
Banyan: A framework for distributing tree-structured
computation

15712: Advanced and Distributed Operating Systems, Spring 2010

Chris Martens Michelle Mazurek David Renshaw

ABSTRACT
We present a framework for writing distributed programs
that solve tree-structured search problems. Our design deci-
sions are made primarily based on our development of a par-
allel theorem prover, which demonstrates our target use case
as a program that performs search with recursive branching.
Using this example as a guidepost, we have strived to invent
an interface general enough to capture common patterns in
recursive programming, powerful enough to make efficient
use of a cluster setting, and simple enough for a programmer
to easily adapt sequential solutions to it. Our implementa-
tion addresses the low-level problems of resource allocation,
communication, and scheduling, leaving the programmer to
define only the work distribution strategy and what to do
with values returned by recursive calls.

1. INTRODUCTION
In recent years, several frameworks have been developed
to help programmers take advantage of parallel execution
within a cluster without requiring them to understand all the
nuances of task distribution, network communication, fault
tolerance, and other issues. Many of these frameworks [1, 6]
are tailored to inherently data-parallel applications such as
web indexing and data mining. Our work explores a com-
mon class of applications that do not match well with these
data-parallel solutions.

Consider, for example, a divide-and-conquer algorithm:

fun divide_conquer (problem) =

let

subproblems = divide(problem)

subanswers = map divide_conquer subproblems

answer = combine subanswers

in

answer

The definitions of divide and combine are application-
specific, and they encompass a variety of search problems,
such as decision trees, functional program interpretation,
and theorem proving. Critically, such an algorithm calls
itself recursively on its subproblems, generating an unknown
amount more work – the branches of the tree may be very
deep, or they may return immediately. The programmer
does not know a priori how to divide the task into subtasks,
so the MapReduce model does not apply. Our aim is to
facilitize this kind of programming pattern in a distributed
setting.

A natural way to parallelize such a problem is to assign
a goal to one process, called a worker, and send all sub-

problems it creates to separate, possibly remote, processes.
These processes need to communicate the fruits of their la-
bor to the parent so that it can combine them into a cu-
mulative answer. Also, the solution to a subproblem may
influence the necessity or efficiency of others, so we may de-
sire the ability for a parent to kill threads if they become
unneeded and to propagate subtree information if it can ben-
efit efficiency.

Some implementation questions immediately arise:

• When a process creates new subproblems, how should
they be divided among workers?

• Should workers pull from a shared job queue or have
jobs pushed to them by a parent worker?

• How do we decide when it is worth it to ship a job to
another host?

• Once jobs are assigned, how should they be scheduled?
What metric should determine their priority?

We answer these questions with our design and imple-
mentation of Banyan, a framework designed to facilitate
distribution of tree-structured search applications. Banyan
abstracts from the application programmer the need to con-
sider where nodes are processed, as well as how to effectively
balance them across the available machines in a cluster. The
application programmer simply specifies how nodes are gen-
erated and coalesced, along with priority tickets that express
the relative importance of various nodes. Banyan distributes
these nodes across the cluster, taking into consideration the
balance between the benefit of using more processing power
and the cost of network transit overhead.

Our results consist of a working prototype written in Scala
that achieves reasonable speedup proportional to the num-
ber of indivisble large chunks of work with the addition of
extra processors. We argue that these results and the flexi-
bility of our design suggest Banyan can be useful for a gen-
eral class of tree-structured problems.

The rest of this paper is organized as follows: in Section 3
we discuss related work in the areas of parallelization frame-
works and theorem proving; in Section 4 we give an overview
of the programmer interface and system architecture; in Sec-
tion 5 we describe the Scala methods the programmer im-
plements and uses to interface with Banyan; in Section 6 we
discuss details of Banyan’s implementation; in Section 7 we
describe our case study theorem proving application; in Sec-
tion 8 we provide results from some preliminary evaluation
of Banyan; in Section 9 we discuss future work improving
and extending Banyan and conclude.



2. BACKGROUND: THEOREM PROVING
Theorem proving is our chosen avenue for investigating

the distribution of tree-structured problems. To motivate
our design decisions and familiarize the reader with some
terminology, we now explain the idea of theorem proving in
light of the parallelization problem.

2.1 And/or parallelism
A theorem prover takes as input a goal, i.e. a statement

whose truth is unknown, and returns a proof or refutation
of it. A proof of a goal G is a tree with root G and subtrees
T1 . . . Tn which are proofs of goals G1 . . . Gn (called subgoals
of G), where there exists an inference rule allowing one to
conclude G from G1 . . . Gn. It is important to the generality
of our design that we wish to return proofs, not merely yes-
or-no answers. In pseudocode:

fun prove (goal) : proof option =

for each rule that applies:

let

proofs = map prove (premises(rule, goal))

in

if all proofs are non-null,

return Proof(rule, proofs)

return null

The structure of this solution is more intricate than the
simple divide-and-conquer algorithm. In particular it is worth
observing that the results of iteration over the rules is treated
disjunctively: as soon as we know one of them works, we
can return – whereas the results of the recursive calls to
prove() are treated conjunctively: we require that all of
them be valid. Both of these work divisions can be par-
allelized, and we classify them distinctly as or-parallelism
and and-parallelism. Throughout this exposition we will re-
fer to and-nodes and or-nodes to refer to nodes that should
be and-parallelized and or-parallelized, respectively. These
different types of parallelism are relevant when we consider
scheduling priority: when an or-node returns with a proof,
its parent should indicate that the other children are irrele-
vant, and similarly for a refutation of an and-node.

What inference rules exist is specific to the logical system
for which the proof search is implemented, and different rules
(or sets of rules) suggest different search strategies. For ex-
ample, in propositional logic, the search space is finite: all
goals have a finite number of finite sets of subgoals. In first-
order logic, propositions can quantify over terms of which
there may be (countably) infinitely many. In linear logic [4],
where propositions behave like resources rather than knowl-
edge in that they can be consumed, whether a proof will be
found depends on how resources are divided among subgoals.
Well-known solutions to proof search in these systems em-
ploy vastly different strategies that suggest a healthy range
of use for us to target. We specifically implement an ap-
plication for dynamic logic theorem proving, the details of
which (and our reasons for choosing it) are described below.

2.2 Dynamic Logic Theorem Proving
Dynamic logic [11] is a language for formally specifying

properties of hybrid systems, which have discrete and con-
tinuous components to reason about, such as control systems
for cars or trains. The current state of the art in dynamic
logic theorem proving is represented by KeYmaera [14], a
theorem prover for differential dynamic logic which has been

successful for several applications [15, 13]. KeYmaera builds
a proof tree in a step-by-step manner without backtracking.
To decide which rule to use on a particular proof obligation,
KeYmeara applies a user-specified strategy which may take
into account arbitrary global data from the proof tree. The
implementation is sequential and due to some early design
decisions it cannot be easily mapped to parallel workers.
Moreover, or-branching is rather awkward to express due to
the lack of backtracking.

Theorem proving for differential dynamic logic has sev-
eral properties that make it particularly interesting to try
to distribute. One, it is often the case that a proof find an
invariant. There may infinitely many possibilities to choose
from, and the proof just needs to find one that works—
meaning that the recursive subcomputation based on that
invariant succeeds. This means that we may have infinite
or-parallelism.

Another important property is that the leaves of the proof
search are expensive calls to a decision procedure for real
arithmetic—essentially a black box that might take any-
where from a fraction of a second to many days to return. If
there are several or-parallel branches working on their leaves,
it is important for a theorem prover not to spend too much
time bogged down in any one call of the procedure.

3. RELATED WORK

3.1 Distributed parallelization frameworks
Many systems have been designed to provide frameworks

for parallelizing work and taking advantage of the resources
provided by clusters of computers.

MapReduce is a higher-level framework that allows devel-
opers to distribute data-parallel computations across a clus-
ter of machines. Computation is divided into two phases:
the map phase that processes key-value pairs into an inter-
mediate state and the reduce phase where related interme-
diate values are merged. One master node distributes map
and reduce jobs among the other nodes, accounting for data
locality when possible and restarting jobs in progress if a
failure occurs. Although MapReduce provides a conceptu-
ally simple framework for parallelization, its restrictive data
flow model means it is not appropriate for a task like ours,
which involves tree-structured computation problems as well
as significant data sharing among jobs.

An alternative parallelization framework is Pig Latin, a
data processing language implemented on top of the Hadoop
map-reduce framework [10]. Pig Latin provides a compro-
mise position for handling large data sets between declar-
ative SQL queries and a procedural map-reduce approach.
Pig Latin contains query-like operations like filter and group,
but because each operation is engineered to specify only one
data transformation at a time, they can be combined in
a procedural way more familiar to many experienced pro-
grammers, while providing a more flexible data flow to pro-
grammers than a basic map-reduce framework. Pig Latin
programs are compiled into sets of map-reduce jobs that
can then rely on Hadoop for parallelism, load-balancing, and
fault-tolerance, at the cost of some additional overhead from
shoehorning operations into this data flow. Although Pig
Latin is more flexible than basic map-reduce, it still targets
more strictly data-parallel applications than our framework
will support.

Dryad is another parallelization framework that attempts



to provide for more flexible data flow than MapReduce [6].
Unlike Pig Latin, Dryad is completely independent of the
map-reduce architecture; instead, Dryad requires program-
mers to specify the data flow of each program as a directed
acyclic graph. Unlike MapReduce jobs, which must have
exactly one input and one output set, Dryad allows an ar-
bitrary number of inputs and output at each graph vertex.
Dryad does not, however, directly support the dynamic tree-
based application structure we target, and does not support
the extensive inter-job communication our target applica-
tions require.

3.2 Distributed shared memory and message
passing

Linda is a distributed communications mechanism designed
for efficient message passing among nodes [3]. Linda defines
a theoretically infinite global tuple-space buffer. Nodes can
atomically add to, read from, and remove tuples from the
buffer in order to communicate. Message types are specified
using matching tuple fields; no specific addressing or rout-
ing is required. Our implementation uses a system based on
Linda for its shared memory component.

Another mechanism for enabling a global data store is
memcached, which provides distributed in-memory caching
and is often used to relieve database load for Web appli-
cations [2]. memcached servers are independent key-value
stores distributed among several hosts. Clients use one layer
of hashing to compute which server a value can be written
to or looked up in; within a server, a second layer of hashing
is used the locate the value. Using this framework, clients
can parallelize their lookup requests across the servers, and
multiple lookups to the same server can be coalesced to re-
duce traffic. Individual servers never need to communicate
with each other, and a server that fails simply reads as a
cache miss.

Chord can also be used for distributed data storage [16].
Chord uses consistent hashing [7] to distribute keys among
nodes in a balanced and fault-resistant fashion. Using the
Chord protocol, the correct node for a given key can be
located, in a peer-to-peer manner, by asking increasingly
closer nodes in turn.

The Message-Passing Interface (MPI) is a message-passing
API standard for distributed communication [8]. MPI sup-
ports both point-to-point and collective communication among
processes organized into ordered sets called groups. MPI
is a basic, low-level distributed communications interface;
it does not provide higher-level features like built-in paral-
lelization, load balancing, or fault tolerance that we want to
support.

4. SYSTEM OVERVIEW
In this section we describe the major features of Banyan’s

design.
Banyan is designed to minimize the work done by the pro-

grammer to parallelize his or her application. Tree-structured
computation can be conceptualized as a recursive mech-
anism for dividing a problem into subproblems and then
combining the results. Banyan recognizes this abstraction
by requiring the programmer to implement two primary
functions: one to generate subproblems and one to pro-
cess incoming answers from children. The programmer must
also write secondary functions supporting Banyan’s coopera-
tive scheduling paradigm. Optionally, the programmer may

!"

#" #"

$" $" $"
%" %"

&" &"

'"

'"

'"

("

)"

*"

*"

+,,-./012,-" +3/402"

5,-64-" 5,-64-"5,-64-"

*"

781-4."94:,-;"

%"

Figure 1: Overview of Banyan architecture. (1) When

workers start up, they register with the coordinator. (2)

When a client has a job to submit, it asks the coordi-

nator where to send it, and the coordinator supplies the

address of a worker. (3) The client submits the root

node of the job to a worker. (4) When workers contain-

ing splittable subtrees exceed their ticket targets, they

ask the coordinator for the address of a remote worker

with free resources. (5) Workers distribute subtrees to

remote workers as selected by the coordinator. (6) When

nodes complete, their results are optionally stored in

shared memory. (7) Before new nodes are created, they

are checked against the shared memory, if enabled, to

see if they have already been resolved. (8) When nodes

complete, their parents are notified, either locally or re-

motely. (9) When the entire job is complete, the client

is notified.

specify an additional function for generic message handling
between related nodes. The programmer is also responsi-
ble for providing a subproblem identifier, which is used for
indexing into an optional shared memory feature. The pro-
grammer meets these requirements by subclassing TreeNode,
the main unit of computation within Banyan.

Figure 1 presents an overview of the Banyan architecture,
which is detailed in the following subsections. First, how-
ever, some clarification of terminology: A node is one deci-
sion point within a tree-structured problem. The problem
starts with one node, then expands as that node creates child
nodes and those nodes create their own children. A worker is
one instance of a Banyan process, which may manage many
local nodes. A host is one independent machine within the
network. More than one worker may run on the same host.

4.1 Workers
A worker is the basic Banyan process. Workers are respon-

sible for managing and scheduling local nodes according to
each node’s assigned tickets. Each node is allowed to run
for a short timeslice proportional to its ticket value. (In the
trials described below, each ticket is worth 1 millisecond per
scheduling round and each worker has a target of 1000 tick-
ets.) When a worker determines that it has too much work
to do locally, it selects a subtree and passes that subtree to
another worker with a lighter load.

Workers also manage the basic Banyan infrastructure on
behalf of applications. Workers enable the Banyan abstrac-
tion that each node can interact directly with its parents



and children, without any knowledge of the network or node
distribution. Workers ensure that messages from one node
to another — for example, to donate tickets, to instruct a
child to abandon work, or to inform a parent that a child has
completed — are delivered properly, regardless of whether
the destination node is local or remote. One worker au-
tomatically exports nodes to another, remote worker when
the scheduler detects that the load on the current worker
has become too heavy; this move is transparent to the client
application.

4.2 Coordinator
The coordinator is a shared central server that manages

the workload across workers. Our system is designed to min-
imize communication with the coordinator, so as to prevent
it from becoming a bottleneck, while still allowing the con-
venience of one central point of management.

When workers come online, they register with the coor-
dinator, which maintains a list of available workers. If a
worker leaves the system cleanly, it sends a de-registration
message to remove itself from the list. When a worker de-
cides a given subtree has grown too expensive to continue to
process locally, the worker sends a message to the coordina-
tor to request a remote worker. The coordinator determines
whether an appropriate remote worker is available, and if so
returns its address to the requesting worker. The requesting
worker can then pass the subtree to the remote worker to
be processed there.

As nodes are assigned to various workers, tickets are trans-
ferred among nodes, and nodes complete, workers periodi-
cally update the coordinator with their current ticket loads.
In this way, the coordinator always has relatively fresh knowl-
edge of the comparative load across workers. Some lag in
this information can be tolerated, because the load balanc-
ing throughout the system is always approximate.

The coordinator can be run on the same host as one or
more workers, or it can run independently on its own host.

4.3 Client
The application programmer is responsible for writing a

client application to kick off execution of a tree-structured
search computation. The client application must generate a
root tree node representing the problem starting point. Us-
ing Banyan infrastructure, the client submits the root node
to an initial worker and processing begins. Children of the
root node are scheduled and assigned normally within the
Banyan framework.

4.4 Shared memory
To make use of shared memory, the application program-

mer need only extend a different interface and supply a key
for indexing. The key should be something unique to a prob-
lem instance, but not to a node, so that Banyan can match
on it to avoid duplicating work. Under the hood, Banyan
stores problem instances in the Fly space when they regis-
ter and updates their status when the node working on it
changes. It records the value returned for it so that when
future nodes register with the same problem instance, it can
tell the node to return that value to the parent immediately.

5. USING BANYAN
The following subsections describe how programmers can

develop applications using Banyan.

5.1 TreeNode interface
The TreeNode interface requires application programmers

to implement five methods.

workHere(): Unit.
This method is called whenever a node is allocated a

timeslice. This method should contain the node’s internal
processing, along with instructions to create new children
as needed. This function will be called from the beginning
each time the node gets a timeslice, While this method is
running, any of the following four methods may be called
concurrently.

childReturned(child: Int, childStatus: Status): Unit.
This method will be called when a child node returns to its

parent, either because it has completed its work or has given
up. Arguments to the function include the child’s ID and
its completion status. The programmer can use this method
to update a node’s state with knowledge of its children’s
results, allowing workHere() to make decisions using that
information in the future.

timeout(): Unit.
This method is called when a node’s timeslice runs out.

The programmer should use this method to exit from what-
ever work is being done in the workHere() method, either
by saving state of a partially completed task, or by killing
an uninterruptible task. In the latter case, the programmer
may want to increase the timeSlicesToUse field.

abort(): Unit.
This method will be called when a node’s status is changed

to Irrelevant. The programmer should use this method to
gracefully exit any work that is being executed.

handleMessage(msg: Any): Unit.
This method will be called if a node receives a message

from its parent or one of its children. The main Banyan
messages — transferring tickets and reporting completion
— are handled separately, but this utility provides a way
for the programmer to build in additional communication
beyond what Banyan explicitly supports. This method is
not used in our theorem proving application.

5.2 Utility methods of TreeNode
As part of implementing the TreeNode interface, appli-

cation programmers have access to a set of utility methods
within the TreeNode class that invoke the Banyan infras-
tructure.

makeChildIrrelevant(child: Int): Unit.
Tell a child node that it can stop working.

makeOpenChildrenIrrelevant(): Unit.
Tell all children nodes that they can stop working.

returnNode(v: Any): Unit.
Indicate this this node’s computation is complete and give

the value that it should return.

checkTickets(): Tickets.
Learn how many tickets this node currently holds.



transferTickets(rel: Relative, rsrc: Tickets): Unit.
Donate some of the tickets at this node to a child or the

parent of this node.

checkStatus(): Status.
Learn the status of this node.

sendMessageTo(rel: Relative, msg: Any): Unit.
Send a message to a child or the parent.

newChild(childID: NodeID): Unit.
When a node constructs new nodes it can register them

as children using this method. The child will be put in the
nodeMap and added to the task queue.

statusLock.synchronized{ /* critical section */}.
Each node has a field called statusLock, which can be

used to guarantee that a critical section sees a consistent
view of its own status and its children’s status.

timeSlicesToUse: Int.
A node will change this field when it wants to save up

timeslices in order to avoid interrupting a long computation.
The default value is 1. When the scheduler reaches a node, it
increments a private field called timeSlicesSaved and only
lets the node run if timeSlicesSaved equals timeSlicesToUse.
In that case, it runs for the appropriate amount of time and
then sets timeSlicesSaved to zero.

5.3 Utility functions in BanyanPublic
The application programmer also has access to more gen-

eral utility methods within the BanyanPublic object.

getShortName(): String.
Return a short printable name that is unique to the cur-

rent worker, which may be useful for nodes that need to
create globally unique names, e.g. for fresh variables in a
theorem prover.

data_TreeNode(nd: TreeNode): String.
Dump an easily parsable textual representation of data

from the subtree rooted at nd, including the name of each
node, the amount of time spent there, its status, and its
return value.

5.4 Client interface
The application programmer must write a client applica-

tion that creates the root tree node and submits it to the
Banyan system. The client should operate as follows:

1. Call setCoordinator(addr: String, prt: Int): Unit

to register the location and port of the coordinator.

2. Call setLocalPort(prt: Int) to register the port
the client should use to communicate with Banyan.

3. Call getRootParent(): NodeID to create a stub“par-
ent node” for the root. The stub parent, which remains
at the client, provides the line of communication by
which computation results are returned.

4. Create an application- and problem-specific tree node
that encapsulates the problem to be solved and the

strategy for solving it. Use the RootParent stub as
the parent argument to the TreeNode’s construction.

5. Call startRoot(rootNode: TreeNode): Unit to sub-
mit the node to Banyan and begin execution.

Our sample theorem prover client takes input from a source
file describing the specific sequent to be proved, then creates
an OrNode (a theorem-prover implementation of a TreeN-
ode) based on that sequent.

6. IMPLEMENTATION
Banyan is implemented in Scala [9], an object-oriented

language built on the Java Virtual Machine, providing ex-
tensive support for functional programming. We selected
Scala for its concurrency libraries [5] and because we wanted
interoperability with some of our existing tools written in
Java and Scala.

6.1 Worker implementation
Most of the core functionality of Banyan is provided by the

workers. A worker has two threads of control: a listener and
a scheduler. The listener’s job is to wait for messages from
other workers, the coordinator, or the client. The scheduler’s
job is to loop through the task queue and cause work to get
done. The two actors communicate through a small number
of shared variables, primarily the node map and the task
queue.

6.1.1 Scheduling algorithm
The scheduler performs weighted round-robin cooperative

scheduling on the nodes that it owns. That is, in each round
each node gets to work for a timeslice proportional to the
number of tickets that it holds. After that time, the sched-
uler calls the timeout method of the node and waits for it
to yield control. If new nodes are created, they are added
at the end of the task queue.

If a node needs more than one timeslice to complete some
piece of indivisible work, it is allowed to save up timeslices
for future use. If a node receives a timeout and has to kill a
computation, it might save up twice as many timeslices for
the next try. It that still fails, it might save twice as many
again. Using this strategy, a node will never work more than
three times its minimum required time.

Banyan does not provide support for nodes that wish to
pause threads or processes between calls of workHere(). Al-
lowing a paused thread to persist between timeslices would
mean that no longer could any node be shipped off at any
time between timeslices, because paused threads are not se-
rializable. This could get in the way of the load balancing.
It would be interesting to investigate how allowing nodes to
be non-mobile would affect the performance of Banyan.

6.1.2 Node transfer strategy
Each worker keeps track of the total number of tickets

held by nodes that it owns and the target number of tickets
that the coordinator has indicated that this worker should
hold. The total minus the target is called the ticket surplus.

Periodically (once every five seconds for the runs docu-
mented in our evaluation section), the scheduler pauses be-
tween timeslices to assess the ticket situation at this worker.
If the surplus is negative, the scheduler sends an update to
the coordinator indicating its present total and target. If



the surplus is positive, the scheduler is responsible for find-
ing a suitable subtree to try to ship to another worker. To do
this, it first computes the total tickets held by and total time
spent on each local subtree. It then selects a subtree with
number of tickets approximately equal to the surplus and
with time-spent above a threshold. (Here we assume that
nodes which have required a lot of work in the past are less
likely to terminate quickly in the future.) It sends a message
to the coordinator indicating the number of tickets in this
subtree. It waits for a reply from the coordinator. The reply
could be “no” or it could give the address of a worker that
would be willing to accept the subtree. In the latter case the
scheduler ships off that subtree. The scheduler then updates
the coordinator on its ticket situation and then resumes its
scheduling loop. During this whole procedure the scheduler
holds a lock that prevents the listener from adding nodes or
tickets.

One might imagine that the best subtree to ship off would
be the one which will minimize the absolute value of the re-
sulting ticket surplus. That is not necessarily true. Consider
the following situation with four workers. Each worker has
a target of 1000 tickets. The root node starts with 4000
tickets. It creates three subnodes and donates 1333 tickets
to each. Assessment takes place. The worker can now either
ship off one of these nodes with 1333 tickets and be left with
a surplus of 1667 tickets, or it can ship off the whole tree and
be left with a deficit of 1000 tickets. If we go by absolute
value, this is better than shipping off a subtree. But clearly
shipping off the whole tree does not buy us anything.

We are still investigating improved metrics for the suit-
ability of a subtree (or possibly set of subtrees) to be shipped
off. The present version of Banyan uses a slightly modi-
fied version of the “lowest absolute value” metric described
above, favoring subtrees that will leave a surplus over those
that will leave a deficit.

6.2 Shared memory
We use the Fly Object Space [17] for sharing solutions

among subproblems. Fly is an implementation of Linda tu-
plespaces for Java and Scala objects. A Fly space is parame-
terized on a FlyEntry type for storing data, and it has three
main methods:

1. write(e:FlyEntry, timeout:Long): Writes e to the space
with a lease of timeout.

2. read(template:FlyEntry, timeout:Long): Returns a copy
of any object from the space which matches the tem-
plate at all non-null fields.

3. take(template:FlyEntry, timeout:Long): Removes an
entry matching the template and returns it.

We use the space as shared memory for the workers. Our
FlyEntry type consists of four fields: the node ID of a child,
a key indicating the problem it represents, its status, and an
optional return value (set to None until it returns).

When a node generates a child, we first create a template
matching on the key and the status Returned(). If any
nodes are successfully read, we tell the child to return im-
mediately with the value in the returned object. If no nodes
are read, we create a new FlyEntry with a Working() status
and place it in the Fly space.

When a node returns to its parent, it take()s the entry
matching its node ID, sets the status field to Returned(),

and sets the value field to whatever value it is about to
return to its parent.

In our current setup, we only ever really need to insert
nodes at the return to the parent, because no worker ever
uses information from objects with any status other than
Returned(). However, we have imagined a couple of exten-
sions to this use, described in 9.

A couple limitations of Fly emerged during our use of it.
For one thing, it does not seem to allow for infinite leases.
For another, we could not find sufficient documentation for
running it as a distributed store – currently the Fly server
runs on just one host.

7. CASE STUDY
In our case study we implemented a theorem prover for a

small fragment of differential dynamic logic using a simpli-
fied set of proof rules based on those found in [12]. For the
real-arithmetic backend we used our own implementation of
the Cohen-Hörmander algorithm.

The Banyan part of the prover consists of three imple-
mentations of the TreeNode interface: andNode, orNode, and
ArithmeticNode. The workHere() function for AndNodes
and OrNodes just creates the appropriate children, tranfers
tickets to them, and yields control. The workHere() func-
tion for ArithmeticNodes calls Cohen-Hörmander backend.
The timeout method of ArithmeticNode, sets a shared flag
that tells the backend to quit (it doesn’t save any state) and
doubles the value of timeSlicesToUse.

Here is a slightly simplified code sample from AndNode:

def childReturned(child: Int, v: ReturnType)

: Unit = v match {

case Proved(rl) =>

numOpenChildren -= 1

if(numOpenChildren <= 0)

returnNode(Proved(rule))

case GaveUp() =>

returnNode(GaveUp())

}

This says that if an AndNode learns that one of its children
has returned with a proof, then it will return if all the rest
of its children have already returned with a proof. If one of
its children returns indicating that it cannot find a proof,
then the AndNode returns indicating that it also cannot find
a proof.

8. EVALUATION
We evaluated Banyan using the differential dynamic logic

theorem prover application. We tested two example prob-
lems, one modeling the temperature of a water tank and
one modeling the height of a bouncing ball. For the water
tank example, we deliberately tested a bad hints problem
description that provides the prover with incorrect starting
invariants, leading it to try some expensive wrong paths be-
fore finding the correct proof.

All evaluations were run on four virtual machines running
Debian Lenny with 2 GB of memory and one virtual CPU
each. The virtual machines themselves were located on a
single Xen 3.4 host, a dual 2.66 GHz Intel Xeon E5430 quad-
core system with 16 GB of memory.



Completion time, in seconds

Test 1 Worker 4 Workers Speedup

Water tank, bad hints 2978 1213 2.4x
Bouncing ball (run 1) 209 50 4.2x
Bouncing ball (run 2) 147 62 2.4x

Table 1: Overall Banyan performance. Moving from
one to four workers decreased completion time by
varying degrees, based in part on the decomposition
of the problem. For tests using four workers, the
coordinator and client were each co-located with one
worker.

8.1 Performance
First, we compare the performance of Banyan with differ-

ent numbers of workers. Table 1 shows the completion time
for different problems, in seconds. For each example, we
tested configurations with one worker and with four work-
ers. In the four-worker configuration, the coordinator and
the client were each co-located with one worker for a total
of four machines.

Figures 2 and 3 illustrate the computation of the water
tank and bouncing ball examples, drawn as directed graphs
of tree nodes. Each node is sized in proportion to the amount
of time spent doing work there. Most nodes are small; the
few very large nodes represent the arithmetic computation
leaves. In the water tank problem, there are only two large
computational leaves; this helps to explain why we don’t
see a bigger speedup when increasing to four workers. The
work in the computational leaves cannot be further divided
among workers. The graph of the bouncing ball problem
shows similar limitations to the benefits of parallelism.

We show two runs of the bouncing ball problem illustrat-
ing a large performance range for solving the same problem.
We have identified two possible explanations for this differ-
ence. First, our cooperative scheduling timeouts can artifi-
cially exaggerate differences in node running time; a node
that times out just before it finishes must run again from
the beginning, potentially taking twice as long to complete
as it could have if it finished just before timing out. Second,
our experimental setup of four hosts required co-locating the
coordinator and the client with one worker each. If during a
given run the worker that receives an expensive arithmetic
node is co-located with the coordinator, task switching be-
tween the worker and coordinator process may increase the
overall task latency.

These experiments were run on Banyan with shared mem-
ory disabled.

8.2 Scheduling overhead
We attempted to measure how much overhead the Banyan

framework adds to the total computation time for these
problems. Within each worker, the two main sources of over-
head are task scheduling and ticket assessment, described
in Sections 6.1.1 and 6.1.2 respectively. Task scheduling
manages the weighted round-robin invocation of active local
nodes, and ticket assessment keeps the worker in balance
with its ticket target. For each test run, we measured the
average time (in ms) spent in task scheduling and in ticket
assessment at each worker. Table 2 details the results.

Scheduling time appears to be longer, on average, on work-
ers running fewer local nodes. This may occur because these

Figure 2: Directed graph of computation for the wa-
ter tank (bad hints) example. In this graph, node
sizes are proportional to the total time spent work-
ing in each node. The problem contains mainly
small, quick nodes, with a few larger nodes repre-
senting subproblems requiring extensive arithmetic
computation.

workers often house just a few heavyweight nodes as com-
pared to many fast nodes; heavyweight nodes are more likely
to be skipped as part of timeslice hoarding, meaning the
scheduler must load them, update their hoarding status, put
them back in the queue, and load a different node before be-
ginning work. In some instances, if there is only one large
active node, the same node may be cycled through the queue
repeatedly as its timeslice accumulates. This behavior could
probably be improved by reconsidering how timeslice hoard-
ing is handled.

Ticket assessment, by contrast, is much faster on workers
with fewer nodes. This may be because, if a worker is too
busy, a large set of local nodes must be searched to find a
good candidate subtree for offloading.

We compare these results to the amount of time spent in
a node during one working instance. The scheduler must
run in between each node instance, so the ratio of schedul-
ing time to node working time should be low to minimize
overhead. Figure 4 shows a histogram of node working times
(both axes are log scale). More than half of all node work-
ing instances run for less than 1 ms, while a few nodes run
for tens to hundreds of seconds. This means that working
time will frequently be comparable to our average schedul-
ing time of 0.18 ms. To make Banyan more practical, the
scheduler may need optimization. We can also see that ticket
assessment is comparatively very expensive, at almost 24 ms
on average. Because ticket assessment occurs no more than
once every 5 seconds, however, this probably does not have
a large impact on overall overhead. It could be interesting
to examine the tradeoffs of more frequent ticket assessment,



Figure 3: Directed graph of computation for the bouncing ball example. In this graph, node sizes are
proportional to the total time spent working in each node. The problem contains mainly small, quick nodes,
with a few larger nodes representing subproblems requiring extensive arithmetic computation.

!"

!#"

!##"

!###"

!####"

$#%!&" $!%!#&" $!#%"!##&" $!##%"!###&" $!###%"
!####&"

$!####%""
!#####&"

!#####'"

!"
#$

%&'
()*

'+
$(
%,-
".
%(+

*-
$/
%

0&1$(-&+$%-$'.)2%,1(3%-".%(+*-$/%

()*+,"*)-.%"!"/0,.+," ()*+,"*)-.%"1"/0,.+,2"

304-56-7"8)99%"!"/0,.+," 304-56-7"8)99%"1"/0,.+,2"

Figure 4: Histogram of node working time. This
figure shows the distribution of node working time
across several experiments (both axes are log scale).
More than half of all nodes run for less than 1 ms;
a few run for more than 100 seconds.

which could maintain better balance across workers, at the
cost of more overhead processing time.

8.3 Comparison to KeYmaera
To see how well our prover compares with the current state

of the art, we ran the water tank example on KeYmaera us-
ing the same Cohen-Hörmander backend for real arithmetic.
As of yet, KeYmaera still beats us handily, finding a proof
in 131 seconds (on a single processor) compared to our best
case of 1213 seconds (using four distributed processors).

This is mainly because KeYmaera is using a much more
sophisticated set of proof rules, so the real-arithmetic prob-
lems that is asks the backend are often much simpler.

Consider the following sequent, which is a simplified ver-

sion of the sequent appearing at one of the two large nodes
in Figure 2.

s = 1, x = 0, y = 10 ` (s = 3→y ≥ 5−2x), (s = 1→y ≤ 10+x)

Our Banyan prover needs to spend 1084 seconds on this
node, which corresponds to the backend needing somewhere
between 328 and 542 seconds (due to our timeslice doubling
scheme).

KeYmaera, on the other hand, knows how do deal with
substitution and has some built-in rules for dealing with
arithmetic. It is therefore able to reduce the corresponding
node to

y = 10 ` y ≤ 10

before calling the backend.

8.4 Generality
To argue that our framework is more general than the par-

ticular use case of a theorem prover, we sketch a implemen-
tation of using Banyan for a distributed minimax algorithm.

Minimax finds the best move in a two-player game tree
based on the metric that the opponent will always choose
the move that’s worst for the other player, also based on
minimax. There is usually a finite cutoff on the depth the
program will search in the tree.



Instances Avg. time (ms)

Scheduling overhead
Water tank (1 worker) 2160 0.10
Water tank (4 workers), A 1047 0.19
Water tank (4 workers), B 444 0.48
Water tank (4 workers), C 217 0.06
Water tank (4 workers), D 137 2.24
Bouncing ball (1 worker) 2326 0.08
Bouncing ball (4 workers), A 936 0.06
Bouncing ball (4 workers), B 922 0.13
Bouncing ball (4 workers), C 66 2.28
Bouncing ball (4 workers), D 15 0.20
Average 0.18

Task assessment overhead
Water tank (1 worker) 25 2.12
Water tank (4 workers), A 12 43.50
Water tank (4 workers), B 11 47.09
Water tank (4 workers), C 12 14.33
Water tank (4 workers), D 9 37.56
Bouncing ball (1 worker) 7 6.57
Bouncing ball (4 workers), A 4 55.75
Bouncing ball (4 workers), B 3 76.33
Bouncing ball (4 workers), C 4 2.25
Bouncing ball (4 workers), D 2 4.50
Average 23.81

Table 2: Scheduling and task assessment overhead
measured at each worker. For each test run, we
show how many times scheduling and task assess-
ment were required at each worker, as well as the
average time spent on each activity at each worker.
The overall average duration of scheduling and task
assessment activities is also shown.

The pseudocode for the sequential version looks like:

fun minimax(gamestate, depth) : Int

if gamestate is a leaf or depth = 0:

return heuristic_value(gamestate)

else:

a = -infinity

foreach m in possible_moves(gamestate)

a = max(a, -minimax(m, depth-1))

return a

To use Banyan to solve this problem, we would imple-
ment the workHere() method to generate the possible moves
and register each one as a new child node. We would have
an extra field in our node type to indicate its depth, and
child nodes would be created with a decremented depth.
childReturned(v) would compare the negation of v to some
stateful value (initialized to a minimum integer value) and
update that value to v if v is greater. Once all children
return, it would return to its parent with the final value.

9. CONCLUSION AND FUTURE WORK
We have designed and implemented Banyan, a working

prototype framework for distributing tree-structured com-
putation across a cluster. As far as we know, we are the
first to develop a system to enable easy parallelization for
this pervasive class of applications.

We have several ideas for improvements to the next ver-
sion of Banyan, described below.

Support for multiple jobs.

Modest changes to the Banyan coordinator would enable
running one continuous instance of Banyan, dynamically
adding new jobs as needed even if existing jobs are already
running. Currently, the coordinator assigns the client a total
number of tickets for its job based on the number of avail-
able workers, and ticket targets are set to evenly divide that
value among the workers. To support multiple jobs, the co-
ordinator would need to enable “ticket inflation” – that is,
reorganize ticket targets to evenly split the total number of
tickets for all jobs in the system, not just the first job the
coordinator sees. For example, if the coordinator assigns
each new job an initial value of 1000 tickets, then when one
job is running each of four workers should target 250 tick-
ets. When a new job is submitted, there will be 2000 tickets
worth of work available in the system, so each worker should
target 500 tickets. Most of the infrastructure needed to im-
plement this change is already implemented in Banyan.

Fault tolerance.
Banyan currently has no graceful response to the failure

of a worker or the coordinator during processing.
As a first step, we could add heartbeat communication

between workers containing subtrees that have parent-child
relationships. If a worker discovers that a node’s parent is
no longer available, the child node (and all of its children
recursively) should be aborted. If a worker discovers that
a node’s child is no longer available, that child should be
recreated and considered for shipping to a remote worker
as normal. This mechanism would ensure that duplication
of work is limited to only those nodes falling below a fault
within the tree structure. However, because subtrees are
distributed pseudo-randomly, there is a good chance that
any failed worker would contain a relatively high-up node,
resulting in cascading node cancellations and significant du-
plication of work. A stronger solution that could avoid this
waterfall effect would be preferable and would require a more
thoughtful design.

Failure of the coordinator could potentially be handled
as follows: when a new coordinator starts, it broadcasts a
message asking workers to re-register. Once workers have
re-registered and updated the coordinator with their current
ticket states, the coordinator can determine and propagate
a new set of ticket targets and then resume advising workers
about where to ship surplus subtrees. While the coordinator
is unavailable, workers will be unable to offload work, so
processing may slow down but should remain correct.

Another important aspect of fault tolerance will be provid-
ing redundancy within the shared memory system, so that
failure of one shared-memory host does not destroy stored
node results. Strategies for fault-resistant distributed stor-
age have been explored in a variety of systems, and we would
expect to adapt an existing approach.

Improve shared memory.
Currently, no worker ever uses the Fly space for objects

with any status other than Returned(). However, our design
is flexible enough to allow for some possible extensions:

• A node may under some conditions want to wait for
a Working() node to finish rather than beginning an-
other branch of the same work. This may depend on
how long the node has been working, which could be
indicated with a time field. We are not sure what



a proper heuristic would be to determine whether to
wait, however.

• An alternate work distribution scheme could use Fly
in a way that most tuple-spaces are used: as a global
store for workers to place untouched jobs. This use
would entail more drastically rethinking our system
design.

Additionally, our original design intended for the user to
supply a comparator function to allow for inexact matching
on the Fly space key. That is, rather than search for ex-
act matches of a subproblem, we would search for stronger
instances of that problem, for a user-supplied definition of
stronger.

Also, we currently only run Fly on one host that everyone
knows about. In the future, we would like to distribute the
shared store.

Compare to simpler models.
How does our computation model compare to having, say,

a global shared queue of tasks to be worked on?

Our code is available at http://www.cs.cmu.edu/~renshaw/
banyan.

10. ACKNOWLEDGMENTS
The authors would like to acknowledge Rob Simmons,

Jamie Morgenstern, William Lovas, Andre Platzer, Guy Blel-
loch, and Shafeeq Sinnamohideen for helpful conversations,
as well as 15-712 course staff Dave Andersen and Iulian
Moraru for their comments and guidance. We would also
like to thank the Parallel Data Lab for the use of their clus-
ter.

11. REFERENCES
[1] J. Dean and S. Ghemawat. Mapreduce: simplified data

processing on large clusters. In OSDI’04: Proceedings
of the 6th conference on Symposium on Operating
Systems Design & Implementation, pages 10–10,
Berkeley, CA, USA, 2004. USENIX Association.

[2] B. Fitzpatrick. Distributed caching with memcached.
Linux J., 2004:5–, August 2004.

[3] D. Gelernter and A. J. Bernstein. Distributed
communication via global buffer. In PODC ’82:
Proceedings of the first ACM SIGACT-SIGOPS
symposium on Principles of distributed computing,
pages 10–18, New York, NY, USA, 1982. ACM.

[4] J.-Y. Girard. Linear logic. Theor. Comput. Sci.,
50:1–102, 1987.

[5] P. Haller and M. Odersky. Scala actors: Unifying
thread-based and event-based programming.
Theoretical Computer Science, 410(2-3):202 – 220,
2009. Distributed Computing Techniques.

[6] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly.
Dryad: distributed data-parallel programs from
sequential building blocks. In EuroSys ’07:
Proceedings of the 2nd ACM SIGOPS/EuroSys
European Conference on Computer Systems 2007,
pages 59–72, New York, NY, USA, 2007. ACM.

[7] D. Karger, E. Lehman, T. Leighton, R. Panigrahy,
M. Levine, and D. Lewin. Consistent hashing and

random trees: distributed caching protocols for
relieving hot spots on the world wide web. In STOC
’97: Proceedings of the twenty-ninth annual ACM
symposium on Theory of computing, pages 654–663,
New York, NY, USA, 1997. ACM.

[8] MPI Forum. MPI: A message-passing interface
standard, version 2.2, September 2009.
http://www.mpi-forum.org.

[9] M. Odersky. Scala. http://www.scala-lang.org.

[10] C. Olston, B. Reed, U. Srivastava, R. Kumar, and
A. Tomkins. Pig latin: a not-so-foreign language for
data processing. In SIGMOD ’08: Proceedings of the
2008 ACM SIGMOD international conference on
Management of data, pages 1099–1110, New York,
NY, USA, 2008. ACM.

[11] A. Platzer. Differential dynamic logic for hybrid
systems. J Autom Reas, 41(2):143–189, 2008.

[12] A. Platzer and E. M. Clarke. Computing differential
invariants of hybrid systems as fixedpoints. Form.
Methods Syst. Des., 35(1):98–120, 2009.

[13] A. Platzer and E. M. Clarke. Formal verification of
curved flight collision avoidance maneuvers: A case
study. In A. Cavalcanti and D. Dams, editors, FM,
volume 5850 of LNCS, pages 547–562. Springer, 2009.

[14] A. Platzer and J.-D. Quesel. KeYmaera: A hybrid
theorem prover for hybrid systems. In A. Armando,
P. Baumgartner, and G. Dowek, editors, IJCAR,
volume 5195 of LNCS, pages 171–178. Springer, 2008.

[15] A. Platzer and J.-D. Quesel. European train control
system: A case study in formal verification. In
K. Breitman and A. Cavalcanti, editors, ICFEM,
volume 5885 of LNCS, pages 246–265. Springer, 2009.

[16] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H. Balakrishnan. Chord: A scalable peer-to-peer
lookup service for internet applications. In SIGCOMM
’01: Proceedings of the 2001 conference on
Applications, technologies, architectures, and protocols
for computer communications, pages 149–160, New
York, NY, USA, 2001. ACM.

[17] Zink Digital Ltd. The fly objectspace.
http://flyobjectspace.com/.


