. 1078 – 1083 (2010)

2. Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.H., Nicollin, X., Olivero,
A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems. Theor. Comput. Sci.
138(1), 3–34 (1995)

3. van Beek, D.A., Man, K.L., Reniers, M.A., Rooda, J.E., Schiffelers, R.R.H.: Syntax and
consistent equation semantics of hybrid Chi. J. Log. Algebr. Program. 68(1-2), 129–210
(2006)

4. Chang, J., Cohen, D., Blincoe, L., Subramanian, R., Lombardo, L.: CICAS-V research on
comprehensive costs of intersection crashes. Tech. Rep. 07-0016, NHTSA (2007)

5. Chee, W., Tomizuka, M.: Vehicle lane change maneuver in automated highway systems.
PATH Research Report UCB-ITS-PRR-94-22, UC Berkeley (1994)

6. Damm, W., Hungar, H., Olderog, E.R.: Verification of cooperating traffic agents. Interna-
tional Journal of Control 79(5), 395–421 (May 2006)

7. Dao, T.S., Clark, C.M., Huissoon, J.P.: Optimized lane assignment using inter-vehicle com-
munication. In: IEEE IV’07. pp. 1217–1222 (2007)

8. Deshpande, A., Göllü, A., Varaiya, P.: SHIFT: A formalism and a programming language for
dynamic networks of hybrid automata. In: Hybrid Systems. pp. 113–133 (1996)

9. Frehse, G.: PHAVer: algorithmic verification of hybrid systems past HyTech. STTT 10(3),
263–279 (2008)

10. Hall, R., Chin, C.: Vehicle sorting for platoon formation: Impacts on highway entry and
troughput. PATH Research Report UCB-ITS-PRR-2002-07, UC Berkeley (2002)

11. Henzinger, T.A., Nicollin, X., Sifakis, J., Yovine, S.: Symbolic model checking for real-time
systems. In: LICS. pp. 394–406 (1992)

12. Hespanha, J.P., Tiwari, A. (eds.): Hybrid Systems: Computation and Control, 9th Interna-
tional Workshop, HSCC 2006, Santa Barbara, CA, USA, March 29-31, 2006, Proceedings,
vol. 3927. Springer (2006)

13. Howe, D.J.: Automating Reasoning in an Implementation of Constructive Type Theory.
Ph.D. thesis, Cornell University (1988)

14. Jula, H., Kosmatopoulos, E.B., Ioannou, P.A.: Collision avoidance analysis for lane changing
and merging. PATH Research Report UCB-ITS-PRR-99-13, UC Berkeley (1999)

15. Kratz, F., Sokolsky, O., Pappas, G.J., Lee, I.: R-Charon, a modeling language for reconfig-
urable hybrid systems. In: HSCC. pp. 392–406 (2006)

16. Loos, S.M., Platzer, A., Nistor, L.: Adaptive cruise control: Hybrid, distributed, and now
formally verified. In: Butler, M., Schulte, W. (eds.) FM. LNCS, Springer (2011)

17. Lygeros, J., Lynch, N.: Strings of vehicles: Modeling safety conditions. In: HSCC (1998)
18. Manna, Z., Sipma, H.: Deductive verification of hybrid systems using STeP. In: HSCC. pp.

305–318 (1998)
19. Matthews, D.C.J., Wenzel, M.: Efficient parallel programming in Poly/ML and Isabelle/ML.

In: DAMP (2010)
20. Meseguer, J., Sharykin, R.: Specification and analysis of distributed object-based stochastic

hybrid systems. In: HSCC. pp. 460–475 (2006)
21. Paulson, L.C.: The foundation of a generic theorem prover. Journal of Automated Reasoning

5 (1989)
22. Platzer, A.: Differential dynamic logic for hybrid systems. J. Autom. Reas. 41(2), 143–189

(2008)
23. Platzer, A.: Differential-algebraic dynamic logic for differential-algebraic programs. J. Log.

Comput. 20(1), 309–352 (2010)
24. Platzer, A.: Logical Analysis of Hybrid Systems: Proving Theorems for Complex Dynamics.

Springer, Heidelberg (2010)
25. Platzer, A.: Quantified differential dynamic logic for distributed hybrid systems. In: Dawar,

A., Veith, H. (eds.) CSL. LNCS, vol. 6247, pp. 469–483. Springer (2010)
26. Platzer, A.: Quantified differential invariants. In: Frazzoli, E., Grosu, R. (eds.) HSCC. ACM

(2011)
27. Platzer, A., Quesel, J.D.: KeYmaera: A hybrid theorem prover for hybrid systems. In: Ar-

mando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR. LNCS, vol. 5195, pp. 171–178.
Springer (2008)

28. Rounds, W.C.: A spatial logic for the hybrid π-calculus. In: HSCC. pp. 508–522 (2004)
29. Stursberg, O., Fehnker, A., Han, Z., Krogh, B.H.: Verification of a cruise control system

using counterexample-guided search. Control Engineering Practice (2004)

9 Erratum (January 20, 2012)

In the published version of this paper, the (*) proof rule in Figure 1 incorrectly includes
Γ and ∆ in all three premises. That version of the rule is unsound. KeYmaeraD imple-
ments the correct version of the rule, so the results of the paper are unaffected.

