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Abstract

As people grow older, they depend more heavily upon outside support for health

assessment and medical care. The current healthcare infrastructure in America is

widely considered to be inadequate to meet the needs of an increasingly older popu-

lation. One solution, called aging in place, is to ensure that the elderly can live safely

and independently in their own homes for as long as possible. Automatic health mon-

itoring is a technological approach which helps people age in place by continuously

providing key information to caregivers.

In this thesis, we explore automatic health monitoring on several levels. First,

we conduct a two-phased formative study to examine the work practices of profes-

sionals who currently perform in-home monitoring for elderly clients. With these

findings in mind, we introduce the simultaneous tracking and activity recognition

(STAR) problem, whose solution provides vital information for automatic in-home

health monitoring. We describe and evaluate a particle filter approach that uses data

from simple sensors commonly found in home security systems to provide room-level

tracking and activity recognition. Next, we introduce the “context-aware recognition

survey,” a novel data collection method that helps users label anonymous episodes of

activity for use as training examples in a supervised learner. Finally, we introduce the

k-Edits Viterbi algorithm, which works within a Bayesian framework to automatically

rate routine activities and detect irregular patterns of behavior.

This thesis contributes to the field of automatic health monitoring through a com-

bination of intensive background study, efficient approaches for location and activity

inference, a novel unsupervised data collection technique, and a practical activity

rating application.
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Chapter 1

Introduction

People aged 65 and older are the fastest growing segment of the U.S. population –

set to double in the next two decades [8]. As people age, they depend more heavily

upon outside support for health assessment and medical care. The current healthcare

infrastructure is widely considered to be inadequate to meet the needs of an increas-

ingly older population. One solution is to enable aging in place, in which elders live

independently and safely in their own homes for as long as possible, i.e., avoiding the

transition to a care facility. This approach helps keep the elderly population happy

and socially connected, while reducing the strain on healthcare infrastructure [82].

In this thesis, we contribute to the field of automatic health monitoring by con-

ducting a study of professionals who currently perform in-home health monitoring,

devising algorithms that infer location and activities of multiple occupants in a home,

providing a technique for easily collecting training examples of activity, and by de-

vising algorithms which can spot deviations in patterns of routine activity.

1.1 Overview

Automatic health monitoring technology uses sensors and machine learning algorithms

to automatically collect information about patients for use by caregivers. In-home

health assessment is largely concerned with monitoring clients’ activities of daily living

(ADLs), a set of activities used by physicians to benchmark the physical and cognitive

1



2 CHAPTER 1. INTRODUCTION

abilities of patients [64]. Studies have shown that pervasive monitoring of the elderly

and those with disabilities can improve the accuracy of pharmacologic interventions,

track illness progression, and lower caregiver stress levels [39]. Additionally, [112] has

shown that movement patterns alone are an important indicator of cognitive function,

depression, and social involvement among people with Alzheimer’s disease.

1.1.1 The Activities of Daily Living Study

In this thesis, we begin by describing a two-phased formative study of the professionals

who currently provide in-home health monitoring to elderly clients and those with

disabilities. In the first phase, we interviewed five participants for over one hour each.

We used the results from phase #1 to design a questionnaire which was distributed

during phase #2 to 91 participants across the United States. By understanding the

current practices and identifying the major challenges faced by the professionals who

care for elders, we hoped to determine how technological innovation could help elders

age in place while respecting the most rewarding aspects of the case manager’s job,

the elder’s need for autonomy, and the needs of the elder’s family and friends who

might also be impacted by the technology.

1.1.2 Simultaneous Tracking & Activity Recognition

In the next chapter, we quantify the perceived needs and constraints provided by the

ADL study in the simultaneous tracking and activity recognition (STAR) problem.

Solving the STAR problem provides the information we deem essential for automatic

health monitoring in the home, including: identifying people, tracking people as

they move, and knowing what activities people are engaged in. More challenging

goals include recognizing when people deviate from regular patterns of behavior and

providing advice on how activities could have been performed better.

We describe a particle filter approach to the STAR problem which exploits in-

formation gathered by many simple sensors. The benefits of particle filters are

paramount when solving the STAR problem in a home environment with several

occupants and several hundred sensors. Most importantly, particle filters offer a
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sample-based approximation of probability densities that are too difficult to solve in

closed form, e.g., the data association problem that exists when tracking multiple

occupants. Particle filters are more likely to recover from tracking errors because

they can approximate a large range of probability distributions, unlike Kalman fil-

ters which are limited to Gaussian distributions. Computation can be minimized by

using resampling, which focuses resources on only the most promising hypotheses.

Finally, the number of samples can be dynamically adjusted according to available

computational resources.

Our approach predominantly uses information from anonymous, binary sensors,

particularly those employed by security systems, such as motion detectors and contact

switches. We call a sensor anonymous and binary when it can not directly identify

people and at any given time it supplies a value of one or zero. This severely limited

amount of information comes with minimal privacy, monetary, and computational

cost, and can be used on a large scale in homes and businesses. We show that such

sensors can be used to solve the STAR problem, telling us which rooms are occu-

pied, counting the occupants in a room, identifying the occupants, tracking occupant

movements, and recognizing occupant activities.

1.1.3 The Context-Aware Recognition Survey

In the next chapter, we describe a novel data collection method called the “context-

aware recognition survey.” Accurate models of activity require labeled examples of

activity for training, and the same activities inevitably vary between households and

between individuals. Collecting labeled examples of activities is vital for training

supervised learners to recognize individual human activities.

We devised an unsupervised data collection method which helps users to label

anonymous activity episodes by displaying contextual information gathered by ubiq-

uitous sensors in a game-like computer program. We found that users were able to

consistently and correctly label these training examples, even when the activities were

performed by other people. Our approach allows anyone to label the data at any time,

without requiring additional hardware beyond the original sensor infrastructure and
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without causing any additional interruption to daily routine.

1.1.4 The k-Edits Viterbi Algorithm

Finally, we explore an important application area – routine activity rating and detec-

tion of irregular behavior. A main concern for health care professionals is to recognize

instantly when clients’ needs have changed. Thus, an important component of any

automatic health monitoring system should be to recognize deviations in routine be-

havior and to isolate potential causes.

We introduce the k-Edits Viterbi algorithm, a polynomial time algorithm that

works within an HMM framework to provide maximal likelihood modifications to a

sensor trace generated in an instrumented environment. The k-Edits Viterbi algo-

rithm may operate either as an activity rater, in which an activity is “graded” and

suggestions for improvement are made, or as an activity monitor, in which deviations

are detected and the reasons for the deviation are provided. Our approach is designed

to be inexpensive and credible; the algorithm uses a straightforward HMM, does not

require a description of possible problems, and provides advice that is constructive,

relevant, and justified.

1.2 Thesis Contributions

This research thoroughly explores the field of in-home health monitoring before defin-

ing and providing a solution to the simultaneous tracking and activity recognition

(STAR) problem. Our approach fills an important gap in existing research in ubiq-

uitous computing by using a sensory modality that has been largely ignored in favor

of vision and audition. We introduce a data collection technique that is designed to

work hand-in-hand with existing techniques, such as the experience sampling method

(ESM) [13], to provide labeled training examples which are crucial for supervised

learning algorithms. We derive a new algorithm that can be used within a hidden

Markov model framework to rate routine activities and pinpoint deviations in routine

activity.
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This work makes several contributions to the area of automatic health monitoring

and to the field of ubiquitous computing in general:

• We identify key requirements for future technology by conducting an in-depth

study of the care professionals who represent the current state-of-the-art.

• We introduce algorithms that perform simultaneous tracking and activity recog-

nition of multiple occupants in a home, leveraging knowledge of location to

improve activity recognition and vice versa.

• Our approach predominantly utilizes information from simple, cost-effective sen-

sors common to home security systems, making it feasible to inexpensively in-

strument or retro-fit entire buildings.

• Cost-effective tracking and activity recognition creates the possibility of funda-

mental new interfaces or ways of interacting with structures and information

processing resources.

• A new data collection technique is introduced which works alone or in con-

cert with existing techniques to help users provide training data to supervised

learners.

• We derive an algorithm which can rate how well a routine activity was performed

and suggest improvements or detect possible causes of irregular behavior.

In the next section, we describe a possible future scenario that encompasses the

technology that we wish to make possible through this thesis work.

1.3 Scenario

A man has an elderly mother living alone one hour away. Last week she knocked

the phone off the hook and was unavailable for an entire day. The man walks into

a hardware store and emerges with a large brown box. It contains several dozen

nondescript, quarter-sized sensors that stick to any surface. Following directions,
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the man attaches the simple sensors to doors, drawers, and chairs in his mother’s

home. He pulls out a CD-ROM and installs software on a personal computer and

plugs a device into a USB port. The software instructs him to perform a quick walk-

through of the house, touching every sensor. Later that week the man logs onto the

Internet, types a password, and is presented with ten multiple choice questions. In

each question he is shown a series of images representing sensors that were touched

and is asked to choose which activity was happening. One week later the man checks

to see that his mother has been cooking and eating meals. One month later he checks

whether her activity levels are steady. The system reports that activity levels are

abnormally low today. He calls and finds that his mother seems to be coming down

with the flu.

1.4 Thesis Layout

This thesis is organized as follows: In chapter 2 we present results from a study of

the professionals who routinely perform in-home health monitoring. In chapter 3 we

define the simultaneous tracking and activity recognition problem as a key component

of automatic health monitoring and describe our particle filter-based solution. In

chapter 4 we present a data collection approach for producing training data for our

learner. In chapter 5 we describe a practical application that provides activity rating

and/or detection of irregular behavior. Finally, in chapter 6 we conclude.



Chapter 2

In-Home Monitoring:

A Study of Case Managers

In this chapter, we describe “The Activities of Daily Living Study,” a two-phased

formative study designed to examine the work practices of professionals who perform

in-home monitoring of elders’ activities of daily living (ADLs).1 As a result of a

swelling elderly population, there is a demand for technology that can assist caregivers

and augment the elders’ ability to age in place. Supporting elderly adults’ preference

to live independently at home, i.e., to age in place, can keep elders happy and forestall

the transition to costly care-giving facilities [107]. By understanding the current

practices and identifying the major challenges faced by professional caregivers, we

hope to determine how technological innovation could help elders age in place while

respecting the most rewarding aspects of the case manager’s job, the elder’s need for

autonomy, and the needs of the elder’s family and friends who might also be impacted

by the technology.

1This chapter is a revised version of the technical report [118] and this work was performed in
collaboration with researchers at Intel Research Seattle.

7
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2.1 Introduction

Keeping elders safe and healthy in their own homes is accomplished with the help of

caregivers – often the elder’s family, friends, and neighbors. When professional care

is necessary, it is commonly managed by individuals called case managers (CMs),

professionals (not necessarily nurses) who interact with the elder, or client, at home

and via phone calls, to assess mental and physical status and to arrange for necessary

services to fill any gaps in ability (e.g., personal aides, assistive equipment, or cleaning

services). During monitoring visits, a CM tracks the abilities of the client and is

responsible for introducing new equipment (e.g., walkers, grab bars, etc.) and services

(e.g., personal care assistants, home-delivered meals, etc.) as needed. For a CM, a

significant part of assessment is captured by monitoring the client’s performance of a

specific set of activities – called Activities of Daily Living (ADLs). The Katz index

of Activities of Daily Living was developed in 1963 as a measure of overall cognitive

function and physical abilities; it includes activities such as bathing, preparing food,

getting dressed, grooming, and eating meals [64].

The use of technology to automatically monitor ADLs has become a serious re-

search focus worldwide [12, 21, 27, 28, 30, 45, 46, 67, 80, 92, 113]. However, at least in

the fields of ubiquitous computing and human-computer interaction, there has been

relatively little exploration of how information about ADLs in the home is currently

collected and used by case managers to help elders age in place.

To begin our exploration, we conducted a two-phased formative study in which

we examined the work practices of professionals in the U.S. who perform in-home

monitoring of elders’ activities of daily living. In phase #1, we conducted one-on-one

semi-structured interviews with a small number of case managers (N=5) who maintain

a combined caseload of 156 clients. In phase #2, we collected 91 paper-and-pencil

questionnaires from case managers around the United States. The questionnaires

covered many aspects of a case manager’s job and were designed based on the results

of phase #1.

In the next section, we discuss related work in the area of ADL monitoring and

explain why the results of our study are both original and valuable. Next, we report
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on our methodology and results for both phases of this study. Finally, we describe

the impact that these findings may have on several areas of research related to health

assessment.

2.2 Related Work

Healthcare technology for the elderly has been a popular area of research, spawn-

ing the sub-discipline of “gerontechnology” [22]. Automatic monitoring of ADLs has

been a common focus in gerontechnology; however, little research exists to motivate

and guide such technology. Instead, research often relies on predictions of an explod-

ing elderly population [4], studies that show the importance of ADLs for assessing

functional ability [75], and/or “lessons learned” from actual hardware deployments

[120, 54]. In this study, we examine the professionals who currently provide in-home

health monitoring to determine which ADLs are most important to monitor, what

obstacles stand in the way of collecting such information, and where technological

innovation can (and cannot) meaningfully improve current practices.

Considerable effort has been devoted to applying technology to a wide variety of

problems in the healthcare domain, including assistive robotic devices and remote

health monitoring tools, i.e., tele-medicine or tele-health applications [94, 36, 101].

Researchers at the Georgia Institute of Technology use the “Aware Home” to study

elders’ reactions to such technology [74]. At MIT, researchers use the “PlaceLab” to

develop design strategies for assistive technology in the home [57]. Other researchers

have examined how older adults interact with technology by studying their cognitive

abilities [73] and by examining how and where the elderly typically live [38]. For a

recent survey of existing assistive technology see [47]. Previous research has been

aimed at determining in a broad sense how and why to design technology for elders.

In contrast, we restrict our scope to research directly related to monitoring elders

who are living independently in their own homes.

Most research involving technology for monitoring ADLs is motivated at some

point by information from government-sponsored, nationwide studies of the current

and predicted characteristics of aging populations. Such sources include the United
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States Census Bureau [111], the U.K. National Office of Statistics [110], the American

Institute on Aging [4], the National Center for Health Statistics [114], and the Robert

Wood Johnson Foundation [98]. These sources are valuable but non-specific, typically

revealing information such as the size of elderly populations (in 1996 there were more

than 44 million Americans over the age of 60), current and predicted life expectancy

(in 2025 the projected number of Americans over 60 will be approximately 82 million,

accounting for over 20% of the total U.S. population), and prevalence of disabilities

and needs in these populations (20% of Americans over the age of 80 live in nursing

homes). Information from these sources helps inspire technology for healthcare, but

cannot adequately motivate specific technological design decisions and applications.

Existing literature strongly identifies the importance of activities of daily living

(ADLs) such as bathing, toileting, and eating [64]; instrumental activities of daily

living (IADLs) such as managing medication, maintaining a household, and prepar-

ing meals [68]; and/or enhanced activities of daily living (EADLs) such as using the

Internet to connect to family and friends [99], as indicators of the physical and cogni-

tive abilities of elderly individuals. The Intelligent Assistive Technology and Systems

Lab at the University of Toronto found that ADL performance is important to know

when designing technology for those suffering from Alzheimer disease [77]. At the

Rose-Hulman Institute of Technology, researchers are developing simple tests to mea-

sure functional decline in elderly individuals, but identify ADLs and IADLs as the

“gold standard” for measuring functional ability [75]. Policy makers at the American

Association for Retired Persons (AARP) advocate the use of ADLs and IADLs for

measuring levels of functional disability for establishing eligibility criteria for their

programs and benefits [63]. Such research concretely identifies the usefulness of ADL

measures for healthcare technologists. To our knowledge, no literature exists that

explains in-depth how ADL information is (or should be) collected or which ADL

information is most important to caregivers [81].

Instead, much research into ADL assessment technology is motivated retrospec-

tively, in terms of “lessons learned” during actual prototype deployments. For ex-

ample, researchers who are using simple sensors to detect the behavior of occupants

in a typical home environment have provided lessons learned when instrumenting
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environments for the elderly [117, 12, 57, 92, 101]. For a partial survey of research

concerning instrumented environments, see the Center for Aging Services and Tech-

nologies (CAST) technology demonstration program [28]. Other research covers top-

ics such as convincing elders to complete ADLs [55] and closely monitoring ADLs to

provide reminders (or cues) for how to properly complete ADL tasks [120, 34, 78].

These studies use ADLs to demonstrate technology, but without any guarantee that

the chosen ADL is the best fit for the technology. For example, an automated cueing

system might guide an elder through a hand-washing activity, however, it is not clear

that hand washing is one of the ADLs that elders have difficulty performing. We

believe that future research could benefit from knowing which ADLs are difficult or

most important for a caregiver to collect; such knowledge could directly inform the

design of automatic ADL monitoring applications.

2.3 Phase # 1: Interviews with Case Managers

In this section, we describe the methodology and results of phase #1 of the ADL

study in which 5 case managers were interviewed in depth about their jobs. The

interviews provided us with a rich description of what a CM’s job is like and also

helped us develop the survey instrument that was used in phase #2.

2.3.1 Study Methodology

Participants. Participants in phase #1 were 5 female case managers who were

recruited by word of mouth at the case management agency where they were employed

(located in Oklahoma, USA). Participants received a $20 gift certificate to a retail

department store for participating. They ranged in age from 32 to 52 with years on

the job varying from 2 to 10. Every participant had the job title “case manager.”

Two participants were also registered nurses (RNs), and a third was both the case

management supervisor and an RN, and managed 13 case managers. Each participant

routinely visits elderly clients to collect information about ADLs, with three CMs

holding a case load of 50 clients each, the CM/RN holding a case load of 3 clients
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(with frequent skilled nursing visits to many others), and the CM supervisor holding

a case load of 3 clients.

Sessions. Each participant engaged in a one-on-one session that lasted approx-

imately 90 minutes. The session began with a short paper-and-pencil based ques-

tionnaire, followed by a semi-structured interview conducted by one of the study

researchers. The questionnaire and interview are briefly described next.

Questionnaire. Participants spent approximately 15 minutes at the beginning

of their sessions completing a paper-and-pencil based questionnaire about their age,

job title, job experience, and on-the-job use of technology (e.g., cell phone, email,

answering machine, etc.). See Appendix A for a blank copy of this questionnaire; see

Appendix B for the aggregate results.

Interview. Semi-structured interviews were then conducted with each partici-

pant. All interviews lasted approximately 75 minutes each and were conducted in the

home office of one of the researchers. Audio from the interviews was recorded on a

digital recording device and later used to generate interview transcripts. Participants

were asked questions in four main areas: 1) general job duties, 2) visiting a client

in his/her home, 3) ADL forms and the flow of information, and 4) opinions about

the use of automatic ADL monitoring technology. To preserve generality, we did not

mention a specific technological approach. See Appendix C for the interview guide.

Data analysis. A code book was developed by the researcher who conducted

the interviews to describe significant results and areas of possible interviewer bias.

The researcher then used these codes to categorize the qualitative data contained in

the interview transcripts. The code book was first validated by another of the study

researchers and further validated by a third party researcher from outside the project,

who independently coded the data using the code book. Code agreement between

the study researchers and the independent coder exceeded 85%.

2.3.2 Results

During the interviews, shared themes emerged between every case manager, and we

also identified a mix of promising opportunities and challenges for future technology.
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In this section, we first describe the job responsibilities shared by all participants and

then identify opportunities for technological innovation, before examining a series of

challenges facing future technologies.

Job Description

Some common themes emerged from all interviewees. These themes describe job

duties, technology use, and interactions with clients (including initial assessment,

face-to-face home monitoring visits, and phone monitors).

Job duties. Case managers (CMs) work for the AGENCY, which receives money

from the state government through a Medicaid program for every client who is on

the PLAN.2 Although most clients live at home, they may live with their families

or in senior housing, but not in a nursing home. The AGENCY is reimbursed per

client depending on the needs of that client, which may include skilled nursing, case

management, or personal care services. The state government, along with the Health

Care Authority, determine the reimbursement rates. These entities also govern the

policies that the Long Term Care Authority (LTCA) sets forth. These policies and

requirements are regularly audited at each AGENCY to determine that each client is

being monitored and that their needs are properly being met.

A case manager does not require any medical training, however, they do require a

degree in a social or nursing field – they are often trained as registered nurses (RNs)

or licensed practical nurses (LPNs). The CM’s job is to keep clients living safely and

independently at home by frequent monitoring and assessing of the client’s ability to

complete ADLs. If the client is unable to safely complete ADLs and/or she needs

assistance to properly complete the ADLs, then the CM will assess the need, complete

a plan of care, submit for certification by LTCA, and monitor that the services are

initiated. For example, a client may no longer be able to safely complete bathing, so

the CM must initiate the proper paperwork so that a staffing coordinator may assign

a personal care assistant (PCA) to aid the client with bathing. The CM determines

the needs of the client, but it is the staffing coordinator, and not the CM, who actually

works out the logistics of providing the care.

2Actual agency and plan names have been omitted to preserve confidentiality.



14 CHAPTER 2. IN-HOME MONITORING: A STUDY OF CASE MANAGERS

Formally speaking, the CM’s goal is to keep clients safe at home with services from

the state Medicaid PLAN, which is a state government-mandated program. Program

policy mandates that CM’s must make home visits and telephone calls to monitor

ADLs and to reassess the client’s needs as her health and circumstances change. As-

sessment includes a Mental Status Questionnaire (MSQ) [60], which determines levels

of dementia based on whether the client is able to adequately answer questions. The

program will also supply a client with medical equipment to meet a safety need or

a health need (e.g., adult diapers, meal delivery service, financial counseling, mental

health counseling, cooking, housework, or skilled medical care). The CM must also

complete standardized paperwork so that every visit, every test, and every service

ordered is documented and available in the event of a state audit. This paperwork

may be hand-written or computer generated, depending on the individual CM’s pref-

erence, i.e., there is no AGENCY or Medicaid program rule that dictates whether the

paperwork is to be completed electronically or by hand.

Client eligibility. Any client may apply for assistance from the state at no cost.

Requirements include financial distress, medical need, and some level of existing in-

formal support (i.e., friends, family, or other non-paid caregivers). It is important to

note that the goal of the AGENCY is to safely supplement existing support infras-

tructure – not to replace it. Each client must require nursing home level of care to

qualify for this state program. It may be more reasonable for the client to go to a

care facility if the cost of keeping the client safe at home exceeds the cost of a care

facility. Case managers do not take part in evaluating clients for eligibility to the

program (this is determined by the Department of Human Services); instead, CMs

determine the client’s needs once the client has been determined to be eligible for the

PLAN.

Use of technology. Every participant interviewed regularly used a cell phone to

coordinate and schedule visits with clients. CMs are not required to use a computer

to fill out the forms, as long as they are written legibly. Many participants used a

desktop computer; none used a laptop. Although cell phones and desktop computers

were provided by the AGENCY, CMs often used their own equipment as well. At the

time of the interview, laptops were about to be allotted to CMs by the AGENCY.
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Initial Assessment. Upon acceptance to the program, a client must proceed

through several steps. First, a registered nurse (RN) and a CM visit the home for

an in-depth information exchange, called an “interdisciplinary team meeting” (IDT),

with the client and any other outside support the client has. If the CM is also an RN,

then only one person needs to make this visit. The CM will inspect the client’s living

environment to make sure that it is safe; she will also make arrangements to correct

any unsafe situations (e.g., ordering grab bars for a slippery shower). Meanwhile,

the RN will assess the client’s health needs and determine what medical services may

be necessary (e.g., diabetes care). After the visit, the CM assembles a PLAN of

care that assimilates all of the information gathered during the initial assessment.

The PLAN includes how often to visit, which services to order, and who is involved

with the client (both formal and informal support) and how they assist with the

client’s needs. Each plan is reviewed by the CM Supervisor and sent to LTCA for

final certification. CMs are responsible for initiating all services certified on the plan.

Finally, the client is given a copy of her PLAN, and she must have it available for

review for her CM during each home visit (or during an audit by the LTCA). The

entire process, from notification of a new client, to initial assessment, to forming the

PLAN and submitting it to the LTCA must be finished within 10 working days. The

first initial contact is usually within 24 hours of receiving the assignment from LTCA,

the home visit within 3-4 days, and certification must come within 10 days.

Regular Monitoring Visits. Each client is assigned to one CM, although CMs

are allowed to visit each others’ clients, e.g., to cover for a sick colleague. Policy

dictates that a CM will contact the client monthly (via telephone or in-home visit),

however, there are variables that determine if the client needs to be seen in person

by the CM on a more frequent basis. The frequency of face-to-face visits versus

telephone visits is determined by the risk level associated with each client. Risk level

can be elevated for at-risk clients, e.g., if the MSQ score indicates moderate or severe

dementia, if there is an unsafe environmental situation, if the health of the client is in

jeopardy, or if a client is not adequately staffed although a need has been identified.

High risk clients require a face-to-face visit every month, while lower risk clients only

require a face-to-face visit every quarter (90 days). A home visit (i.e., face-to-face)
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usually consists of the CM driving to the client’s home, sitting in a public area of

the home (e.g., the living room or dining room), and reviewing the existing PLAN

to determine if all of the client’s needs are being met; the CM must also document

the results of the in-home visit. Often, a CM will quietly inspect the environment

(e.g., a CM may excuse herself to use the restroom, and then inspect it for safety and

cleanliness). If a client uses a personal care assistant, CMs are occasionally required

to complete a supervisory visit of the personal care assistant as mandated by the

State. On the other hand, RNs visit on a different schedule than CMs to monitor

health problems, but mostly to ensure that medication (prescribed by doctors) is

being used properly (e.g., to ensure that a client is not missing doses). If the CM

is also an RN, then she can perform both tasks in the same visit. At the end of

one year, a reassessment visit is performed which follows the same procedure as the

interdisciplinary team meeting (IDT) described above. This cycle continues until the

elder no longer requires care, permanently moves to a care facility, passes away, or

otherwise becomes ineligible for the program (e.g., finances may improve or a relative

may move in to provide more support).

Paperwork. All official paperwork is designed by the LTCA and is also subject

to audit by the LTCA, so CMs must be stringent about never losing information.

Client confidentiality is also strictly maintained among all healthcare providers. Any

services ordered, home visits, telephone communications, or other interactions must

be documented and stored in a main file in the AGENCY office. CMs keep copies

of their forms in a “travel file,” so they can keep up with their clients while out of

the office. This is vital, because CMs are often assigned up to 50 clients. Pieces

of the travel file may be assembled by office staff and usually include a blend of

distilled high-level information (not just copies of dense information). For example, a

travel file may contain a client’s name, address, date of last visit, and current list of

services. The main file is accessible by anyone in the office with a need for it, including

other CMs, as well as government officials. The clients’ physicians may request the

information, although this rarely happens. At the initial assessment, a “release of

Information” form is signed by the client (or the client’s power of attorney); this form

lists every person that the AGENCY may speak to about the client. If a person who
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is not on the release requests information about a client, they are directed to ask the

client about the matter – this includes family members and friends that the client

may not want any information released to.

Opportunities for Technological Solutions

We now discuss the challenges faced by case managers and how they believed tech-

nology might help. We extracted several key results from the interview transcripts.

Discussion is limited to the participants’ current practices and their initial thoughts

on the benefits and drawbacks of using automatic in-home ADL assessment technolo-

gies.

Most & Least Rewarding Aspects of Job. Any future technology that is

designed to help case managers should keep in mind which parts of the job are most

rewarding for a CM and which are their least favorite. When asked “What is your

favorite part of the job?” every participant had the same answer – visiting the home

and interacting with the client. When asked “What is the hardest part of your

job?” three participants directly complained about the amount of paperwork they

are required to complete. One participant claimed, “Paperwork is ridiculous. It’s

stupid! S-T-U-P-I-D.”

Three participants mentioned that they felt technology could not reproduce their

jobs, citing the elderly clients’ need for social contact. One participant noted that

technology is not necessary (“...to put a tool in, instead of a human.”). Instead,

participants mentioned using the technology to confirm second-hand information, to

keep track of plans for multiple clients (i.e., time management), and to keep clients’

families involved with client care. Based on the participants’ responses, we believe

that technology to help CMs complete paperwork might be very useful and welcomed.

Assessment of ADLs. One participant aptly describes her job as “being a

detective.” A CM must piece together information from clients, their family members,

hired personal care assistants (PCAs), nurses, and many others to assess the true

abilities and safety of the client. Some of the main challenges reported include: 1)

not being able to observe the client perform activities, 2) not being able to trust the

client’s reported activities, and 3) not being able to adequately inspect the client’s
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environment to find problems. These difficulties are discussed in more detail in the

following paragraphs.

Participants expressed interest in technology to quickly detect changes in normal

routine to help them ascertain when an unscheduled visit might be appropriate, (“If

you saw a big change, then that would tell you that you need to get out there.”).

Additionally, they thought that technology might help them learn about things that

may have been missed during visits (“It would help identify the things that maybe we

don’t pick up on.”).

Auditing. A CM must decipher conflicting information from her experience in

the home and conversations with clients, PCAs, and informal support. Elderly clients

may exhibit reporting bias based on a desire to gain services or a fear of losing them

(“If I ask them if they’ve fallen, they may not tell me that they have, because they are

afraid of going to a nursing home.”). The majority of monitoring visits are conducted

by phone, where information is difficult to verify (“All we go on mainly, especially in

phone monitors, is what our consumers [clients] are telling us – which could be total

B.S.”). In addition, PCAs work without direct supervision and CMs suspect that

PCAs may exaggerate their hours (“Aides [i.e., PCAs] lie because we will never find

out.”). Finally, although informal support is usually described as being helpful, they

are not always able to communicate freely. One participant says, “Sometimes the

family member doesn’t want them [the client] to know that they are telling on them

[the client].”

Participants expressed interest in using technology to “sort out the facts.” Two

participants mentioned using technology to find out why the client isn’t telling the

truth e.g., maybe they have dementia. Three participants described using technology

to verify that PCAs are really doing their jobs (“The aide was sitting there watching

All My Children, instead of working.”). Finally, while every participant mentioned

that clients are not always truthful, one participant suggested that technology could

be used to hold clients accountable for when they are untruthful, stating that then

“...they’d [clients] be less likely to not tell you the truth.”

Family involvement. Three participants mentioned that ADL information
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would be useful to the client’s family members, to keep them involved in support-

ing the client. These non-paid caregivers, which the CMs call informal support, are

often in tune with the day-to-day life of an elder, and their involvement and knowl-

edge are very important to a CM (“We like to visit with them [informal support]

separately [i.e., without the client present] sometimes, okay, to get some adequate

information.”). For example, informal support may notify CMs when there is a

problem (e.g., the elder has been hospitalized). On the other hand, one participant

noted that informal support is sometimes less informed, because some questions are

too embarrassing for family members to ask (“You aren’t going to ask your mother if

she took a shower.”).

Two participants pointed out privacy issues that monitoring technology could

possibly allay: 1) minimizing the number of strangers who must enter the client’s

home, (“...strangers are going to come into your home and all of the sudden ask

you to remember things?”) and 2) side-stepping certain awkward questions (“...it

is harder to ask the older gentlemen about incontinence.”). Monitoring technology

could collect sensitive information in a more impersonal fashion, keeping informal and

formal support better informed and more involved.

Scheduling. The three participants who work as full-time CMs reported an av-

erage caseload of 50 clients (Range=45-60). The CM who was also an RN reported

a case load of 3 clients, but also made 20 skilled nursing visits per week to a variety

of other clients. Every participant reported scheduling home visits based on hard

deadlines imposed by state requirements (usually quarterly visits), and by the geo-

graphical distribution of cases (clients who live close together are easier to visit on

the same day). The scheduling process was described as volatile, however, because

elders’ medical conditions often change suddenly (“We’re required to see them quar-

terly, but most often it’s more than that because their needs change.”). Additionally,

the day-to-day life of the client can affect scheduling (“...I visited somebody three

times because they are being evicted from their house...”).

Four out of five participants expressed interest in using up-to-the-minute ADL

information to improve scheduling (“You might prioritize which ones [clients] you

did home visits for.”). One participant suggested that technology could be used
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to set client risk levels (which dictate visit frequency) according to how compliant

clients are with their PLAN goals. In addition, three participants described employing

such technology to “fill in the blanks” between monitors, so that scheduling can be

based on client need. One participant says, “...if you see somebody that’s a high

priority...they’ve declined or started wandering or started falling more. You’d put

them at the top of the list to go see.”

Monitoring functional decline. Several participants discussed how the abilities

of elders decline over time (“Usually in the beginning, a consumer [client] requires

less assistance, but as they are on the program [the PLAN] three or four years, they

are increasing.”). Participants described ADL monitoring as the main mechanism

for tracking functional decline (“Their ability to do things changes – mostly they

deteriorate.”). Specifically, the CM is responsible for ordering additional services to

replace lost functionality (e.g., ordering home-delivered meals for someone who is no

longer able to cook).

One participant described using monitoring technology to “watch them [clients]

over time,” to determine when additional services may be needed; the participant

claimed, “In the beginning their whole service plan is a low cost plan. Well, as they

age...their plan becomes more expensive.” Another participant thought that technol-

ogy could help the CM to “see they’ve [clients] declined or they started wandering or

started falling more.” The CM supervisor mentioned using the technology to monitor

the high-level status of every client that is supervised by one of her 13 case managers

(“Well, it would be a lot easier than having to read through thirteen case managers’

notes every month.”).

Challenges for Future Technology

Several interview questions were focused on case managers’ envisioned use of advanced

technology to assist with their daily job tasks. In this section, we explore the issues

raised by case managers as they imagined using an unnamed, non-specific future

technology capable of automatically assessing and disseminating information about

clients’ ADLs.

Concern over job loss. Although it was not a part of the interview guide, four
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participants expressed concern that future technology would put them out of a job

(“You have a computer do our job so we don’t get paid?”). However, one participant –

the CM supervisor – expressed interest in using the technology to increase caseloads.

Participants were enthusiastic about using technology for a variety of purposes, how-

ever, most were emphatic that technology not replace face-to-face contact between

the CM and her client. To allay these concerns it is important that new technology

respect the rewarding aspects of a CMs job, i.e., not try to replace the monitoring

visits.

Acceptance issues. Most participants did not believe that their clients would

accept an automatic ADL monitoring technology in their homes. Several participants

made suggestions for making a system more palatable. They stressed that the system

not be seen as a “tattle-tale,” but that the technology should be seen as helping the

client live at home independently as long as possible. One participant said, “if it’s

[the technology] gonna be tracking every move I make, if it’s gonna be telling them

whether I’m going to have to go the nursing home or not...that could be a big issue.”

Time and again, participants pointed out the negative association that elders have for

the nursing home, and how strongly elders are motivated to avoid it (“They think it’s

the end of the line; going to a nursing home means you are dead.”). Thus, successful

acceptance of technology was directly linked to elders’ understanding the technology’s

purpose of keeping them living at home.

Privacy issues. All five participants mentioned privacy issues as drawbacks to an

in-home monitoring technology, and two participants described privacy issues as the

main drawback of such a system. One participant mentioned privacy issues linked to

cultural communities; “Where is their privacy?” says the participant, “...the African-

American community, they don’t want you to know all their business.” Another

participant was more optimistic, saying “Some people are kind of fussy about their

privacy, but most of the elderly want to tell you the daily things they are doing. They

want to feel important.” Currently, information collected by CMs is accessible to other

CMs, some office staff, physicians, the government officials who oversee the program,

and to individuals who are specifically indicated by the elder. Several participants

suggested that the current system of using “release of information” forms should also
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be used by the technology to determine access to data collected by a monitoring

system. Obviously, respecting privacy is crucial for technology acceptance.

Delivering information. Participants had a range of familiarity with tech-

nology. Although every participant routinely used a cell phone, experience with

computers varied (e.g., some CMs fill out forms by hand, while others use desktop

computers). None of the participants carried a laptop or PDA to home visits, which

perhaps explains why there was no mention of receiving information in emails or

on PDAs. Of the four participants who answered this question, two were comfort-

able with receiving information on a computer or in a computer printout, another

liked the idea of receiving information about clients on a web site, and one was most

comfortable receiving the information via a phone call.

2.4 Phase # 2: Questionnaire with Case Managers

We used the results of the interviews to design a questionnaire that we distributed to

case managers from four states around the U.S. We received 91 completed paper and

pencil questionnaires. Questions focused on job duties, home environments, home

visits, phone visits, reporting bias, visit scheduling, paperwork, and care networks.

In this section, we describe the study methodology and results of phase #2.

2.4.1 Study Methodology

Participants. Participants in phase #2 were 91 adult individuals employed as case

managers. Participants were recruited from four different case management agencies

in the greater Seattle, Washington metropolitan area (N=49), the state of Oklahoma

(N=22), the greater Pittsburgh, Pennsylvania area (N=15), and the state of Georgia

(N=5). 12% of participants were male, and 88% were female. Participants were

between the ages of 22 and 68 years (M=46, SD=10.49). Participants reported that

they had worked at similar jobs for 0 to 35 years, with the mean number of years

worked at similar jobs being 11.45 (SD = 8.5). Although exact job titles varied

between agencies, all participants had a similar job description: to monitor clients’
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activities of daily living to help their clients live independently and safely. However,

15 of the participants worked with clients who lived in assisted living facilities and

therefore did not technically make home visits.

Procedure. Each case management agency was approached separately, and par-

ticipants were selected by word of mouth within their respective agencies, not directly

by the study researchers; participation was voluntary. Questionnaires and incentives

were distributed according to the following method: 1) a case management agency

was selected, 2) a “point-person” for the agency was contacted, 3) questionnaires

and incentives were delivered to the point-person, and 4) the point-person oversaw

distribution and collection of the questionnaires among participants, administered

the incentives, and returned the questionnaires to the study researchers. With one

exception, questionnaires were distributed on a first-come first-served basis and col-

lected by the point-person over the next few days. In one case, every questionnaire

was distributed during a group meeting and questionnaires were filled out and re-

turned simultaneously. Each participant received a $20 gift certificate to a coffee

shop or department store (i.e., the incentive) in return for filling out a questionnaire.

Participants filled out the questionnaires unsupervised and took from 30 minutes to

two weeks to return the completed questionnaires to their point-person. As each

questionnaire was collected, the point-person disbursed the incentive. Afterwards,

the point-person returned the completed questionnaires to the researchers by mail or

pickup.

Measures. The questionnaire was designed to take approximately 30 minutes to

complete. Questionnaires were completed separately by each participant. Question-

naires were anonymous (containing no personally identifying information), however,

each questionnaire came with a detachable information sheet for participants who

were amenable to being contacted for future studies. The questionnaire focused on

five main areas of case managers’ jobs, based on results from the phase #1 inter-

views. Participants were asked questions in the following areas: 1) general job duties,

2) visiting a client in his/her home, 3) ADL forms and the flow of information, 4)

clients’ social networks, and 5) opinions about possible ADL-monitoring technologies.

As with phase #1, questions did not suggest a specific technological approach. Many
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Technology Frequently Occasionally Rarely Never Don’t What’s
have that?

eMail 71% 18% 5% 2% 4% 0%
Internet 67% 23% 7% 3% 0% 0%
Voice mail 88% 9% 2% 1% 0% 0%
Electronic calendar 13% 11% 21% 36% 14% 4%
Instant messaging 10% 16% 26% 43% 3% 1%
Text messaging 15% 24% 24% 32% 2% 2%
OnStar 1% 2% 3% 41% 40% 13%
Computer / Laptop 83% 11% 1% 2% 2% 0%
Answering machine 80% 3% 3% 4% 9% 0%
Cell phone 86% 10% 1% 1% 2% 0%
PDA 9% 3% 10% 28% 47% 3%
MP3 Player 1% 3% 4% 31% 53% 8%

Table 2.1: Technology use among CMs from phase #2.

questions were multiple choice, but several were open-ended. Multiple choice ques-

tions were often accompanied by additional “fill in the blanks” for participants with

insights that might not conform to the response options. To perform a quantitative

analysis on the open-ended and “fill in the blanks” responses, a simple code book was

developed and the write-in responses were coded as appropriate.

2.4.2 Results

Participants and technology use. The majority of participants reported using

voicemail frequently (88%), a cell phone frequently (86%), a computer or laptop

frequently (83%), email frequently (71%), and the internet frequently (67%). The

least frequently used technologies were an MP3 player (84% never or don’t have one),

OnStar (81% never or don’t have one), a PDA (75% never or don’t have one), instant

messaging (69% rarely or never), and an electronic calendar (57% rarely or never).

See Table 2.1 for all results.

Specialized training. 39% of participants were RNs, 6% were LPNs, 23% were

physical therapists, and 3% were occupational therapists. 43% received some sort of

specialized geriatric training.
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Monitoring clients. Participants reported regularly visiting a mean of 2.38

(SD=3.36) cities or counties for their job, and managing a mean of 35.38 (SD=31.36)

clients at a time on average.3 Participants reported making a mean of 2.33 (SD=2.20)

home monitoring visits per day, and a mean of 1.42 (SD=2.11) monitoring phone calls

per day. The questionnaire also asked participants to rank how much time they spent

on each of four activities (home monitoring visits, paperwork, time in the office not

doing paperwork, and traveling to and from home visits). Results, in order of where

most of their time on the job is typically spent to least, were:

• home monitoring visits (49% of CMs ranked this most time consuming)

• paperwork (44% ranked this 2nd most time consuming)

• traveling to and from home visits (46% ranked this 3rd most time consuming)

• time in the office not on paperwork (51% ranked this least time consuming)

Main goal, challenge, and reward of job. When asked the open-ended ques-

tion, “What is the main goal of your job?” the most common categories of responses

were: keeping patients living in their homes or living independently (36%), patient

(or client) safety (32%), patient care or health (24%), and developing plans or coor-

dinating services (14%). When asked an open-ended question about what the most

challenging aspect of their job was, the most common response categories were paper-

work (21%), time management (14%), coordinating many services (14%), noncom-

pliant patients (10%), and motivating clients or convincing them to accept services

(10%). When asked what the most rewarding aspect of the job was, the most common

response categories were improving patient quality of life or helping patients (40%),

interacting with clients (21%), and helping patients be independent (18%).

Arranging services. The majority of participants reported that they frequently

or occasionally arranged for the following services or items for their clients:

• visits from nurses (59% frequently, 30% occasionally)

3These results include responses from “clinical managers” and similarly titled case managers,
whose responses may include the client loads of an entire group of case managers, not just their
own.



26 CHAPTER 2. IN-HOME MONITORING: A STUDY OF CASE MANAGERS

• PCAs to help with bathing (56% frequently)

• shower chairs or grab bars (49% frequently, 31% occasionally)

• assistive walking devices (44% frequently, 42% occasionally)

• PCAs to help with cleaning (36% frequently, 32% occasionally)

• PCAs to help with cooking (31% frequently, 34% occasionally)

• adult diapers (31% frequently, 28% occasionally)

• home-delivered meals (30% frequently, 31% occasionally)

• mental health counseling (17% frequently, 41% occasionally)

• transportation (16% frequently, 49% occasionally)

• hospice visits (13% frequently, 44% occasionally)

It was more rare for participants to arrange for financial counseling for their clients

(40% reported rarely doing this), and while 40% reported occasionally calling adult

protective services for their clients, 53.9% reported doing this rarely or never (with

6.1% reporting frequently).4

Clients. The age range of clients seen by participants was 39-95 years, with the

average age of clients as 69 years of age. The majority of participants (78%) reported

that all or most of their clients were above the age of 65 and the other 22% reported

that some of their clients were above the age of 65. CMs reported that their clients

under the age of 65 were most likely to have multiple sclerosis (21%), cancer (20%),

heart problems (17%), diabetes (14%), joint replacement (14%), or quadriplegia or

paraplegia (12%).

The majority of participants reported that frailty (79%) and diabetes (56%) were

very common problems among their clients. Other problems were reported by the

majority of participants to be somewhat or very common, including:

4Adult protective services (APS) may help clients by prosecuting criminally negligent care
providers or moving clients to safe surroundings.
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• food allergies (65%)

• deafness (63%)

• blindness (56%)

• nutritional deficiency (54%)

• moderate dementia (53%)

• obesity (53%)

• mild dementia (50%)

• incontinence (49%)

Muteness (79% not very) and severe dementia (42% somewhat, 38% not very)

were reported to be somewhat or not very common by the majority of participants.

The majority (58%) reported that few or none of their clients were bedridden, while

39% indicated that some were, and 3% that many or most were. The majority of

participants (78%) also reported that some or most of their clients use a wheelchair,

while 91% reported that some or most of their clients use a cane, and 43% reported

that some clients use a motorized scooter. Participants indicated that it is rare for

clients to share assistive equipment with others (e.g., clients do not typically share

a scooter with someone else in their household). 57% of participants indicated that

their clients frequently wear shoes during a home monitoring visit.

Participants reported that most of their clients live in their own houses (57%)

and apartments (49%) and that some live in family houses (60%), i.e., the home of a

family member. Few to none of their clients lived in assisted living facilities (reported

by 66%), shared houses (75%), or shared apartments (83%). 42% of participants

reported that most of their clients lived alone, and 48% reported that some of their

clients lived alone. 68% indicated that some of their clients had cats or indoor dogs.

When clients did not live alone, participants wrote in that the client typically lived
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with only 1 other person (48%), 1 or 2 other people (21%), 2 other people (19%), or

more than 2 people (13%).5

Health Information. The majority of participants reported that they frequently

collected information about their clients from other professionals, including nurses

(58%), personal care assistants (52%), doctors (39%), and other CMs (37%), as well

as from the client’s family members (61%). The majority reported that they rarely or

never got information about clients from neighbors (68%) or landlords (81%). Overall,

participants reported that they frequently felt like the information they got from these

other parties was accurate, with information from nurses (90%), doctors (84%), and

other CMs (78%) being ranked most accurate, followed by information from family

members (76%) and PCA’s (76%). Information from neighbors (48%) and landlords

(60%) was most often ranked as being only occasionally accurate among participants

who indicated that they interact with neighbors or landlords about the client.

When asked how they conduct a home monitoring visit with a client who they

have difficulty communicating with, participants reported that they observe the client

(47%), ask the primary caregiver (35%), and observe the environment (31%) to glean

information about the client’s ADLs. The majority of participants reported occa-

sionally (45%) or rarely (37%) using an interpreter with a client. 25% reported using

demonstrations or gestures when they have difficulty communicating with a client to

help determine how well the client is performing ADLs.

When asked who contributes most to the typical client’s care, most participants

reported that a family member or child was most involved in providing care (62%),

followed by a hired caregiver (32%) or the client’s spouse (28%).6 The majority of

participants (81%) reported that they frequently interact with the individual most

involved in the care of the client (15% occasionally). Participants reported interact-

ing with personal care assistants (81% face-to-face, 68% telephone), family members

(78% face-to-face, 82% telephone), and other case managers (51% face-to-face, 77%

telephone) through telephone calls and face-to-face interactions, while they primarily

5This was an open-ended question, and participants did not always respond with whole numbers,
e.g., “one or two other people.”

6The percentages sum to over 100%, as 30% of CMs reported more than one individual contributes
most to the client’s care.
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interact with nurses (47% face-to-face, 88% telephone) and doctors (14% face-to-face,

93% telephone) through telephone calls.

When asked who they believe their clients trust most with information about the

clients’ health, participants reported that clients trust doctors (34%), family members

(25%), and nurses most (24%), followed by CMs (16%).

The Home Monitoring Visit. When visiting the client in his/her home, 72%

of participants reported that they usually conduct the interview in the living room,

while 30% reported using the kitchen, and 29% reported using the bedroom. The

majority of participants also reported that they usually inspect the bathroom (66%),

kitchen (55%), and bedroom (50%) during a home visit. 39% of participants reported

that they are allowed to visit or inspect all rooms in the house during a home visit,

while another 23% reported that they are not allowed to visit bedrooms belonging to

people besides their client. Only 14% of participants reported that their job would

be easier if they could visit rooms that they are not allowed to visit (including but

not limited to the rooms of other household members).

When asked how often clients cancel or miss a visit, 54% indicated occasionally

and 45% indicated that this rarely happens. 9% reported making unscheduled visits

frequently, while the majority of participants indicated that they made unscheduled

visits occasionally (38%) or rarely (33%). When asked why they make unscheduled

visits, the most common responses were: because they could not contact the patient

on the phone (13%), because they were in the area or just to make friendly contact

with the client (12%), and to make sure that the PCAs show up for work (10%).

When scheduling a home visit, the overwhelming majority of participants reported

that they always (41%) or frequently (29%) consider agency or state deadlines, as

well as changes in a client’s medical status (49% responded always, 42% responded

frequently). Receiving phone calls from a client or a client’s friend, family, doctor, or

nurse was reported to occasionally or frequently be a factor in scheduling, and being

near a client’s house was also reported to occasionally be considered when scheduling

a visit. When asked if they had called 911 in the past 12 months because a client did

not answer the door when the participant arrived for a scheduled visit, 80% reported

that they had not, and 20% reported calling 911 one or more times, with a range of
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Technology Definitely Maybe Never Unsure What’s Already
that? have

Emergency call buttons 77% 22% 0% 0% 0% 1%
Home security system 57% 39% 1% 2% 0% 1%
Cell phones 51% 42% 2% 1% 0% 3%
Internet 18% 66% 4% 8% 1% 3%
Computers / Laptops 16% 64% 6% 10% 1% 3%
Motion detectors 13% 58% 6% 22% 0% 1%
Microphones 8% 43% 18% 31% 0% 0%
Cameras 6% 51% 11% 31% 0% 1%
PDAs 5% 51% 12% 30% 2% 0%

Table 2.2: Participant feelings on clients’ acceptance of technology.

0 – 10 (M=.43, SD=1.28).

Technology for Monitoring ADLs. When asked “If a magic genie could tell

you every single activity that your client performed during the course of a day, would

you still want to visit the house? Why or why not?” 97% (88 of 91) responded

that they would still want to visit the house. The most common reasons given were

to: provide face-to-face social contact (23%), directly observe the patient performing

activities (20%), and see for myself/verify genie accuracy (13%).

When asked whether clients would allow various technologies in their homes, par-

ticipants were mostly positive about their clients allowing emergency call buttons

(77% definitely, 22% maybe), a home security system (57% definitely, 39% maybe),

and cell phones (51% definitely, 42% maybe). Participants were slightly less posi-

tive about their clients allowing the Internet (18% definitely, 66% maybe), computers

or laptops (16% definitely, 64% maybe), and motion detectors (13% definitely, 58%

maybe). Participants were more wary of their clients allowing cameras (51% maybe,

11% never, 31% not sure), microphones (43% maybe, 17% never, 31% not sure), and

Personal Digital Assistants (PDAs) (51% maybe, 12% never, 30% not sure). See

Table 2.2 for all results.

When asked how participants would prefer to receive updates or reports on their

client’s condition (e.g., the type of information a system might provide about a client),
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phone calls were the most preferred (79%), followed by fax (42%), printout (41%),

website (35%), video, (22%), and text message (21%).

When asked which ADL would be most valuable to have information about be-

tween home visits, the most common responses were:

• taking medications (23%)

• eating and drinking (17%)

• ambulation i.e., walking (14%)

• nutrition (14%)

When asked how important it is to know about various ADLs, participants re-

ported the following as being very important:

• falling (99%)

• taking medication (93%)

• eating/nutrition (84%)

• toileting (82%)

• bathing (80%)

• getting out of bed (78%)

• grooming/hygiene (74%)

• dressing (68%)

Getting out of the house (56% very, 40% somewhat) and socializing (43% very, 52%

somewhat) were both considered to be somewhat important, as were doing laundry,

cooking, and cleaning. Yard work was the least important (36% somewhat, 36%

not very, 13% not at all). Overall, participants reported that it was somewhat, not

very, or not at all difficult to get information about these ADLs. However, a few of
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the activities were more frequently rated as very difficult to get information about,

including: taking medication (11% very, 47% somewhat), falling (10% very, 46%

somewhat), eating/nutrition (10% very, 53% somewhat), and socializing (9% very,

34% somewhat).

When asked what makes an ADL difficult to monitor, the most common responses

were: the client was not honest (26%), the participant cannot observe the client com-

pleting the task (22%), and that the client is demented or agitated (10%). Over-

all, participants reported that clients are very or somewhat accurate in reporting

on ADLs. For most ADLs, 20% or more of participants reported that clients were

very accurate. However, the ADLs with the lowest reported accuracy were: groom-

ing/hygiene (14% very accurate, 72% somewhat accurate, 11% not very accurate),

taking medication (16% very, 72% somewhat, 10% not very), and eating/nutrition

(16% very, 64% somewhat, 17% not very). Taking medication, falling, and eat-

ing/nutrition were the most often endorsed as being ADLs that the participants must

frequently depend on information from people besides the client to assess. Partic-

ipants also reported that they inspect the client’s environment to get information

about certain ADLs. In particular, most participants reported inspecting the en-

vironment to assess bathing (59% always), falling (58% always), grooming/hygiene

(57% always), taking medication (57% always), and dressing (56% always).

When asked “If a magic genie could remind all of your clients to do one thing

every day, what should the genie remind them of?” the most common responses were

to: use medications correctly (57%), exercise (16%), and eat well (10%). When asked

what one client behavior they would most like to change, the most common responses

were: get more exercise (13%), follow the schedule or care plan (13%), ask for help

and accept it (10%), and have more healthy habits (e.g., quit smoking) (10%).

Paperwork/Forms. 46% of participants have to fill out one form after a typical

home monitoring visit, while 26% reported filling out two forms, 12% fill out three

forms, and 16% fill out 4 or more forms. Participants reported referring to forms

that they previously filled out a mean of two times per day (M=1.95), and referring

to forms filled out by other CMs about one time per day (M=1.27). Participants

indicated that home monitoring forms are most accessed by office staff (reported by
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87% of the sample), other CMs (60%), government officials (54%), the client’s nurse

(53%), and insurance companies (41%). Fewer participants indicated that the forms

were accessed by doctors (32%), PCAs (22%), the client’s spouse (13%), or children

(2%).

Participants reported spending between 0 and 210 minutes completing forms after

a home visit (M=30.50, SD=31.29). 65% reported completing the forms in the

client’s home, while 42% completed forms in the office, and 24% reported completing

forms in the car. 67% reported taking notes using paper and pencil, while 29% take

notes using a laptop just after a home visit. 67% of case managers reported that

they use a computer to fill out forms for home visits, and 33% reported not using a

computer.7

2.5 Discussion

The results of this study may help researchers who are interested in developing tech-

nology for the automatic health assessment of elders, specifically automatic monitor-

ing of ADLs. In this section, we discuss some derivative results from phase #2.

2.5.1 Understanding Case Managers’ Motivations

Although all participants were case managers, training varied and included registered

nurses (RNs), licensed practical nurses (LPNs), physical therapists, and specialized

geriatric training. We found correlations between job background and a CM’s main

goal at work, most challenging aspect of work, and most rewarding aspect of work.

We discuss these results next.

Job background and main goals. Results show that RN’s are significantly

less likely to say that the main goal of their job is “patient care” in general (r=-.40,

p=.00), and are significantly more likely to report that “keeping the patient healthy”

(r=.21, p=.05) is the primary goal of their job. Being an LPN was uncommon in the

sample (only 5.7% of participants), but these individuals were significantly more likely

7For some case managers, the choice of whether or not to use a computer or laptop may be
mandated by the agency for which they work.
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to report that keeping patients living independently was the main goal of their job

(r=.26, p=.01). On the other hand, physical therapists were less likely to report that

keeping patients healthy was the main goal of their job (r=-.47, p=.00). Participants

with specialized geriatric training were more likely to report that patient care was

the main goal of their job (r=.24, p=.02), and were less likely to report that keeping

patients living in their homes was their main goal (r=-.29, p=.01).

Job background and most challenging aspect of work. Being an RN, an

LPN, or a physical therapist was not related to what the participants reported as

being challenging. However, occupational therapists (only 3.4% of the sample) were

significantly more likely to report that time management was the most challenging

aspect of their job (r=.26, p=.01). Additionally, participants with specialized geriatric

training were less likely to report that motivating clients or convincing them to accept

services was the most challenging aspect of their job (r=-.22, p=.04).

Job background and most rewarding aspect of job. Being an RN is related

to what participants reported as being the most rewarding aspect of their jobs. RNs

are significantly more likely to report that improving the patient’s quality of life is

most rewarding (r=.36, p=.001), and are more likely to report that meeting client

goals is most rewarding (r=.21, p=.05). Physical therapists were less likely to report

that improving quality of life was the most rewarding aspect of their job (r=-.22,

p=.04), and were more likely to report that helping a client be independent was

the most rewarding aspect (r=.22, p=.04). Participants with specialized geriatric

training were significantly less likely to report that meeting patient goals was the

most rewarding aspect of their job (r=-.29, p=.01). All participants said that they

would still visit clients, even if a technology could report every ADL, regardless of

their background. However, we found a trend level association between reporting

that the most rewarding aspect of the job is interacting with the client and reporting

a desire to still visit clients in order to have face-to-face social interaction (r=.18,

p=.10).
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2.5.2 Interactions with Clients’ Care Providers

We found a correlation between job background and how/who participants interact

with during the course of their work. Depending on job background and years of

experience, participants showed differences between who they collect information from

and how much they trust that information.

Who participants interact with. RNs are significantly more likely to fre-

quently collect information about clients from personal care assistants (r=.26, p=.01),

family members (r=.32, p=.00), doctors (r=.28, p=.01), and other CMs (r=.34,

p=.00). LPNs were less likely to collect information from family members (r=-.23,

p=.03) and other CMs (r=-.22, p=.04). Physical therapists were less likely to col-

lect information from family members (r=-.24, p=.03), and from landlords (r=-.24,

p=.03). Having specialized geriatric training was related to less collection of infor-

mation from doctors (r=-.23, p=.04).

Experience and PCAs. Results show that years of experience was positively

correlated with a higher frequency of collecting information from personal care assis-

tants (r=.23, p=.03). We believe that this may be due to the CMs finding the type

of information that PCAs can provide more valuable as the CMs gain experience on

the job, or due to years of experience correlating with more supervisory tasks related

to PCAs.

Experience and trust. Overall, there were few significant associations between

job and/or experience and how often participants felt that the information they get

from others is accurate. Being an RN, LPN, or occupational therapist was not related

to perception of accuracy of any sources of information, nor was years of experience.

Physical therapists were less likely to think that information from landlords and

neighbors was accurate (r=-.27, p=.01; r=-.23, p=.04). Having specialized geriatric

training was related to a higher perception that information from neighbors was

accurate (r=.32, p=.00).
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2.5.3 Acceptance of Technology

We explored how a participant’s own technology use predicted her estimation of her

clients’ acceptance of technology. To help answer this question, we created a technol-

ogy acceptance score that sums across all the possible technologies that participants

were asked to predict acceptance of. We also examined the technologies separately

as individual variables.

In short, we found that a CM’s own technology use did not predict how they

felt their clients would accept technology. General technology use (question 4 in the

questionnaire) and using a computer to complete forms for home visits (question 69)

are not significantly correlated with predicted technology acceptance. Neither is age,

years of experience, case load, nor degree title (e.g., RN, LPN, etc.). However, the

participant’s gender was a significant predictor. Women are more likely to report

that their clients would allow technologies in their homes, including cameras and

motion detectors (t(88)=1.80, p=.07). Although this finding is at the trend level, in

a more complex model predicting technology optimism, gender emerged as the only

significant predictor.

When participants were asked how they take notes during or just after a home

monitoring visit (question 68), the 29% of the sample who reported using a laptop to

take notes was more optimistic about technology acceptance by their clients, though

this was a trend-level finding (t(88)=1.66, p=.10). We believe that these participants

may have seen their clients interact with or react to technology by using a laptop in

their clients’ presence.

The city where the participant resides is also not related to their prediction of

clients’ technology acceptance. Despite this, we found that the city of residence

is related to technology use, with Seattle participants reporting significantly higher

levels of technology use than the other 3 locations (t(88)=-2.45, p<.05). We note that

the use of laptops among participants in Seattle is not necessarily a personal choice,

and may have been mandated by the agency that employs them.

We found that characteristics of clients also do not lead participants to be more

or less optimistic about technologies being accepted. For example, average age of the

clients, the number of clients above the age of 65, and the number of clients who live
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alone were not significantly related to prediction of technology acceptance.

It appears that optimism about whether clients would accept technology is a fairly

independent construct. Though there are differences in technology use among the

participants based on city of residence, neither city of residence nor a participant’s

own technology use is related to what they predict their clients would accept in a

home-based monitoring system. Characteristics of the clients are also not related to

predicted acceptance. It may be that the clients are perceived as an older generation

who are less accepting of technology in general, regardless of where they live.

2.5.4 Time Spent Filling out Paperwork

We were interested in finding what might predict how much time is spent filling

out forms. We discovered that a participant’s age is positively correlated with the

amount of time she spends filling out forms for a typical home monitoring visit. Older

participants reported spending more time on paperwork (r=.28, p<.01). The average

age of clients was not related to time spent completing paperwork, and neither were

years of experience, degree title (e.g., RN), nor having specialized geriatric training.

Using a laptop or computer to take notes or fill out forms versus using paper and

pencil was also not predictive of perceived amount of time spent on paperwork.

2.6 Implications to Current Technology Research

The results of this study are directly applicable to several key areas of ubiquitous

computing research. In this section, we will apply the information reported by in-

terviewees from phase #1 and the questionnaire respondents from phase #2 with

respect to people tracking, activity recognition, and the elder’s care networks.

2.6.1 People Tracking

People tracking is a fundamental problem in ubiquitous computing and has been ap-

proached by many researchers, including the authors [117]. People tracking research

is concerned with using information from sensors to estimate the location of some
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number of people at some granularity. Previous research with an elderly population

has shown that location in the home can be an important indicator of social in-

volvement, cognitive functioning, and physical activity and ability [39]. Our findings

help describe the home environment (e.g., use/sharing of assistive equipment) and

occupants (e.g., pets, number of occupants), information which can help researchers

choose appropriate sensors and set appropriate tracking goals.

Location in the home. We found that most elderly occupants of a home will

be mobile, as only 3% of questionnaire respondents reported that all or most of their

clients were bedridden. All respondents identified that knowing whether a client gets

out of bed in the morning was either very important (78%) or somewhat important

(22%). 14% of respondents chose ambulation as the single most important ADL to

know about. In addition, three interviewees mentioned that it is important to know

whether a client moves around the house, so that they avoid “skin breakdown,”8 which

can be caused by remaining in the same place for too long (“They don’t move like

we do. So they’re sitting in one place all day long. They get skin breakdown.”). We

hypothesize that room-level tracking could provide knowledge of where clients move

in the home, which could reveal whether occupants are “up and about.” Smaller than

room-level granularity, or perhaps sensors to detect that the client has not gotten up

from a single piece of furniture, may be required to determine that clients are not

sitting in the same place for too long.

Scheduling. The majority of interviewees reported that simply knowing whether

or not a client was at home could improve scheduling. Interviewees reported being

very annoyed when clients are absent for a home monitoring visit, saying “if nobody’s

home, it can be very irritating,” “it makes me mad,” and “oh, you better be home

if I’ve called you.” The majority of questionnaire respondents (54%) reported that

their clients occasionally miss visits. Additionally, interviewees reported that they

are required to make an emergency call to 911 if a client cannot be located for a

scheduled home visit (“Sometimes they’ve passed away. Sometimes they’re asleep.

Sometimes they have had a medical problem during the night and they’re not able to

get to the door.”). Questionnaire respondents reported making such emergency calls

8“Skin breakdown” is sometimes referred to as “bed sores” or “pressure sores”
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only rarely, usually less than once per year (M=.43, SD=1.28), however, when asked

how often calls to 911 are made, one interviewee states that “one time is too often.”

These findings indicate that home-level people tracking could improve scheduling by

reducing the number of missed visits, thereby further reducing emergency calls to

911 as well as decreasing the worry and frustration associated with unaccounted for

clients.

Hospital visits and socialization. Interviewees indicated that socialization is

also an important indicator of overall functioning (“it’s good mental health not to sit

up in a dark room all day long.”). 96% of respondents report that getting out of the

house is very or somewhat important to know, and 95% reported that socializing was

very or somewhat important to know about. In addition, two interviewees mentioned

that they intentionally try to connect clients socially, “We don’t want them [clients]

to be socially isolated. We want them to get out and go to church...get involved in

functions...get outside their home.” Besides socializing, visiting the hospital is an

outside-the-home activity that is important for a CM to know about. Three intervie-

wees mentioned that the CM is often the last to know when a client visits the hospital

(“the hospital doesn’t always let us know [that a client has been hospitalized].”). We

hypothesize that information gathered by a city-wide people-tracking system could

be an important indicator of medical status and socialization.

Number of occupants at home. 42% of questionnaire respondents indicated

that most of their clients live alone. Meanwhile, 88% of respondents indicated that

when their clients live with others, they usually live with 2 or fewer people. This indi-

cates that it is reasonable to expect 3 or fewer permanent occupants on average, not

counting temporary visitors. There may often be extra people around; for example,

most respondents (56%) mention that they frequently arrange for aides to visit their

clients. People tracking technology should accommodate anywhere from one to half

a dozen occupants at the same time.

Pets. Indoor pets are common, with 81% of respondents reporting that some or

most clients had cats or indoor dogs. This indicates that researchers should expect

to deal with constraints introduced by pets.

Instrumentation opportunities. Although shoes represent a key target for
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placement of wearable sensors, participants reported that clients only wear shoes at

home about half the time, indicating that instrumented footwear will probably not

be broadly successful for tracking in the home. Respondents indicated that assistive

devices are often used by their clients; 45% report that all of their clients use canes

(46% most), 24% report that most clients use a wheelchair (54% some), and 43% re-

port that some clients use motorized scooters (5% most). Additionally, participants

reported that clients almost never share assistive equipment with others. This indi-

cates that identity may be associated with instrumented assistive devices. Heavily

used assistive devices are promising locations for instrumentation, e.g., wheelchairs

could sense weight or canes might detect obstacles or even general ambulation. On

the other hand, these devices could introduce noise for other sensors, e.g., canes and

wheelchairs cause occlusion for cameras, and metallic wheelchairs may interfere with

RFID sensors. Of course, all of these opportunities assume that the CM has an

accurate understanding of how the client uses her equipment.

Privacy constraints for sensor choice. Privacy issues, both actual and per-

ceived, are crucial for researchers developing people tracking and other monitoring

technologies to consider. Every interviewee mentioned privacy issues as drawbacks

to an in-home monitoring technology (“...but where is their [the client’s] privacy?”).

When asked what technology they believed clients would accept, the majority of CM

respondents replied that cameras, microphones, and PDAs would never be accepted

or would only maybe be accepted. 22% respondents felt that motion detectors would

definitely be accepted (78% maybe), while 57% felt that home security systems would

definitely gain acceptance (39% maybe). Motion detectors are a common component

of any home security system. This indicates that perceived privacy issues can be al-

layed by folding sensing technology into a larger, easier-to-understand package – such

as a home security system. In addition, privacy issues may be mitigated if clients are

aware of clear, immediate benefits accompanying new technology.
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Very Important to Know Very Difficult to Collect Top Ten
Falling 99% Taking medication 11% Taking medication
Taking medication 93% Eating/nutrition 10% Falling
Eating/nutrition 84% Falling 10% Eating/nutrition
Toileting 82% Socializing 9% Toileting
Bathing 80% Getting out of bed 7% Getting out of bed
Getting out of bed 78% Cooking 4% Bathing
Grooming/hygiene 74% Toileting 4% Cooking
Dressing 68% Bathing 3% Socializing
Cooking 61% Grooming/hygiene 3% Grooming/hygiene
Leaving the house 56% Dressing 3% Dressing

Table 2.3: ADLs ranked by importance, difficulty to monitor, and top 10 most useful.

2.6.2 Activity Recognition

In-home performance of ADLs is a key measure by which CMs ensure that elderly

clients are living safely and independently. One interviewee claimed, “Completing

ADLs and not completing ADLs tells a lot about somebody and how they are doing.”

Many research projects have focused on automatic detection of ADLs [92, 77]. Find-

ings from both phases of this study help describe several promising areas for future

technology that automatically monitor ADLs.

Choosing which ADLs to monitor. We found several promising areas where

technology could provide important information that is normally difficult to come by

for a CM. Several ADLs were rated as being very important to collect information

about, yet also difficult to get accurate information about. ADLs that were very

important yet difficult to collect information about include: taking medication (also

called “medication compliance”),9 eating/nutrition, ambulation/activity level, falling,

and socializing. When asked “If a magic genie could tell you everything about one of

your client’s activities‘ of daily living, which would be the most valuable?,” the most

common responses were taking medications (23%), eating/drinking behavior (17%),

nutrition information (14%) and ambulation information (14%). See Table 2.3 for a

9One medical study estimates that 40% to 75% of elderly adults are non-compliant when taking
medication [102].
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breakdown of most important and difficult to collect ADLs, with a ranking of the top

10 ADLs from both categories.

Importance of grooming and hygiene. 83% of respondents indicated that

client reports of grooming/hygiene were only somewhat or not very accurate. 89%

of respondents reported always or frequently inspecting the environment (including

the client’s appearance) to determine information about grooming/hygiene. Every

interviewee also reported inspecting the environment for this information. Clearly,

CMs seem to rely on their own senses to gauge grooming/hygiene behavior, and

58% of respondents indicate that it is not very or not at all difficult to determine

this information. Although grooming/hygiene information is easy to determine, our

findings indicate that it may have an impact on “quality of job” for a CM. Two

interviewees described messy homes or unclean clients as a drawback to home visits.

One participant says that one of the hardest parts of her job is “...just sometimes

being disgusted by the way persons let themselves go,” the same CM mentions, “I’ve

had consumers [clients] ...I can’t go to their house until I know they’ve taken a bath.”

ADLs that are related to a clean client or a clean environment are not the most

difficult to collect information about (uncleanliness is usually very apparent), but

may have a positive impact the happiness of CMs and the quality of their home visits

with clients.

Recognizing non-client activity. Elderly clients are only one of several classes

of individuals who case managers must interact with during the course of their work.

In many cases, interviewees mentioned that it would be useful to know the activities

of informal support (e.g., spouses, relatives, visitors) and formal support, especially

PCAs.10 One interviewee reported that one of her main responsibilities is “to see if

the aide’s doing what they’re supposed to.” The same interviewee reported that client

reports of aide performance are not always accurate, because “some of our little

consumers [clients] don’t want to get the aides in trouble. So, they’ll say the aides

are doing [work].” Another interviewee mentioned keeping track of informal support

e.g., family members, as well, to make sure they are doing what they say they are

10We suspect the interviewees were referring to the activities related to the care of the client, and
not all the day-to-day activities performed by informal and formal support.
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doing. This interviewee went on to describe this as a difficult part of the job, “You’re

basically calling them out on taking care of their family.” We hypothesize that it may

be useful for activity recognition technology to not just focus on the elderly occupant

of a home, but to keep better track of all aspects of her care, including monitoring

the relevant activities of occupants and visitors (e.g., PCAs and family members).

Detecting cooperative activities. Interviewees reported that they often ar-

ranged for clients to receive help with common ADLs such as cooking meals, bathing,

or dressing (“...we [arrange] for the aide to cook with their assistance, but cook their

[the client’s] food the way they [the clients] cook stew or the way they [the clients] do

a meatloaf.”). Questionnaire respondents also indicated that they frequently arrange

for aides to help with bathing (56%), cleaning (36%), and cooking (31%). These

services are often completed in concert with the elderly client. For example, a PCA

may help the client bathe, cook, or clean. It is important to recognize that these sup-

plemented ADLs are performed cooperatively between the caregiver and the client.

Thus, technology for activity recognition should be prepared to recognize cooperative

activities performed simultaneously by 2 or more individuals.

Monitoring use of assistive technology. A promising area for activity mon-

itoring lies in collecting information about assistive equipment that may be in use.

Interviewees and questionnaire respondents indicated that assistive equipment is com-

mon among clients, and that part of the CM’s job is to determine what assistive

equipment is necessary and then to arrange for that equipment to be provided. We

hypothesize that activity recognition technology should monitor use of assistive tech-

nology, both to make sure that clients are safe and to help the CM make better

decisions about what assistive technology is necessary (i.e., actually used).

Nutrition. Monitoring the nutrition and eating habits of clients is a promising

area for activity recognition research. Every interviewee indicated that detecting

malnutrition and improving eating habits was an important part of her job. One

interviewee claimed, “Their nutrition is big. If they don’t eat...they seem to become

confused, they get weaker, they’re more fatigued, and they’re higher risk for going into

a nursing home.” 84% of questionnaire respondents identified eating and nutrition

as very important to know, and we ranked it as the third “most useful” ADL related
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activity to know (see Table 2.3). When asked “If a magic genie could remind all of

your clients to do one thing every day, what should the genie remind them of?,” 10%

of respondents said “eat better.” 65% of respondents also said that food allergies were

very common among their clients. Clearly, monitoring nutrition and eating habits is

an important area for CMs and future technology.

Supplementing, not replacing, paperwork. Initially, it seems that automatic

activity recognition could be used to automatically fill out paperwork. Recall that

the most common response for both interviewees and questionnaire respondents to an

open-ended question about what the most challenging aspect/hardest part of their

job was completing paperwork. Additionally, respondents reported spending a mean

of 70 minutes per day on paperwork. If technology could reduce this to 0 minutes,

this would be around a 12% productivity boost.

However, CMs were not interested in technology to replace their job; rather, they

expressed a need for more/better information so that they could improve the quality

of their work. Every interviewee described visiting clients as their favorite part of

the job (“[the home visit] is the biggest part of my job that I enjoy. Usually it’s

the highlight of their [the client’s] day to have the skilled nurse, case manager, or

their caregivers come in.”), and many mentioned a desire that technology not replace

face-to-face contact. In addition, 97% of the 91 questionnaire respondents indicated

that they would still choose to visit their clients even if a magic genie was able to

inform them of all the information necessary to fill out forms. This indicates that

technology that is designed to help CMs should not replace work tasks, but should

provide data to “fill in the gaps” in what CMs are able to observe, and/or to buttress

their conclusions.

2.6.3 The Elder’s Care Network

The physical and mental well-being of an elder is intimately tied to a “care network”

– the group of people, representing both informal and formal support, involved in

caring for the elder. Projects at Intel Research Seattle (e.g., Computer-Supported

Coordinated Care (CSCC) and the CareNet Display) and elsewhere (e.g., Georgia
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Tech’s Digital Family Portrait) have been aimed at understanding the challenges for

the care network and providing services that will assist, connect, and expand it [36,

35, 101, 83]. Results from this study support crucial design decisions – determining

what information is valuable, what information is private, and who should have access

to what information.

Sharing ADL information. Interviewees pointed out that elderly clients are

not always receptive to sharing information, even with loved ones (“If [my daughter]

wants to see how I’m doing then she can call me. [Note: the CM was describing a

conversation]”). Questionnaire respondents also indicated that it is rare for a spouse

(13%) or children (2%) to see the paperwork the CM fills out for the client. Inter-

estingly, there seems to be little contact between doctors and CMs. One interviewee

says, “Every consumer [client] has to have a doctor. And you would think you’d have

contact with the doctor but you really don’t. Because the [PROGRAM] is really kind

of non-medical.” Respondents also indicate rarely interacting with doctors face-to-

face (only 14% report doing so), and instead, usually interact with them over the

phone (93%). 32% of respondents indicated that doctors access client forms. Re-

spondents indicate that they believe clients trust doctors the most (34%), followed by

family members (25%). These findings indicate that future technology would benefit

from efficient information sharing protocols that can connect formal support, informal

support, and clients – while respecting client confidentiality requests.

Monitoring ADLs when there are communication challenges. We found

that CMs depend on information from outside sources (i.e., members of the care net-

work) when clients suffer from dementia or communication difficulties (e.g., language

barriers or disabilities). Interviewees reported seeking information from informal sup-

port when clients have cognitive problems (“Sometimes if you have someone that does

have some dementia...you have to make sure to call their family.”) or disabilities

(“I’ve got one [client] who is like stone deaf. I’ll call the daughter and just say, I’m

going to see your mom. Does she need anything?”). Questionnaire respondents also

indicated asking informal support for help when unable to communicate with clients

(35%). In addition, 10% of respondents indicated that client dementia/agitation
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makes activities difficult to monitor and 45% indicated occasionally using an inter-

preter. These findings indicate that communication challenges are a fact of life for

case managers, and that future technology should be designed with this in mind.

Engaging support. A large portion of the job for a CM is to keep track of

informal and formal support and services. Two interviewees mentioned connecting

informal support to a client (i.e., ensuring that informal support is living up to agree-

ments) as the hardest part of their job (“Family says they’re providing twenty-four

hour care. They say that they’re bringing food in. They say that they’re helping them

bathe on weekends. And then you find out that they haven’t been over there for three

weeks.”). This may be difficult, because some informal support does not want to help

clients with their ADLs. One interviewee frankly stated, “You don’t want to give your

mom a bath...or change her diapers.” In addition, interviewees mentioned that part

of the CM’s job is to ensure that formal support – specifically aides, or PCAs – are

performing their jobs ( “If they are in the plan supposed to be doing something, I’m

gonna be talking to em.”) and to make sure services are delivered and used (“I make

sure they have their safety equipment.”). Thus, CMs are in a position of both allo-

cating resources (including the help of others) into a service plan, and then enforcing

that plan. This is a difficult task and a prime area for future technology.

Educating the client about services. Although a CM may determine which

services are necessary, it is up to the client to decide which services to accept. Thus,

CMs repeatedly mention that encouraging clients and educating clients consumes a

lot of time. One interviewee described this process as the hardest part of her job, “The

hardest part is, you know, individuals are legally able to make their own decisions. And

so it’s difficult working with people who make wrong decisions.” Another interviewee

described the process as a finely honed job skill, “Nobody wants to be wearing diapers,

but if they understand they’re like underwear...” Yet another interviewee mentioned

that uncooperative clients often require more time from the CM (and more visits),

“if they’re adamant then we usually visit them more often.” 10% of questionnaire

respondents indicate that non-compliant clients are the most difficult part of the

job. Clients are often hesitant to accept services (an interviewee explained, “They

[clients] don’t want to admit to being dependent on somebody to help em.”), and/or



2.7. CONCLUSION 47

ignorant of the services that are available (“A lot of times they [the clients] don’t

understand that the program is designed to assist them to stay in their home as long

as they’re safe. They think that if they’re not able to do something then we’re gonna

put em in a nursing home.”). When asked what advice they would give clients, 10% of

questionnaire respondents said they would urge clients to ask for help – and accept it.

Encouraging and educating clients about goods and services are key responsibilities

of a CM, although they may be difficult to quantify.

Medication monitoring. 96% of questionnaire respondents identified taking

medication as very important to know about. When asked the open-ended question of

what they would like to remind their clients of every day, the number one response was

to remind clients to take medications properly (56%). Every interviewee from phase

#1 identified making sure clients were taking their medications as an important part

of the job. Interviewees mentioned several possible problems concerning medication,

including clients who forget to take it (“Elderly people don’t think about taking their

medication.”), clients who abuse it (“I will fax over my visit to a physician if he

requires it...if we feel like there’s medication abuse.”), or medication errors (“if we

notice...that they are taking one medication and not complementing it with another.”).

This problem is already well recognized, but our findings stress again that technology

to monitor medication use would be very useful to CMs.

2.7 Conclusion

In this chapter, we described our methodology and the results of a two-phased for-

mative study focused on case managers (CMs), the professional caregivers who are

responsible for assessing Activities of Daily Living (ADLs) in elderly clients. We de-

scribed phase #1 of the ADL study, in which we interviewed five case managers, and

phase #2 of the ADL study, in which questionnaires were collected from 91 case man-

agers. We discussed the results of both phases of the study, focusing on the findings

that related most to automatic in-home health assessment technology. Some implica-

tions were discussed toward three areas relevant to the field of ubiquitous computing

research: people tracking, activity recognition, and the elder’s care network.



Chapter 3

Activity and Location Inference

We seek to provide the information that is vital for automatic health monitoring:

identifying people, tracking people as they move, and knowing what activities people

are engaged in. In this chapter, we introduce the simultaneous tracking and activity

recognition (STAR) problem.1 The key idea is that people tracking can be improved

by activity recognition and vice versa. Location and activity are the context for

one another and knowledge of one is highly predictive of the other. The algorithms

we describe provide simultaneous room-level tracking and recognition of locomotion

(which we loosely categorize as an activity), as well as recognition of more complex

activities of daily living (ADLs).

3.1 Introduction

Automatic health monitoring necessarily occurs in a home environment where pri-

vacy, computational, and monetary constraints may be tight. We proceed from the

“bottom-up,” using predominantly anonymous, binary sensors that are minimally in-

vasive, fast, and inexpensive. We call a sensor anonymous and binary when it can

not directly identify people and at any given time it reports a value of one or zero.

These sensors can be found in existing home security systems.

We describe a particle filter approach that uses information collected by many

1This chapter is a revised version of [117].

48
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simple sensors. Particle filters offer a sample-based approximation of probability den-

sities that are too difficult to solve in closed form (e.g., tracking multiple occupants in

a home environment via several hundred anonymous, binary sensors). Particle filters

are desirable because they can approximate a large range of probability distributions,

focus resources on promising hypotheses, and the number of samples can be adjusted

to accommodate available computational resources. We show that a particle filter ap-

proach with simple sensors can tell us which rooms are occupied, count the occupants

in a room, identify the occupants, track occupant movements, recognize whether the

occupants are moving or not, and recognize several activities of daily living.

This chapter is organized as follows: In the next section we review existing instru-

mented facilities and discuss the state-of-the-art in location estimation and activity

recognition. Next, we describe the sensors we use and our rationale behind choosing

simple sensors. Afterwards, we introduce our approach, including the details of our

learner. The next three sections contain experimental results from simulations and

real instrumented environments. Finally, we discuss our findings and conclude.

3.2 Related Work

Over the last several years much effort has been put into developing and employing

a variety of sensors to solve key problems in the ubiquitous computing domain, in-

cluding camera networks for people tracking [121, 23, 104], as well as cameras and

microphones for activity recognition [33, 79]. Wearable sensors have been used for

health monitoring [69], the facilitation of group interactions [50], and memory aug-

mentation [97]. In this section we discuss these efforts in terms of automatic health

monitoring, people tracking, and activity recognition.

3.2.1 Automatic Health Monitoring

People tracking and activity recognition experiments typically occur in a laboratory

setting in a corporate or educational building [57, 23, 26]. Recently, there has been an

increase in the number of stand-alone instrumented home environments. The Aware
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Home project at Georgia Tech has built a house instrumented with ubiquitous com-

puting technology for a variety of experiments [2]. The house has been fitted with a

great variety of sensors with the goal of helping elderly adults live independently by

providing memory augmentation, accident detection, and behavioral trend tracking.

Researchers at MIT working on the House n project have purchased a house and

instrumented it with their own version of generic, simple sensors [54]. Currently, they

deploy sensors for weeks at a time, collect sensor data as well as occupant labeled

activity data, and then retrieve sensors for off-line activity recognition. Initial results

show that for multiple instrumented houses clustered activity episodes correspond to

data labeled by occupants. Researchers at the University of Florida have also instru-

mented a house with ultrasound localization and displays with the goal of providing

timely and relevant information to residents [48]. Finally, the Neural Network House

sensed appliance use and environmental changes to train neural networks to control

levels of energy conservation and comfort [80]. These laboratories have explored an

exciting variety of sensors to solve a variety of highly interrelated problems, mostly

subsets of localization and activity recognition. Usually, these instrumented homes

do not host long-term residents. Other research groups, including our own, have in-

strumented actual health care facilities for a variety of experiments [7, 12, 77]. The

instrumented home and apartment used in our experiments are unique in that they

use cheap, off-the-shelf sensors for simultaneous tracking and activity recognition.

These instrumented facilities are valuable testbeds for a variety of algorithms and

sensor configurations. Our experiments are intentionally constrained by the needs of

elderly inhabitants. Rather than providing specific services, this research focuses on

forming models of and recognizing behavior.

There has been some research into using binary sensors for automatic health

monitoring. For several years a group of researchers at the Tokyo Medical and Dental

University have been instrumenting homes with sensors such as motion detectors and

contact switches to collect data for months at a time [84, 86, 85]. Although learning

algorithms have not been applied, the raw data generated during these experiments

was made available to physicians who were able to pick out patterns of activity

by hand. Researchers at the Medical Automation Research Center (MARC) at the
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University of Virginia have used an array of motion detectors and contact switches to

attempt to detect activities of daily living (ADLs) [12]. They cluster sensor readings

into rough groups based on room, duration, and time of day and demonstrate that

many of the clusters do correspond to ADLs. Researchers have solidly identified the

potential of simple sensors for automatic health monitoring.

3.2.2 People Tracking

People tracking is a fundamental problem in ubiquitous computing and has been

approached via a variety of sensors, including cameras, laser range finders, wireless

networks, RFID (Radio frequency identification) badges, and infrared or ultrasound

badges [1, 3, 18, 33, 61, 80, 44, 104]. See [49] for a survey of location estimation tech-

niques. A distributed network of many low cost sensors has several advantages over

co-located sensors on a single platform (e.g., wearable sensors or mobile robots). The

total coverage may be much larger and redundancy may exist between overlapping

sensors. Also, sensor networks are more robust against failure or loss of individual

components. In this research it was valuable to be able to quickly replace malfunc-

tioning sensors, although sensor network robustness issues were not explored. We

have chosen to explore a set of sensors that are already present in many homes as

part of security systems. These sensors are cheap, computationally inexpensive, and

do not have to be continuously worn or carried. We aim for room-level tracking, as

our sensors do not provide the higher spatial resolution of other types of tracking

systems.

Combining anonymous sensors and sensors that provide identification informa-

tion for people or object tracking is an open problem. In the multi-target tracking

community it is commonly known as the data association problem. The goal is to

associate a set of current measurements with a set of existing ”tracks” or object tra-

jectories. In AI literature the problem of object identification is essentially the same,

to determine if a newly observed object is the same as a previously observed object.

A technique introduced by [51] uses pairwise sensor-based appearance probabilities to

match images of cars between two traffic cameras. Researchers at Berkeley noted
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that this technique could not scale as more sensors were added. They used a Markov

chain Monte Carlo approach to make the problem tractable for accurately tracking

a single car between many cameras with minimal noise [89]. The vast number of

possible assignments and noisy real-world data has spurred a variety of probabilistic

approaches. Bayesian techniques, particularly particle filters, have been introduced as

effective solutions [10, 62, 52]. In a recent experiment a particle filter implementation

used laser range finders and infrared badges to track six people simultaneously in an

office environment for 10 minutes [43]. The range finders provided anonymous, high

granularity coordinates while the badge system identified occupants. We also use a

particle filter approach to solve the data association problem, however, we use ID sen-

sors only at entrances and exits and rely upon individual motion and activity models

to resolve ambiguity within the environment. Data collected over the long-term pro-

vides an ever-improving model of the unique patterns of each occupant. We explore

the ability of these models to identify occupants in lieu of additional ID-sensors.

3.2.3 Activity Recognition

An impressive amount of research falls under the umbrella of activity recognition. In

particular, researchers have used cameras to detect a variety of activities, including

sign language recognition [105], human gait recognition [76], sitting, standing and

walking behaviors via wearable cameras [69], and recognizing American football [53]

and basketball [59] plays from video. A variety of other sensors have been applied as

well, including GPS readings to infer walking, driving and bus riding behaviors [91],

laser range finders to learn motion paths in a home [18], audio to recognize conversa-

tional interactions over cell phones [9] and bathroom activities [29], and combinations

of audio and video to recognize behavior in an office environment [87], group meeting

interactions [31], and interactions between individuals [33]. Researchers at Intel Re-

search have used radio frequency identification tags to recognize several ADLs [42].

Additionally, in recent work at the University of Washington, researchers have used

location collected by GPS readings to help infer high-level activity such as shopping,

working, or being at home [71]. However, we are unaware of any research that has
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attempted to use machine learning techniques to automatically recognize multiple

ADLs using the sort of binary sensors common to home security systems, with or

without simultaneous people tracking to improve recognition results.

A growing variety of Bayesian techniques have been used for activity recognition

[87, 90]. For a survey of Bayesian techniques applied to activity recognition see [43].

In healthcare literature Dynamic Bayes nets have been used extensively for execution

monitoring, a more intensive form of activity recognition in which the goal is to

determine whether a person is following a plan appropriately [6, 106, 34]. Execution

monitoring calls for recognition of specific parts of an activity as well as possible

paths of progression through the plan. These approaches vary depending on the

characteristics of the activity to be recognized. Our novel contribution arises from

the interplay of tracking and activity recognition in an integrated system that uses

only information from many anonymous, binary sensors.

3.3 Instrumenting the Home

In this section, we describe which sensors we use and why. First, we discuss our

overall sensing goals for this chapter. Next, we discuss several challenges faced when

placing sensors in a home and describe the ideal properties of sensors. Finally, we list

the sensors used in these experiments.

3.3.1 Sensing Goals

Automatic health monitoring is predominantly composed of location and activity

information. Below is a list of exactly what we wish to automatically recognize.

• Presence. Determine how many and which people are in the environment.

• Individual Identification. Determine the identity of each person.

• Room-Level Tracking. Determine the location of each person.

• Locomotion. Recognize whether an occupant is moving or sitting still (e.g.,

walking, wheelchair use, etc.,).
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• Activities of Daily Living. Recognize eating/drinking, housework, and toi-

leting [64].

• Instrumented Activities of Daily Living. Recognize cooking [68].

• Extended Activities of Daily Living. Recognize using a computer and

using the telephone [99].

3.3.2 Sensor Constraints and Issues

In the previous chapter, we found that cost of sensors and sensor acceptance are

pivotal issues, especially in the home. Participants overwhelmingly indicated that

elders would be uncomfortable living with cameras and microphones. We found that

people are often unwilling, forget, change clothes too often, or are not sufficiently

clothed when at home to wear a badge, beacon, set of markers, or RF tag. In

particular, elderly individuals are often very sensitive to small changes in environment

[24], and a target population of institutionalized Alzheimer’s patients frequently strip

themselves of clothing, including any wearable sensors [25]. As a result, there is a

great potential for simple sensors to 1) “fill in the blanks” when more complex sensors

can not be used and 2) to reduce the number of complex (and possibly expensive)

sensors that are necessary to solve a problem.

Like other researchers in academia and industry, we envision an off-the-shelf sys-

tem installed and configured by a consumer [72, 12, 15, 108]. Ideally, the sensors we

choose should offer solutions to the following issues: sensors and monitoring systems

should be invisible or should fit into familiar forms. Sensor data should be private

and should not reveal sensitive information, especially identity. Arguably equally im-

portant – sensors should not be perceived as invasive. Sensors should be inexpensive,

preferably available off-the shelf. Sensors should be easy to install. Wireless sen-

sors can be mounted to any surface, while wired sensors may require running cable

to a central location. Processing sensor data should require minimal computational

resources (e.g., a desktop computer). Sensors should be low-maintenance, easy to

replace and maintain. Sensors will be neglected and should be robust to damage.

Finally, sensors should be low-power, requiring no external power or able to run as
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Figure 3.1: Overview of a typically instrumented room.

long as possible on batteries. As a last resort the device may need to be plugged in

or powered by low voltage wiring.

3.3.3 Anonymous, Binary Sensors

Sensors that are anonymous and binary satisfy many of these properties. Anonymous

sensors satisfy privacy constraints because they do not directly identify the person

being sensed. Perceived privacy issues are minimized by the fact that anonymous,

binary sensors are already present in many homes as part of security systems. Bi-

nary sensors, which simply report a value of zero or one at each time step, satisfy

computational constraints. These sensors are valuable to the home security industry

because they are cheap, easy to install, computationally inexpensive, require minimal

maintenance and supervision, and do not have to be worn or carried. We choose

them for the same reasons, and because they already exist in many of our target en-

vironments. (We typically use a denser installation of sensors than in a home security

system, however.)
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Sensor Choice and Placement

For our experiments, we chose to use commonly available anonymous, binary sensors,

including: motion detectors, break-beam sensors, pressure mats, contact switches,

water flow sensors, electric current sensors, and wireless object movement sensors.

Motion detectors are placed near the ceiling in order to maximize room coverage.

Contact switches are placed on doors and drawers of all types, including cabinets

and refrigerators. Pressure mats are placed under couches, chairs and rugs. Break-

beam sensors are triggered by occupants walking through the beam. With two beams

we can infer direction. Water flow sensors are placed on hot and cold water pipes

and toilets. Current sensors are placed near transformers, to monitor the amount of

current flowing to circuits, e.g., electrical outlets. Wireless object movement sensors

are placed on a variety of objects to detect when those objects are manipulated. See

Figure 3.1 for an overview of a typically instrumented room.

In addition, we solve the presence and identity problems by using an ID sensor

to capture identity as occupants enter and leave the environment. In experiment #

2, we replaced house keys with unique radio frequency identification (RFID) tags.

Instead of a lock and key, an RFID reader near the doorway “listens” for the key

(an RFID tag) and automatically records identification while it unlocks the door for

a few seconds. (The RFID reader can detect multiple keys simultaneously from a

distance of about a foot.) Afterwards, the door locks itself and the occupant need

not continue to carry the key. Currently, we use the following sensors:

• Motion detectors. Motion detectors provide a binary indication of heat and

movement (e.g., human presence) in an area. In experiment # 2 we used X10

Hawkeye motion detectors. After each reading these sensors pause for eight

seconds before becoming active again.The detectors are wireless, pet-resistant,

require heat and movement to trigger, and run on battery power for over one

year. In experiment # 3 we used motion information reported by cameras.

The cameras compared each new frame to the previous frame and reported

movement when the difference between frames exceeded some threshold.

• Break-beam sensors. We use these sensors in groups of two to determine
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when an occupant passes through a doorway and in what direction. They work

by generating a beam across a space and monitoring when it is reflected back.

While the beam is interrupted the sensor changes state.

• Pressure mats. These wired sensors were used to detect presence on chairs

and couches. The pressure mats are made of two metal screens separated by a

piece of foam with holes. The weight necessary for contact depends on the size

and number of holes cut into the foam layer.

• Contact switches. These inexpensive wired magnetic contact switches indi-

cate a closed or open status. They are attached to all manner of doors, drawers,

and cabinets.

• Water flow sensors. When placed into water pipes these sensors report a

reading when flow exceeds some threshold.

• Current sensors. These sensors measure current flow in a circuit, reporting

when current exceeds some threshold, e.g., whenever an appliance is used.

• Wireless Object Movement Sensors. These small battery-powered sen-

sors, called MITes, are designed to be attached to movable physical objects.

They consist of a single two-axis 2G accelerometer and an RF transceiver. The

MITes work by measuring acceleration and broadcasting a unique ID whenever

movement exceeds a sensitivity threshold. For a detailed description of MITe

hardware, see [56].

• Radio Frequency Identification (RFID). We use low frequency RFID to

identify occupants entering and leaving the environment. The system sends a

modulated RF signal to an antenna, which amplifies the signal, creating a small

field near the front door. When the credit card-sized transponder or ’tag’ is

in the field, an integrated circuit detects the signal and uses its energy to send

a unique identification signal. This signal is decoded and sent to a computer

via an RS-232 interface. The entire process takes less than 100ms and multiple

tags can be read simultaneously. Each occupant is given a unique tag; upon
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recognition the tag will automatically unlock the door, as well as identify the

occupant entering or leaving the environment. This interface faces challenges

when occupants forget badges or when guests visit.

A Note on Privacy

Our decision to use simple sensors provides inherent privacy at the physical layer, but

does not directly address higher-level privacy issues, such as dissemination of infor-

mation. Aside from the RFID antenna (which requires a tag), none of the individual

sensors in this research can be used to identify a person. The locations and activity

information collected by applying machine learning algorithms to the entire collec-

tion of sensor information is obviously of a private nature. The dissemination of and

access privileges to this information (whether to family, physicians, or to the general

public) will depend on the services provided using this system, and are outside of the

scope of this document.

3.4 Approach

In this section, we introduce the STAR problem, discuss why it is difficult to solve with

simple sensors, and consider several simplifications. We discuss a Bayes filter approach

and show why it fails to accomodate multiple occupants. We then describe a Rao-

Blackwellised particle filter that is able to handle multiple occupants by performing

efficient data association. We discuss how to learn model parameters both online and

offline.

3.4.1 Simultaneous Tracking & Activity Recognition

There are two main problems when solving STAR for multiple people, (1) what is the

state of each person and, (2) which person is which? In the first problem, observations

are used to update the state of each occupant (i.e., their activity and location). In the

second problem, identity of the occupants is estimated and anonymous observations

are assigned to the occupants most likely to have generated them. Uncertainty occurs
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when several occupants trigger the same set of anonymous sensors. The tracker does

not know which occupant triggered which sensor (i.e., which data to associate with

which occupant).

There are several ways to simplify the problem. First, we could increase the num-

ber of ID sensors. This simple approach solves the problem by using sensors that

identify occupants outright. Unfortunately, ID sensors are expensive, have significant

infrastructure requirements, and/or must be worn or carried by the occupant. It is

more desirable to employ many inexpensive sensors in lieu of expensive sensors. Sec-

ond, we could increase the sensor granularity. Adding more sensors can reduce the

ambiguity caused by multiple occupants, but may be expensive. Alternately, existing

sensors can be placed so that they collect the maximum amount of information. In

experiments, we intentionally placed sensors so that they would detect different prop-

erties, which increases granularity. For example, ceiling-mounted motion detectors

detect gross movement while chair-mounted pressure mats detect static occupants.

Similarly, noting which contact switches are out of reach of pressure mats can po-

tentially separate two occupants when one is seated and the other opens a drawer.

Third, we could learn individual movement and activity patterns. Over time, statisti-

cal models can represent particular habits of select individuals. Individualized motion

models can help the tracker recover from ambiguity as occupants follow their normal

routines (e.g., sleeping in their own beds).

3.4.2 Bayes Filter Approach

First, we address the question of how to update occupant state given sensor measure-

ments. Bayes’ filters offer a well-known way to estimate the state of a dynamic system

from noisy sensor data in real world domains [40]. The state represents occupant lo-

cation and activity, while sensors provide information about the state. A probability

distribution, called the belief, describes the probability that the occupant is in each

state p(Xt = xt). A Bayes filter updates the belief at each time step, conditioned on

the data. Modeling systems over time is made tractable by the Markov assumption

that the current state depends only on the previous state.
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Figure 3.2: A DBN describing room-level tracking and activity recognition.

We estimate the state xt = {x1t, x2t, ..., xMt} of M occupants at time t using the

sensor measurements collected so far, z1:t. At each time step we receive the status of

many binary sensors. The measurement zt = {e1t, e2t, ..., eEt} is a string of E binary

digits representing which sensors have triggered during time step t. The update

equation is analogous to the forward portion of the forward-backward algorithm used

in hidden Markov models (HMMs). See [96] for a detailed description of how HMMs

work.

p(Xt = xt|z1:t) ∝ p(zt|Xt = xt)
∑
x′∈X

p(Xt = xt|Xt−1 = x′)p(Xt−1 = x′|z1:t−1). (3.1)

The sensor model p(zt|Xt = xt) represents the likelihood of measurement zt oc-

curring from state xt. The motion model p(Xt = xt|Xt−1 = x′) predicts the likelihood

of transition from the state x′ to the current state xt. How these models are learned

is discussed in section 3.4.4.

The graphical model in Figure 3.2 represents the dependencies we are about to

describe. The state space x ∈ X for occupant m is the range of possible locations

and activities, xmt = {rmt, amt}, where r ∈ R denotes which room the occupant is

in, and a ∈ {moving,not moving} denotes occupant activity. The raw sensor values
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are the only given information; the rest must be inferred. Each observation is com-

posed of a collection of events and appear zt = {e1t, e2t, ..., eEt}. Event generation is

straightforward. For example, an event is generated when a motion detector triggers,

when a contact switch changes state, or when a wireless object movement sensor is

moved.

Tracking multiple people causes the state to have quite large dimensionality, mak-

ing model learning intractable. Currently, a simplifying independence assumption

between m occupants means that the update equation is factored as:

p(Xt = xt|Xt−1 = x′) =
∏

m∈M

p(Xmt = xmt|Xm,t−1 = x′m). (3.2)

This assumption could be partially relaxed through the use of two models, one

for occupants that are alone and another for multiple occupants. This abstraction

avoids the exponential blow up resulting from joint models of combinations of specific

individuals. A similar approach has been applied successfully to tracking multiple

interacting ants in [66].

Equation 3.1 describes the Bayes filter update using all observations up to the

current time step z1:t. Higher accuracy is usually obtained off-line by using past

and future information at each time step. This is commonly known as smoothing.

Smoothing provides higher accuracy for off-line purposes, such as a daily summary of

activity [116]. The update equation is analogous to the backward step of the forward-

backward algorithm commonly used in HMMs. We report results using smoothing in

experiment # 3.

p(Xt = xt|zt+1:T ) ∝
∑
x∈X

p(Xt+1 = x|zt+2:T )p(Xt+1 = x|Xt = xt)p(zt+1|Xt+1 = x).

(3.3)
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Classical Data Association Methods

The above approach works well for tracking a single occupant in a noisy domain

(the Bayes filter is named for its ability to filter spurious noise). However, this

approach struggles to track multiple occupants because other occupants do not behave

like noise processes. The tracker becomes confused by constantly conflicting sensor

measurements. We need some way to determine which occupant generated what

observation. This is the data association problem, and in our domain it can become

severe. For t seconds and m occupants each association has m!t possibilities. In a

reasonable scenario with several dozen inexpensive sensors monitoring a handful of

occupants for a week, there are too many data assignments to enumerate.

There are several classical data association methods (for a survey see the book

[11]). Probably the simplest approach, called the nearest neighbor standard filter

(NNSF), uses only the closest observations to any given state to perform the mea-

surement update step. This method has a hard time recovering lost targets because

unlikely observations are ignored. A more accurate method is called the probability

data association filter (PDAF), which uses the probability of an observation from a

target versus from clutter to assign weighted measurements. This approach fails for

the same reason independent Bayes filters do – occupants do not behave like noise.

This problem is dealt with by the joint probability data association filter (JPDAF),

which finds the joint probability of all possible assignments for the current time step.

JPDAF then updates the state by a sum over all the association hypotheses weighted

by the probabilities from the likelihood. An even more general method, called multi-

hypothesis tracking (MHT), calculates every possible association hypothesis over time

as well. PDAF, JPDAF, and MHT approaches require exhaustive enumeration of

every possible association, which can quickly become intractable. There are many

work-arounds, including gating and pruning trees of possible hypotheses. Recently,

particle filters have been applied successfully to the data association problem [19].
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Figure 3.3: A DBN describing occupant state and data associations.

3.4.3 Particle Filter Approach

At each time step we wish to find the best assignment of sensors to occupants and

to use this assignment to update the state of each occupant. Assignments between

sensor measurements and occupants are not given. Therefore, we must now estimate

the posterior distribution over both occupant state and sensor assignments.

We let θt represent a sensor assignment matrix such that θt(i, j) is 1 if event

eit belongs to occupant j and 0 otherwise. See Figure 3.3 for the updated graphical

model. We must expand the posterior of Equation 3.1 to incorporate data association.

We accommodate our expanded posterior efficiently by using a Rao-Blackwellised

particle filter [40]. By the chain rule of probability,

p(X1:t, θ1:t|z1:t) = p(X1:t|θ1:t, z1:t)p(θ1:t|z1:t). (3.4)

The key idea is to update the state p(Xt = x|θ1:t, z1:t) analytically using the Bayes

filter update already described, and to use a particle filter to generate a sample-based

approximation of assignments p(θ1:t|z1:t). This streamlines our approach by sampling

only from the intractable number of possible sensor assignments and solving exactly

for our (relatively) small number of possible state configurations.

The desired posterior from Equation 3.4 is represented by a set of N weighted

particles. Each particle j maintains the current state of all occupants via a bank of
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M Bayes filters, as well as the sensor assignments and the weight of the particle.

sj
t = {x(j)

t , θ
(j)
1:t , w

(j)
t }. (3.5)

Note that for filtering purposes we may store only the latest association θ
(j)
t . x

(j)
t

is a distribution over all possible states of all occupants. The θ
(j)
t are updated via

particle filtering, and the x
(j)
t are updated exactly using the Bayes filter update. The

marginal distribution of the assignment (from Equation 3.4) is therefore approximated

via a collection of N weighted particles,

p(θ1:t|z1:t) ≈
N∑

j=1

w
(j)
t δ(θ

(j)
1:t , θ1:t). (3.6)

where w
(j)
t is the importance weight of particle j, and δ(x, y) = 1 if x = y and 0

otherwise.

Given the sample-based representation of assignments from Equation 3.6, the

marginal of the state node is,

p(Xt|z1:t) =
∑
θ1:t

p(Xt|θ1:t, z1:t)p(θ1:t|z1:t) (3.7)

≈
∑
θ1:t

p(Xt|θ1:t, z1:t)
N∑

j=1

w
(j)
t δ(θ

(j)
1:t , θ1:t) (3.8)

=
N∑

j=1

w
(j)
t p(Xt|θ(j)

1:t , z1:t). (3.9)

Given a sampled data association θ
(j)
1:t and an observation zt, it is straightforward

to update the belief p(Xt = x|z1:t, θ1:t) exactly according to a slightly modified version

of the Bayes filter from Equation 3.1. First, we show the predictive distribution, where

information up to time step t− 1 is used to predict the next state for particle j.
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p(Xt = x|z1:t−1, θ
(j)
1:t−1) =

∑
x′

p(Xt = x|Xt−1 = x′)p(Xt−1 = x′|z1:t−1, θ
(j)
1:t−1). (3.10)

We derive the full update equation given information up to time t according to

Bayes rule.

p(Xt = x|z1:t, θ
(j)
1:t ) =

p(zt|Xt = x, θ
(j)
t )p(Xt = x|z1:t−1, θ

(j)
1:t−1)∑

x p(zt|Xt = x, θ
(j)
t )p(Xt = x|z1:t−1, θ

(j)
1:t )

(3.11)

∝ p(zt|Xt = x, θ
(j)
t )p(Xt = x|z1:t−1, θ

(j)
1:t−1). (3.12)

Given these definitions we now discuss the overall approach. The following sam-

pling scheme, called sequential importance sampling with re-sampling, is repeated N

times at each time step to generate a full sample set St (composed of samples s
(j)
t

where j = 1...N) [40].

During initialization occupant location and identity are gathered by RFID and

sensor measurements are assigned automatically. In each iteration there are four steps.

First, during re-sampling we use the sample set from the previous time step St−1 to

draw with replacement a random sample s
(j)
t−1 according to the discrete distribution of

the importance weights w
(j)
t−1. Next, we sample a possible sensor assignment matrix

θ
(j)
t . We discuss how to propose sensor assignments in the next section. Next, we use

the association θ
(j)
t to perform an analytical update of the state of each occupant in

sample j via Equation 3.11. Finally, during importance sampling we weight the new

sample s
(j)
t proportional to the likelihood of the resulting posteriors of the state of

each occupant. This is equal to the denominator of Equation 3.11,

w
(j)
t = η

∑
x

p(zt|Xt = x, θ
(j)
t )p(Xt = x|z1:t−1, θ

(j)
1:t ), (3.13)

where η is a normalizing constant so that the weights sum to one.
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The Data Association Problem

During the sampling step a possible assignment of sensor readings to occupants (a data

association) must be proposed for the new sample. Choosing an impossible association

will cause that particle to have a zero weight and wastes computational time. For

example, foolishly assigning two sensors from different rooms to the same occupant

will result in a particle with negligible probability. A more efficient particle filter will

propose data associations in areas of high likelihood. The better the proposals, the

fewer particles necessary.

Assigning sensor readings uniformly (regardless of occupant state) is inefficient

because it will propose many unlikely or impossible associations (e.g., one occupant

given sensor readings from different rooms). A quick improvement is to use gating

to eliminate impossible associations, but a gated uniform method is still inefficient

because it ignores the current state of each occupant. Sensors are intimately tied

to rooms and activities. Occupants that are in the same room as a sensor are more

likely to have triggered it and occupants engaged in certain activities are more likely

to trigger associated sensors. A simple heuristic takes advantage of these properties.

We currently assign measurements based on the posterior p(θt|x(j)
t−1). The proposed

assignment matrix θt is constructed by independently assigning each measurement to

an occupant based on the probability that she triggered it p(eit|xt)∀i. This method

tends to choose likely assignments and usually avoids impossible assignments, but is

not guaranteed to approximate the true distribution p(θt|z1:t).

3.4.4 Parameter Learning

Modeling the behavior of individual occupants can increase tracking and activity

recognition accuracy and make data association more efficient. In a system with few

ID sensors (like ours) these models are vital to disambiguate the identities of many

occupants. Motion models describe individual tendencies to transition between rooms

and activities. Sensor models describe individual tendencies to set off specific sensors

(e.g., shorter occupants may use high cabinet doors less often). Models can be ini-

tialized generically for unknown occupants.
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Motion model. We wish to learn individual parameters for the motion model.

p(Xt = xt|Xt−1 = xt−1) = p(at, rt|at−1, rt−1) (3.14)

= p(at|at−1, rt−1)p(rt|rt−1, at−1). (3.15)

• p(rt|rt−1, at−1) is the probability of transition to a room given the previous

room and occupant activity. Transition probabilities between contiguous rooms

are initialized uniformly for active occupants and set to small values for idle

occupants.

• p(at|at−1, rt−1) models the probability of which activity the occupant is engaged

in given the previous room and what the occupant’s activity was during the

last time step. This is initialized so that it is more likely for active occupants

to continue to be active and idle ones to continue not to.

Sensor model. Individual sensor readings, called events, are considered indepen-

dent. For occupant m the sensor model can be rewritten:

p(zt|Xt = xt, θ
(j)
t ) =

∏
m∈M

p(zt|Xmt = xmt, θ
(j)
t ) =

∏
m∈M

∏
i

p(eit|Xmt = xmt, θ
(j)
t ).

(3.16)

This models the probability of observing each sensor measurement given the loca-

tion and activity of the occupant. This sensor model is initialized by assigning small

probability to sensor readings occurring outside their designated room.

This system uses a non-metric, room based location representation and a discrete

set of mutually exclusive activities. The result is a relatively small number of dis-

crete states, even when confounded with additional activities. This simplicity helps
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Model Initialization:
1. Initialize model parameters with generic values.

E-step:
1. Generate N samples uniformly.

2. Forward filtering : for t = 2...T

(a) Generate N samples using the samples from the previous time step.

(b) Reweight each sample based on current observation zt.

(c) Multiply or discard samples based on their weights.

(d) For each occupant m count and store αm
t (rt, at)

3. Generate N samples uniformly.

4. Backward filtering : for t = T..1

(a) Calculate backward parameters p(rt−1|rt, at), p(at−1|at, rt)

(b) Generate N samples using the samples from existing samples using backward

parameter estimation.
(c) Reweight each sample based on current observation zt.

(d) Multiply or discard samples based on their weights.

(e) For each occupant m count and store βm
t (rt, at).

M-step:
1. Calculate γm

t and δm
t using equations (3.17) and (3.18) and then normalize.

2. Update parameters using equations (3.19) and (3.20).

Repeat

Table 3.1: Monte Carlo EM approach.
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make unsupervised learning of model parameters possible. It also invites an intuitive

understanding of how transitions occur between rooms and activities.

Training model parameters is simple when we know the true state of each occu-

pant. The simplest approach is to train parameters on data generated by occupants

that were home alone. While a person is home alone we can assume that any sensor

readings are generated by that person or a noise process. Parameter learning can be

performed with simple counting. This method ignores a significant amount of training

data because occupants are often home together. It also fails to learn the difference

between how people behave alone versus in the presence of others.

Multiple occupants introduce uncertainty that could hurt the accuracy of learned

models. A common method to minimize this uncertainty is to use the Expectation-

Maximization (EM) algorithm [20]. The EM algorithm is an iterative approach to

finding parameters that maximize a posterior density. The idea is to use current

model parameters to estimate the expectations (E-step) of the distribution. The

model parameters are then updated (M-step) using the expectations from the E-step.

The steps are repeated and in each iteration the model parameters are improved.

Eventually the algorithm converges to a local maximum.

A version of the EM algorithm called Monte Carlo EM [70, 115] takes advantage of

the set of particles representing the posterior. Researchers at Intel used this technique

with GPS readings to learn models of movement and transportation methods of a

traveler in the city [91] . In this version both forward and backward updates are

applied to the Bayes filter at each time step. At each forward and backward step, the

algorithm examines each particle and counts the number of transitions between rooms

and activities for each occupant. The counts from forward and backward phases are

normalized and then multiplied and used to update model parameters. The learning

algorithm is introduced thoroughly for Monte Carlo HMMs in [109].

αm
t (rt, at) is the number of particles in which occupant m is in room r and per-

forming activity a during the forward pass.

βm
t (rt, at) is the number of particles in which occupant m is in room r and per-

forming activity a during the backwards pass.

γm
t−1(rt, rt−1, at−1) is the probability that occupant m will move from room rt−1 to
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room rt in activity at−1 at time t− 1.

δm
t−1(at, at−1, rt−1) is the probability that occupant m will change from activity

at−1 to activity at from room rt−1 at time step t− 1.

We define, [109]

γm
t−1(rt, rt−1, at−1) ∝ αm

t−1(rt−1, at−1)p(r
m
t |rm

t−1, a
m
t−1)β

m
t (rt, at−1) (3.17)

and

δm
t−1(at, at−1, rt−1) ∝ αm

t−1(rt−1, at−1)p(a
m
t |am

t−1, r
m
t−1)β

m
t (rt−1, at) (3.18)

After the counting phase we update parameters as:

p(rm
t |rm

t−1, a
m
t−1) =

∑T
t=2 γ

m
t−1(rt, rt−1, at−1)∑T

t=2

∑
rt∈contiguousrt−1

γm
t−1(rt, rt−1, at−1)

(3.19)

and

p(am
t |am

t−1, r
m
t−1) =

∑T
t=2 δ

m
t−1(at, at−1, rt−1)∑T

t=2

∑
at∈A δ

m
t−1(at, at−1, rt−1)

(3.20)

See Table 3.1 for a summary of particle filtering with MCEM model learning.

Adaptation

A conceptually simple modification greatly increases the efficiency of our particle

filter. The inefficiency arises during the re-sampling step, when samples from the

previous sample set are drawn blindly, without considering the most recent obser-

vation. The particle filter is less wasteful with samples if the proposal distribution

relies not only on the motion model, but also on the most recent measurement. This

improvement is known as assignment lookahead or adaptation [95].

The goal is to update the sample weights of the previous timestep by the sample’s

ability to predict the observation of the current timestep. This update is applied to

every particle j = 1...N as soon as a new measurement zt is received, and before the
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resampling step. For sample j at time step t− 1 we wish to update by,

$
(j)
t−1 ∝ w

(j)
t−1p(zt|x(j)

t−1) (3.21)

Equation 3.21 is intractable because p(zt|x(j)
t−1) requires a summation over every

possible data association. There are too many data associations to enumerate. We

can approximate by using the previously described MCMC technique to approximate

p(zt|x(j)
t−1) with a set of R samples s

(j)
t−1 where j = 1...R and the sampled data associ-

ations are denoted θ
(j)
rt . We use these sample associations to re-weight each member

of the previous sample set.

$j
t−1 ∝

wj
t−1

R

∑
r=1..R

p(zt|θ(j)
rt , x

(j)
t−1)p(θ

(j)
t |x

(j)
t−1) (3.22)

3.5 Experiment # 1: Simulated Data

In this section, we evaluate the performance of our approach on a simulated data set.

The purpose of this experiment was to determine the feasibility of our approach. We

are also interested in gauging the impact of unique motion models, sensor density, and

parameter learning (online vs. offline) on tracking accuracy for multiple occupants.

3.5.1 Study Methodology

We implemented a simple program to simulate the data generated by occupants in

an instrumented environment.2 The simulator can generate data from any number of

motion detector, contact switch, and pressure mats per room, as well as break beam

sensors on doors between rooms. The number of occupants, room structure, doorway

location, and noise rates can be specified via command line parameters. “Noise” is

defined as a random sensor measurement. Each occupant obeys an independent first-

order HMM motion model that is set by hand or initialized randomly. Sensors also

obey a hand-set sensor model in which the likelihood that a given sensor will trigger

2The simulator can be downloaded from www.danielhwilson.com
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Experiment Accuracy
same 0.99± 0.0001
opposite 0.99± 0.0003
middle 0.66± 0.002
uniform 0.46± 0.01

Table 3.2: Comparison of motion model experiments.

depends upon the number of occupants in the room and whether they are moving or

not.

Simulated occupants are introduced to the environment from the same starting

state and identified correctly from this state, to imitate an RFID set up in the entry

way. Henceforth, each occupant is unlikely to re-enter this state. The simulation

differs from reality in that simulated occupants behave truly independently. Simulated

occupants were active (moving) approximately 15% of the time. There was a sporadic

sensor reading about once every ten minutes. The particle filter tracker used the same

sensor model for each occupant. Parameters of motion models were either learned

offline via counting, or online (i.e., during the experiment) via the EM Monte Carlo

method.

Location and activity predictions are updated every second and accuracy is mea-

sured as the number of seconds in which the maximum likelihood predictions of the

tracker match the labeled location tag (in simulated experiments the state of each

occupant is known). Results are reported for real-time, online tracker performance.

3.5.2 Results

Motion model comparison. This experiment explored the value of unique motion

models for tracking multiple occupants. We used six rooms, one entry way connected

to a circular hallway composed of the other five rooms. Each room contained one

motion detector, contact switch, and pressure mat. There were break beam sensors in

every doorway. We tracked two simulated occupants for one hour with ten trials for

each experiment. Occupants are identified in the entry room. They leave the entry

room on the first time step and do not return.
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We used four different motion models to generate the data and allowed the tracker

to use the correct models. We ran four experiments (corresponding to the four mo-

tion models) called same, opposite, middle, and uniform. In the same experiment

both occupants always walk in a clockwise direction. In the opposite experiment

one occupant always walks clockwise and the other counter-clockwise. In the middle

experiment, each occupant was %75 likely to transition clockwise. In the uniform

experiment both occupants use the same uniform model in which they are equally

likely to transition to any contiguous room. See Appendix D for the exact motion

models.

We found that tracker accuracy depends heavily on occupant predictability. Ac-

curacy was perfect in the same and opposite experiments, where each occupant per-

formed the same action at each time step. Whether both occupants performed the

same action (walking clockwise) or opposite actions (one clockwise and the other

counter-clockwise) did not matter. Accuracy suffered in the middle experiment,

when the transition probability was lowered to 75%. Accuracy was lowest for uni-

form models in which movements are completely unpredictable and identical between

occupants. Results are summarized in Table 3.2.

Small house experiments. These experiments simulated a small house with

ten rooms (three bedrooms, two bathrooms, a kitchen, living room, dining room,

and hallways). Motion models for five occupants describe typical movements, with

the first three occupants having their own bedrooms and the last two occupants as

guests. Each experiment tracked occupants for one hour and was run for ten trials.

In Figure 3.4, 3.5, and 3.6 the variance bars reflect variations over the ten trials.

Sensor configurations. First, we looked at the impact of sensor configurations

on tracking accuracy (see Figure 3.4). In this experiment we tracked two occupants

with generic motion models, using three different sensor configurations: the normal

configuration contains one motion detector, contact switch, and pressure mat per

room, the extra configuration contains three of each type per room (i.e., more chairs

and cabinets were added to the room), and the fewer configuration contained only

one motion detector per room. In general, more sensors improve accuracy. The fewer

configuration had so few sensors that the number of particles ceased to matter. Also,
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Figure 3.4: Accuracy vs. number of particles.

with fewer sensors come fewer measurements, and more variance on the periods before

tracker recovery. Thus, the jagged line for the fewer configuration is caused by high

variance between trials.

The number of particles will need to grow for sensor configurations with hundreds

of sensors per room, which will pose a much more complex data association problem.

Parameter learning. Second, we examined how different approaches to model

learning affect accuracy (see Figure 3.5). In this experiment, the number of particles

is set to fifty and we compare three techniques for learning motion model parameters.

One method is to use simple counting to train a model using data from when the

occupant is home alone. Alternately, we can use probabilistic methods to train a

model online, while several occupants may be home. Three methods were used to

train model parameters: (1) learning motion models off-line given one day of data

generated by occupants that are alone (offline), (2) on-line via the Monte Carlo

EM algorithm (online), and (3) a combination in which the MCEM online parameter

learning algorithm was seeded by a model already trained offline on one hour of single

occupant data (both). In general, the offline method had highest accuracy, followed

by both and with online learning last. Although the offline method performed best,
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Figure 3.5: Accuracy vs. number of occupants.

this is due in part to the simplicity of our simulator, in which occupants behave

independently. We feel that the both method, of seeding a model with offline data

and continuing to learn online, is the most promising real-world approach. As the

number of occupants rises from two to three to four, we see the online method take

a big accuracy hit. This is expected, as online model learning will be confounded by

multiple interfering occupants.

Number of occupants. In Figure 3.5 we varied the number of occupants and

used fifty particles, and in Figure 3.6 we varied the number of particles and used

offline model learning. Accuracy plateaus as the number of particles are increased.

As the number of occupants increases the step from one to ten particles is increasingly

important. Due to efficient data association methods, the tracker does not need

hundreds of particles. Accuracy does not drop linearly as more occupants are tracked

simultaneously; the difference between one and two occupants is much less than the

difference between three and four occupants.
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Figure 3.6: Accuracy vs. number of particles.

3.6 Experiment # 2: Instrumented House

In this section, we describe the methodology and reults of experiment # 2, in which

we conducted experiments using data generated by one to three occupants in a real

instrumented house. The purpose of this experiment was to verify that the particle

filter approach could function in a real environment with significant noise factors,

including misfiring sensors, broken sensors, and the presence of several pets.

3.6.1 Study Methodology

Participants. The participants in this experiment were three occupants who were

permanent residents of the instrumented home. Participants included two males

(including the author), one female, one dog, and one cat.

Instrumented Environment. The instrumented three story house was 2824

square feet and contained twenty separate rooms. The house contained one RFID

reader located in the front doorway (the back door was not used during the experi-

ment). There were twenty four motion detectors, with at least one per room. Twenty

four contact switches were distributed to every doorway, the refrigerator, and in many
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Figure 3.7: Tracking results for STAR experiment # 2.
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of the kitchen cabinets and drawers. In these experiments we did not use break beam

sensors or pressure mats.

Models. Sensor and motion models were learned before the experiment began

(offline) using several days worth of data from when each occupant was home alone.

Measures. Again, location and activity predictions were updated every second

and accuracy measured as the number of seconds in which the maximum likelihood

predictions of the tracker match the labeled location tag. Results are reported for

real-time, online tracker performance.

A researcher hand-labeled the location of each occupant using information gath-

ered by eight wireless keypads. During the experiment, when anyone entered a room

with a keypad they pushed the button corresponding to their name. The wireless

keypads were placed on the front door, the kitchen, the living room, the study, the

downstairs bathroom, the upstairs bathroom, and each of the two bedrooms.

3.6.2 Results

One person experiment. We measured how well a single person was tracked as they

moved through the house. The occupant ultimately visited every sensor (including

doors, drawers, and the refrigerator) and moved with varying speed and direction.

The occupant conducted several common tasks, such as making a sandwich in the

kitchen and pausing to use the computer in the study. There were over 1200 sensor

readings. Accuracy was 98.2%. We found that even for a single occupant accuracy

was never 100% because of occasional lag between entering a room and triggering a

sensor.

Two person experiment. In order to understand how the tracker performs

with occupants that are co-located versus occupants that are in different places, we

scripted two intentionally ambiguous situations in which both occupants shared the

same set of anonymous sensors and then separated. The scenario is as follows: two

occupants enter the front door thirty seconds apart and move throughout the house

without meeting. After fifteen minutes they meet in the living room. One occupant

then moves to his bedroom and then returns to the living room. Next, the other



3.7. EXPERIMENT # 3: INSTRUMENTED APARTMENT 79

occupant leaves to visit his own bedroom and then returns to the living room.

The tracker was accurate for over 98% of the thirty minute experiment. The bulk

of the experiment was spent with occupants either moving separately (the first fifteen

minutes), or co-located (meeting in the living room). We found near-perfect accuracy

when 1) occupants were not co-located and had not recently shared the same sensors,

and 2) when occupants were co-located. For example, it is easy to track two people

while they watch television together. The difficulty arises when one or both occupants

leave the room (the tracker must predict who left). There were two such ambiguous

situations in this experiment, and in both cases the ambiguity was resolved as soon

as the occupant reached his bedroom. In this case, the motion model contained

information about who was more likely to visit a bedroom, and the tracker used it to

recover identity. We ran the same experiment using identical generic motion models

for both occupants, and found that one of the two recoveries was predicted correctly.

Three person experiment. We measured tracker performance over a five day

period for all occupants. There were no guests during this period. When the house

was not empty, on average there was one occupant at home 13% of the time, two

occupants home 22% of the time, and all three occupants home for 65% of the time.

During the experiment every occupant slept in the house. Two of the occupants

shared a bedroom and one had a separate bedroom. Every occupant had a separate

“study.” The tracker used individual motion models for the three occupants. There

were approximately 2000 sensor readings each day for a total of 10441 readings. We

did not consider the time when no one was home.

On the whole, the tracker correctly classified 84.6% of the experiment. There was

no significant difference in accuracy between occupants. The tracker was accurate

85.3% of the time when there was one occupant, 82.1% for two occupants, and 86.4%

for three occupants. The system was quite good at tracking sleeping occupants (all

three occupants were home each night). Accuracy for three occupants drops to 73.7%

when sleeping periods (all data between midnight and 8 AM) are removed.
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Figure 3.8: Physical layout of the PlaceLab instrumented apartment.

3.7 Experiment # 3: Instrumented Apartment

In this section, we describe the methodology and results of experiment # 3, in which

we performed simultaneous room-level tracking and recognition of several activities

of daily living (ADLs) for a single occupant in a home environment. The purpose of

this experiment was to determine to what extent our system could recognize several

activities of daily living, using only simple sensors.

3.7.1 Study Methodology

The data set used in this experiment was recorded on March 4, 2005 from 9AM to

12PM (four hours total) by researchers at the Massachusetts Institute of Technology

working on the PlaceLab project [56]. PlaceLab is described as a “unique live-in lab-

oratory in Cambridge, MA.” The data set is called the “PlaceLab Intensive Activity

Test Data Set.”3

Participants. The participant was one female volunteer who was a member of

the PlaceLab research team, but not a creator of the core technical infrastructure.

Instrumented Environment. The PlaceLab is an instrumented apartment with

eight rooms, including: hallway, kitchen, bedroom, office, bathroom, living room,

dining room, and a “powder room” (i.e., a half-bath). See Figure 3.8 for the physical

layout of the environment.

3The data set is available for download at http://architecture.mit.edu/house n/data/PlaceLab.htm
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Although PlaceLab contains many types of sensors, here we choose to introduce

only those sensors used during this experiment, including: motion detectors, contact

switches, wireless object movement sensors, water flow sensors, and current sensors.

Specifically, there were 18 cameras placed throughout the environment, each of which

reported only the amount of motion detected.4 There were 30 contact switches ca-

pable of detecting on/off states placed on doors, knobs, and switches throughout the

apartment. Wireless vibration sensors were attached to 106 objects in the environ-

ment, and sent a signal whenever that object was moved. There were 14 water flow

sensors placed on hot and cold faucets and toilets. 37 sensors measured current flow

used by electrical circuits throughout the apartment. See [56] for a more detailed

description of PlaceLab hardware.

Procedure. In this experiment the participant was asked to perform a set of

common household activities, such as preparing two recipes, cleaning the kitchen,

making the bed, and light cleaning around the apartment. The participant was not

instructed on the sequence, pace, or concurrency of these activities, and was not

limited to performing only these activities. In addition, the participant talked on

the phone, answered email, and searched for items – sometimes concurrently. The

participant was alone for the entire experiment.

Measures. Location and activity predictions were updated every second using

the Bayes filter described previously. In this experiment we used smoothing, or the

backward pass, of the Bayes filter. Accuracy was measured as the number of seconds

in which the maximum likelihood prediction matched the label. Specifically, we mea-

sured accuracy for room-level tracking and eight activities of daily living, including:

cleaning a surface, drinking, eating a meal, making the bed, cooking, toileting, using

a computer, and using the telephone. These ADLs fall into five important categories

for in-home health assessment: cooking, eating/drinking, toileting, socializing, and

housework. The activity and location information inferred during this experiment

address six of the “top ten” most important ADLs described in Table 2.3 on page 41.

4We consider filtered motion data from these cameras to be synonymous with motion detector
data.
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Activity Name Accuracy
Idle 79.93± 1.26
Cleaning a surface 55.16± 4.57
Drinking 89.41± 1.79
Eating a meal 7.35± 1.55
Making the bed 91.52± 19.5
Cooking 81.88± 1.46
Toileting 87.80± 18.74
Using a computer 65.01± 13.37
Using the telephone 63.92± 3.69

Table 3.3: Activity recognition accuracy for eight ADLs.

There were four hours of labeled data. We divided the data set into eight thirty-

minute segments and used leave-one-out training and testing. Therefore, we report

mean accuracy and standard deviation over eight trials, in which we train on 3.5

hours of data and test on the remaining thirty minutes worth. We report accuracy

for room-level location estimation and for each of the eight activities of daily living

(plus one “none of the above” activity).

3.7.2 Results

Simultaneous tracking and activity recognition. Mean location accuracy over

the experiment was 73.30%± 8.9. Accuracy over the eight ADLs varied widely. The

system performed best on making the bed (92%), drinking (89%), toileting (88%),

and cooking (82%). Performance fell for using a computer (65%), using the telephone

(64%) and cleaning a surface (55%). Accuracy was nearly zero for eating a meal, just

7%. Over the entire experiment, the system correctly recognized when the occupant

was “Idle,” i.e., performing “none of the above” activities, approximately 80% of the

time. See Table 3.3 for all results.

Location accuracy. Location accuracy was lower than we expected for tracking a

single occupant in a small environment with hundreds of sensors. We attribute the

result to the physical layout of the environment and sensor choice. The open layout

of the apartment made tracking a challenge. The dining room and living room were
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connected openly and the kitchen was separated from the dining room by an island. In

addition, many cameras were placed to maximize view and were aimed into multiple

rooms. None of the other sensor types were wholly location-specific. For example,

water flow sensors and current sensors continue to trigger long after an occupant has

walked away from a flushing toilet or a humming microwave. Meanwhile, wireless

object movement sensors were often attached to mobile objects with no specific room

attachment, e.g., the cordless phone. Location accuracy may improve with different

sensor placement or by preprocessing sensor information. For example, by using only

derivative information from water flow sensors and current sensors, i.e. reporting only

major changes, we could target readings that occur when an occupant manipulates a

room-specific appliance or faucet.

Direct sensor associations. Several activities had high accuracy due to well-placed

sensors, i.e., direct sensor connections. For example, a wireless moving object sensor

was attached to the drinking cup. Another sensor detected when the toilet flushed.

On the other hand, eating was very difficult to detect because there were no sensors

directly associated with the act. Cleaning also lacked direct sensor associations.

Applying simple sensors directly to recognizing specific activities is key to making

straightforward probabilistic inference successful.

Room specific activities. We found that accuracy was high for activities which

occurred in specific locations. Making the bed, cooking, and toileting always occurred

in the bedroom, kitchen, or bathroom, respectively. Cleaning, eating, and using the

telephone were not room specific. Using a computer and using the telephone were

often performed concurrently.

Concurrent activities. In this experiment, using the telephone and using the

computer were often performed together.5 Our system is unable to recognize more

than one activity at a time. The system was therefore forced to choose one or the

other while both were occurring, which hurt accuracy for both. Any future work in

this area should plan to incorporate strategies for dealing with concurrent activities.

Impact of location on activity recognition accuracy. We ran another ex-

periment in which we removed all information about location available to activity

5Concurrent activities accounted for 7.5% of the overall dataset.
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Activity Name Configuration # 1 Configuration # 2
Idle 31.04± 1.11 68.39± 1.20
Cleaning a surface 53.15± 4.82 56.25± 4.73
Drinking 37.48± 14.65 39.13± 11.1
Eating a meal 1.21± 0.16 7.09± 1.35
Making the bed 94.28± 12.09 91.52± 19.5
Cooking 55.86± 1.51 88.41± 1.22
Toileting 87.80± 18.74 87.80± 18.74
Using a computer 38.52± 7.92 57.76± 12.07
Using the telephone 4.73± 1.54 68.61± 2.60

Table 3.4: Activity recognition accuracy for two sensor configurations.

recognition. This was accomplished by intializing location uniformly and then skip-

ping the location update step. In other words, at all times during this experiment

the system believed that the occupant was equally likely to be in any room.

The results indicate that knowledge of location is key to activity recognition.

For the eight ADLs, accuracy drops only an average of 3% relative to accuracy for

a system that uses location information. However, the most important difference

is in accuracy for the “Idle” activity. This activity alone accounts for 65% of the

overall experiment. Here, we see a drop of almost 20% accuracy (from 79.93% to

60.85%) corresponding to a slew of new false positives. We believe that knowledge

of location bounds the number of possible activities at any given time, which leads

to more conservative estimates of what is happening. Without location knowledge,

the system is more likely to predict many disparate activities, leading to more false

positives.

Impact of sensor choice on accuracy. We modified the number of sensors

available to our system to determine the impact of different sensor combinations. We

first ranked which groups of sensors were most important by running the experiment

separately using only information from each set of sensors and comparing total ac-

curacy. We found that MITes were most important, followed by motion detectors,

contact switches, current sensors, and finally, water flow sensors contributed the least.

Next, we ran two experiments, accumulating more sensors in each experiment. First,
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Activity Name Accuracy
Idle 86.25± 1.05
Cleaning a surface 49.79± 6.57
Drinking 89.41± 1.79
Eating a meal 6.13± 1.54
Making the bed 91.52± 19.50
Cooking 81.17± 1.61
Toileting 87.80± 18.74
Using a computer 64.26± 13.70
Using the telephone 62.54± 3.78

Table 3.5: Activity recognition accuracy with a length threshold of ≥ 30 seconds.

we used information from MITes and motion detectors, then we added switches and

current sensors. The results are summarized in Table 3.4.

Not suprisingly, accuracy rose as more sensors were added to the system. We found

that for the eight ADLs the bulk of accuracy came with just the first set of sensors.

Adding new sensors increased accuracy slightly, and for “Making the bed” and “Using

the telephone” decreased accuracy slightly. Adding new sensors was mostly useful for

straining out noise in the form of false positives. For example, we can see that adding

new sensors drastically improves accuracy for the “Idle” state. Thus, we found adding

new sensors to be most useful for informing the system of what is not happening.

Thresholding to remove false positives. A false positive occurs when the

system erroneously predicts that an occupant is engaged in an activity. The clearest

indicator that false positives are occurring is low accuracy for the “Idle” activity. In

practical use of this system, we believe that false positives are more detrimental than

false negatives – the system must gain the trust of the user. Therefore, if the system

is going to report information, it should report the right information – even if some

activities are missed.

To reduce false positives, we implemented a simple thresholding approach which

removed all predicted activities that lasted less than 30 seconds. Such activities

were changed to the “Idle” activity. The benefit is that the rate of false positives

should drop, as most activities last longer than 30 seconds. The drawback is that



86 CHAPTER 3. ACTIVITY AND LOCATION INFERENCE

accuracy for short duration events should also be reduced. As we can see in Table 3.5,

accuracy for most activities remains the same, but the accuracy for the “Idle” state

rises significantly, corresponding with fewer false positives. Accuracy for “cleaning

a surface” drops slightly, because this is a short duration activity. Overall, a quick

thresholding over activity duration is able to significantly reduce the number of false

positives detected by the system.

HMMs Vs. HSMMs. Many researchers have explored using more complex

HMM models for activity recognition. Such models include layered HMMs [87] and

more recently, hidden semi-Markov models (HSMMs) [41]. We also implemented

an HSMM approach, but we did not see a significant gain in accuracy. HSMMs

explicitly model state durations, however, our approach uses a single state for each

activity. Without modeling specific steps of an activity, we believe the benefits of

an HSMM are wasted. However, due to the popularity of semi-Markov models for

activity recognition, we did choose to extend our activity rating algorithm in chapter

5 to handle HSMMs.

3.8 Discussion

We have shown that tracking multiple occupants in a home environment and recog-

nizing activities of daily living is feasible via a set of simple sensors. In summary:

• We found that highly predictive motion models improve accuracy, regardless

of whether occupants behave similarly. In practice, the differences between

motion models show up in private areas, like bedrooms and bathrooms, or

during personal activities, like sitting in a favorite easy chair. The bigger these

differences, the easier data association becomes and the more accuracy improves.

• Parameter learning is straightforward when an occupant is alone, however, oc-

cupants behave differently in groups. Learning models online could mitigate

this discrepancy. In simulations, we found that the accuracy of models trained

online falls as the number of occupants rises. One promising solution would be

to combine online and offline approaches.
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• The number of particles required depends on the complexity of the data as-

sociation problem. More particles are necessary for environments with many

occupants and sensors. In particular, more particles are necessary for situations

in which multiple co-located occupants separate. We found negligible accuracy

improvements after twenty or so particles, even for up to five occupants. This

number may change depending on the efficiency of the particle filter approach

and the data association proposal scheme.

• More sensors will increase accuracy, regardless of the number of occupants. A

low sensor density contributes to significant periods of time between readings

(especially with only one occupant). During these “quiet” times no new in-

formation arrives to help the tracker recover from mistakes (such as the lag

between entering a new room and triggering a sensor). In experiment # 1, we

found that motion detectors were the most active sensors, and a lack of them

hurts tracking accuracy the most. In experiment # 3, we found that wireless ob-

ject movement sensors (particularly hundreds of them) greatly improve activity

recognition accuracy.

• More occupants will decrease accuracy, particularly if parameter learning is per-

formed completely online and motion models are generic. The accuracy suffers

most when data association becomes difficult, i.e., immediately after co-located

occupants separate. In general, accuracy is high for co-located occupants and

for occupants who have not come into contact with other for some time.

• Knowledge of room-level location improves activity recognition accuracy over

several activities of daily living. In addition, knowledge of location greatly re-

duced false positives, i.e., erroneously reported activities, by limiting the number

of likely activities to those common to a room.

3.9 Conclusion

In this chapter, we reviewed a variety of related work in people tracking and activity

recognition. We outlined our sensor configuration and described why we chose to
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use simple sensors. To provide information crucial to automatic health monitoring,

we introduced the STAR problem and showed how information from anonymous,

binary sensors may be used to provide simultaneous location estimation and activity

recognition for multiple occupants in a home environment. We evaluated our approach

on three data sets, collected from simulation and two instrumented environments.



Chapter 4

Data Collection in the Home

Practical in-home health monitoring technology depends upon accurate activity infer-

ence algorithms, which in turn often rely upon labeled examples of activity for train-

ing. In this chapter, we describe a novel, unsupervised technique in which contextual

information gathered by ubiquitous sensors is used to help users label a multitude of

anonymous activity episodes.1 This technique, called the context-aware recognition

survey (CARS), appears as a game-like computer program in which users attempt to

correctly guess which activity is happening after seeing a series of symbolic images

that represent sensor values generated during the activity. Our approach is valuable

because it is practical: Users may label each others’ data at any time without addi-

tional instrumentation or any interruption to daily routine via an easy-to-use, video

game-like interface.

4.1 Introduction

Many ubiquitous computing applications depend on knowledge of how people be-

have in their environments. Fortunately, pervasive computing applications implicitly

gather a valuable context history as they collect and store sensor data over time; un-

fortunately, this vast amount of data is of limited use without labels that explain what

was happening in some way. Although potentially costly to collect, labeled examples

1This chapter is a revised version of [119]
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of activity can both improve design decisions and help machine learning techniques

to recognize and predict activity. The work described in this chapter is motivated

by a need to acquire labeled examples of activity in the home without burdening

occupants or disrupting their daily routines.

We describe the context-aware recognition survey (CARS), which helps users to

label anonymous activity episodes by displaying contextual information collected by

ubiquitous sensors such as contact switches, pressure mats, motion detectors, and

RFID readers. Drawing on recent research in practical home monitoring systems,

game-based image-labeling techniques, and data labeling techniques [116, 120, 5, 16],

we designed a game-like multiple choice test that displays low-level sensor readings

as colorful symbols and descriptive text. Users answer the questions with the goal of

correctly labeling the activity being depicted. This approach allows anyone to label

the data at any time, without requiring additional hardware (beyond the original

sensor infrastructure) or causing additional interruption to daily routine. We believe

these properties are necessary if a practical in-home data labeling system is to be

used on a wide scale by non-experts.

We report two experiments: One in which users (N=10) performed a subset of

tasks in an instrumented environment and completed a CARS approximately one week

later, and another in which users (N=20) completed a more complicated, real-world

version of a CARS, providing labeled data for over 25 activities performed by complete

strangers. Results from the first experiment draw upon statistical analyses of test

performance and a post-test questionnaire. We present a comparative analysis of

how well users performed on their own activities (which they may remember) vs. the

activities of others (which they have never seen) vs. counterfeit examples of activity.

In the second experiment we explore whether a completely unsupervised system is

feasible. In this study, episodes of activities were automatically segmented from the

entire stream of data and chosen for labeling according to algorithms borrowed from

the active learning literature. We summarize our results with a series of “lessons

learned,” and suggestions for design decisions for any future CARS. These findings

have value that extends beyond the specifics of our own system, both in terms of the

design of data collection systems and research on the abilities and needs of human
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labelers.

In the this section we introduced the data labeling problem and outlined our

solution. Next, we describe related work in the area of data labeling. We then

describe our implementation of a context-aware recognition survey and demonstrate

results over two experiments in which participants used our system to label data

generated in two different instrumented environments. Finally, we provide a critique

of our approach and make suggestions to future researchers who may wish to build

on our technique.

4.2 Related Work

Several standard classes of methods exist for collecting data about daily activities,

including one-on-one or group interviews, direct observation, self report recall surveys,

time diaries, and the experience sampling method (ESM) [13, 57]. While direct

observation and annotation of video data are often reliable, they are prohibitively

time-consuming and insensitive to privacy concerns. In interviews and recall surveys,

users often have trouble remembering activities and may censor what they do report.

Time diaries may reduce recall and selective reporting bias, but require a commitment

from the user to carry around (and use) the diary. Experience sampling techniques

use a prompting mechanism (e.g., a beep) to periodically ask the user for a self-

report. Prompts may interrupt activities and must be carefully delivered in order to

avoid annoying the user [57]. All of these methods require the participation of the

person who performed the activity and others may require outside help as well (e.g.,

interviewers or annotators). In contrast, our approach is designed to never interfere

with the occupant and to be performable by people who may have never experienced

or witnessed the activity they are labeling.

Existing data collection schemes increasingly exploit an underlying sensor infras-

tructure. The electronic experience sampling method (ESM) collects data by using a

portable computing device (e.g., a PDA or cell phone) to prompt users and to collect

their responses. Because prompting can interrupt activities and quickly become an
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annoyance [13], context-aware ESM approaches have been developed which use ad-

ditional sensor information to choose the best time to prompt for data [100]. The

benefit is that prompts should only occur when they are perceived to be least invasive

and when the information to be gained is maximally beneficial. The context-aware

recognition survey has great potential to mesh seamlessly with established context-

aware ESM techniques. There are some immediate advantages: 1) The CARS could

be used to “fill in the blanks” from missed or ignored ESM prompts, 2) labels col-

lected via ESM could be verified or supplemented by CARS at a later date, and 3)

ESM data could be used to improve automatic episode recovery in the CARS system.

The data collection technique that is most similar to the CARS is called “image-

based experience sampling,” which mitigates forgetfulness common to recall surveys

by using cues such as photo snapshots [57]. In previous work, researchers have used

snippets of video, audio, and photo snapshots to help remind users who are per-

forming a recall survey of what activities they performed. This approach is desirable

because it reduces recall bias, avoids interrupting daily routines, and does not require

the addition of wearable (or carryable) sensors. (Ideally, the cues are chosen auto-

matically, i.e., without human intervention.) Our approach is desirable for the same

reasons, however, we do not use information from cameras or microphones. Instead,

our approach maintains privacy by converting low-level sensor values into non-private,

generic symbols. The added benefit is that these episodes can be labeled by anyone

at any time.

It has been shown that the human desire to be entertained can be tapped for

labeling data. Researchers at CMU recently demonstrated the potential of using

“human cycles” to label images on the Internet [5]. In the “ESP Game,” two online

players examine the same image and independently type descriptive words. The result

is a double-blind test that rewards players who come up with the same answers. Our

method currently engages a single user off-line, however, the game-like setup lends

itself well to the transition to an online video game. We do not pursue this approach

in these experiments, however, we forsee advantages in the form of more reliable labels

which have been annotated many times by different users (which may be especially

important when it is infeasible or inconvenient to ask the performer of the activity to
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label).

Finally, existing sensor infrastructure is increasingly prevalent in the home. The

cost of sensors and computation has dropped to the point that consumer-ready sen-

sor installations are becoming possible. A study conducted at Intel Research Seattle

found that participants were able to install faux sensors according to a simple in-

struction sheet, without expert supervision [16]. Meanwhile, other researchers are

designing and deploying real sensor installations for the home [14, 120]. Simple,

do-it-yourself sensors are likely to constitute the first examples of actual in-home

monitoring systems. These sensors are chosen specifically for real homes; they are

low-cost, affordable, and not perceived as invasive. We have taken the following as a

design challenge: to use output from an existing sensor infrastructure to help users

label activities. We envision the CARS as a tool usable by non-experts to “train”

their in-home monitoring systems.

4.3 Approach

The key idea of the context-aware recognition survey is to use contextual information

collected by ubiquitous sensors to provide an augmented recall survey that can be

performed by anyone at any time, regardless of who performed the activity or how

the sensors were configured. The technique consists of the following steps: 1) Sensor

readings are collected over time and stored, 2) sensor readings are automatically seg-

mented by activity into episodes (called episode recovery), 3) episodes are converted

into a series of generic, highly descriptive images, and 4) episodes are labeled by users

in a game-like computer-based recognition survey. Afterwards, the labeled episodes

may be used to train machine learning algorithms or to improve design decisions for

pervasive computing applications.

We describe two experiments; in both experiments a series of unlabeled episodes

were translated into symbolic images and short lengths of text via a tool called the

Narrator [116]. The Narrator is a finite state machine that parses low-level sensor

information and generates a concise, readable summary. For this study, a simplified

version of the Narrator mapped each change in sensor values to an image and caption.
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Figure 4.1: Screenshot of CARS for experiment # 1.

The source of the sensor reading (e.g., contact switch, motion detector, RFID tag) is

inconsequential, so long as it can be mapped to a generic symbol. Each new sensor

configuration must be hand-mapped to a standard set of generic images that may

be shared by many other instrumented homes. The resulting series of images (and

captions) describe an activity episode in simple, symbolic terms. These episodes are

then presented to users in the form of a recognition survey.

4.4 Experiment # 1

In this experiment we gauged the feasibility of using a context-aware recognition sur-

vey for labeling data in the home by asking ten participants to generate data in an

instrumented home environment and then having them each complete a CARS ap-

proximately one week later. See Figure 4.1 for an example screenshot of the program

used in this experiment.

4.4.1 Study Methodology

Participants. Participants in this study were 10 adult volunteers who were recruited

from the university and from the community. Participants ranged in age from 25 to

32 years, and the sample was 50% female and 50% male. Participant background

varied, ranging from librarians to engineers.
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Instrumented environment. This study occurred in the lead author’s home. A

kitchen and bathroom were instrumented with two types of anonymous, binary sen-

sors: magnetic contact switches and pressure mats. In the kitchen, contact switches

were installed on the refrigerator, freezer, and microwave doors, as well as on the

trash can, liquid soap dispenser, stove top burner, hot and cold water faucet knobs,

two cupboards, and two drawers. A pressure mat was placed under the chair at the

kitchen table. The refrigerator, freezer, cupboards and drawers used in the experi-

ment were clearly labeled with their contents (e.g., ice, plates, cups). In the bathroom,

magnetic contact switches were installed on the liquid soap dispenser and hot and

cold water faucet knobs, and a pressure mat was placed on the floor in front of the

sink. All sensors interfaced with a desktop computer via an extended parallel port.

Sensors were polled every second and values were stored in a mySQL database.

Activity recording. Participants participated one at a time. First, participants

were asked to perform several activities in the instrumented kitchen and bathroom.

They were informed that they would be asked to recall their activities in a “quiz”

later that week. The locations of objects needed to perform the activities were clearly

labeled and each participant was given an initial tour of the instrumented rooms.

Participants were instructed to choose and perform a subset of several kitchen tasks

(which were also posted on the refrigerator as a reminder). The kitchen tasks were:

Prepare a cold drink, prepare either a sandwich, a fried egg, or a microwave pizza,

eat the meal, wash dishes and put them away, and throw away any trash. During

the bathroom portion, participants were given a toothbrush and were instructed to

brush their teeth and then perform two of three tasks: Wash their face, wash their

hands, and comb their hair. An observer time-stamped the start and end points of

each activity using a laptop computer. Participants were instructed not to speak with

other participants about which tasks they had performed.

Context Aware Recognition Survey. We presented our computer-based recognition

survey as a “game” in which the goal was to correctly guess which activities were hap-

pening given only the sensor readings collected from the kitchen and bathroom envi-

ronments. The contextual information gathered by the sensors was hand-segmented

using the start and end points time-stamped by the observer, and converted into
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Figure 4.2: Symbols: (a) Refrigerator open, (b) water on, (c) cabinet closed.

episodes of images and text via the Narrator program [116]. We attempted to ad-

dress the implications of improperly segmented (i.e., malformed) episodes by asking

users to label counterfeit episodes. Counterfeit episodes were hand-made by intention-

ally choosing incorrect activity durations and by introducing noisy sensor readings

(i.e., dropped readings and spurious readings). Several counterfeit episodes (which

did not correspond to any activity) were generated by hand. The rest of the episodes

were “real” in that they were generated by participants performing activities in the

instrumented environment.

Each episode consisted of a series of scrolling images that had red or green back-

grounds, depending on whether that object was turned on or off. See Figure 4.2

for example symbols, or Appendix F on page 151 for the complete list. The word

“kitchen” or “bathroom” was presented with each episode to indicate the location

where the activity took place. The total duration of the episode was also displayed

(no other timing information was included). Participants were able to pause the

scrolling pictures, but were not able to replay an episode. After viewing an episode,

participants were asked to select from a multiple choice list of every possible kitchen

or bathroom activity (depending on which room the activity occurred in) plus a None

of the Above answer. Participants were also asked to rate how confident they were

about their choice on a scale of one to five.

Participants were administered the CARS on a laptop computer a mean of 5 days

following the activity recording (Range=2-7 days, SD=1.63 days). Each participant

was presented with two sets of 12 activity episodes, which we call the “self” set

and the “other” set. The self set contained 8 episodes from the participant’s own

activities and 4 counterfeit episodes. The other set contained 8 episodes of someone
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else’s activities and 4 counterfeit episodes. Participants were informed of which sets

were self or other. The survey administration was counterbalanced, with half of the

participants presented the self set first, and the other half with the other set first.

Subjective Experience Questionnaire. Immediately after completing the computer-

based CARS, participants completed a brief paper and pencil questionnaire about

their subjective experience.

4.4.2 Results

1. Participants successfully identified 82% of the 24 total episodes (M=19.60, SD=3.47).

Assessing confidence in their selection on the Likert scale of 1-5 (1=Not Very Sure and

5=Very Sure), participants reported being Mostly Sure (M=3.96, SD=1.03) across

all of the episodes. Overall, participants were able to successfully label most

activities with confidence.

2. The number of days between activity performance and activity recall ranged

from 2 to 7 (M=5.00, SD=1.63) and was not significantly correlated with total

performance scores, r=.27, p=.44. Therefore, we found that the amount of time

between activity and recall did not significantly affect performance in our

sample.

3. Ignoring counterfeit episodes, performance on the self section (M=7.10, SD=1.29)

and the other section (M=7.10, SD=.99) was identical, with participants correctly

identifying 89% of the 8 possible episodes. There was also no significant difference

in participants’ confidence ratings in their identification of their own activities vs.

someone else’s. Overall, participants were equally good at labeling their own

or other peoples’ real activities.

4. Although there were no significant differences in overall performance on self vs.

other episode identification, differences did emerge for the most difficult to identify

episodes. Due to limited sensor granularity, several bathroom tasks (e.g., face washing

vs. hand washing) were only recognizable almost solely from memory. The number

of errors on these tasks were low in the self section, but more than doubled in the

other section. This indicates that the importance of memory increases for
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hard-to-recognize activities.

5. Participants had better performance on the 16 real episodes (M=14.20, SD=1.47)

than on the 8 counterfeit episodes (M=5.40, SD=2.32). This proportional difference

(67% for fake, 89% for real) was significant, t(9)=-2.80, p<.05. The mean confi-

dence rating was also slightly higher for real (M=3.02, SD=.37) vs. counterfeit

episodes (M=2.82, SD=.43), although this difference was not statistically significant,

t(9)=1.43, p<.19. This indicates that although participants may have been unaware

of this deficit, counterfeit episodes were often mislabeled as real episodes.

6. The order of test administration (self then other, or vice versa) did not impact

overall performance or performance on self vs. other sets, but did impact performance

on the identification of counterfeits. Participants who completed the self section first

were significantly better at detecting fake episodes in the other section, t(8)=2.36,

p<.05. We hypothesize that users become better at spotting counterfeit episodes as

they gain experience. In other words, practice makes perfect.

7. Participants who completed the other section first did not perform significantly

better at spotting counterfeits on the self section. This could be because experience

gained during the other set did not overcome the inherent gains offered by remem-

bering which activities did or did not occur. We believe that this may be because

remembering activities makes it easier to spot counterfeit episodes. One

participant writes, “I could remember the steps I took...and I knew it was me.”

8. Performance on each episode was significantly related to participants’ rating

of their own confidence level in their selection for that episode, r=.16, p<.05. There

was also a significant difference between mean confidence level on correct (M=3.03,

SD=1.03) vs. incorrect (M=2.61, SD=1.06) selections, t(238)=2.39, p<.01. This

suggests that user confidence ratings are potentially a useful measure of

whether the episode was correctly labeled.

9. There was no difference found between confidence ratings on self vs. other

activity identification, however, in the follow-up survey, participants reported that

in their overall experience of the test it was more difficult to identify someone else’s

activities than their own t(9)=-1.95, p<.10 (significant at the trend level). It ap-

pears that participantively, participants feel it is easier to label their own
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activities.

10. Participants reported that their participantive experience of the test was

positive. Participants reported that the symbolic images were “pretty easy” to “very

easy” to understand on the Likert scale of 1-5 (M=4.70, SD=.48). Open-ended

questions that asked what participants liked and did not like about the CARS also

indicated that participants had a positive experience, with participants reporting that

they liked the color-coding for off and on, and that the images were “cute,” “clear,”

or “easy to understand.” All in all, participants enjoyed taking the CARS.

11. Total performance scores ranged from 11 to 23 correct identifications (out of 24

possible), with 90% of the participants correctly identifying 18 or more of the episodes.

Most participants were fairly adept at labeling, while a few performed significantly

worse. Obviously, not everyone makes a good choice for a labeler. However, in the

follow-up survey several high-performing participants requested the ability to speed

up the scrolling. This indicates that when designing the CARS researchers should

plan for the varying abilities of different participants.

4.5 Practical Considerations

We identified three main weaknesses in our initial CARS implementation: 1) We used

low-granularity sensors (e.g., contact switches) which made some activities impossible

to recognize, except from memory; 2) we depended on a human to hand-segment the

data into episodes; and 3) we had no mechanism for optimally choosing the order

in which episodes should be labeled, and thus minimizing the number of necessary

questions. In this section, we briefly describe our solutions in these areas before going

into more detail in the next section.

4.5.1 Higher Granularity Sensors

In experiment # 1, we found that our choice of simple sensors did not provide suf-

ficient granularity for users to confidently label certain activities. For example, it

was particularly difficult to tell the difference between washing hands and face (in
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Figure 4.3: Pictures of (a) The iBracelet, a wearable RFID reader, (b) tagged objects.

this case, the only information was that a pressure mat in front of the sink was

stepped on and cold water was used). In response, we integrated higher granularity

RFID sensors, specifically the iBracelet [92], developed at Intel Research Seattle. The

iBracelet reports a unique ID number for every tagged object that is touched in the

environment. See Figure 4.3 for a picture of the iBracelet.

4.5.2 Automatic Episode Recovery

An attractive aspect of the context-aware recognition survey is the fact that it is

completely unsupervised (aside from the user labeling step). In our previous study,

however, we hand-segmented the stream of sensor readings generated by the user. To

automate this step, we performed unsupervised episode recovery using HMM models

bootstrapped with common-sense information mined from the Internet (an approach

pioneered at Intel Research Seattle [92]). The key idea was to train rough HMM

models with information “scraped” from instructional web pages, and then to use

these models to identify the segments between activity episodes.

4.5.3 Active Learning for Episode Selection

In most situations, the amount of unlabeled data vastly outweighs the amount of

labeled data. Even after automatic segmentation into unlabeled episodes, much of this

data may be useless. For example, an unlabeled episode could have been segmented

incorrectly, riddled with noisy sensor readings, or it may describe an activity that
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Figure 4.4: Screenshot of CARS for experiment # 2.

already has a well-trained model. In addition, the amount of time it takes a human to

label an episode represents a scarce resource – there are often far too many unlabeled

episodes to ask a human to label all of them. Clearly, there is a need to intelligently

select the best episodes for labeling, in order to 1) minimize the amount of labeling

necessary and 2) to maximize the usefulness of labeled examples for training activity

models. We borrow algorithms from the field of active learning, specifically the query-

by-committee approach, to provide a solution.

4.6 Experiment # 2

In this section, we describe an experiment in which we ask participants to complete

a refined version of the context-aware recognition survey that incorporates data from

higher granularity sensors, automatic episode recovery, and active learning for episode

selection. We report results from twenty participants who completed this CARS. See

Figure 4.4 for an example screenshot of the program used in this experiment.
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4.6.1 Study Methodology

Participants. Participants in this study were 20 adult volunteers recruited from

the university and from the community to complete a computerized context-aware

recognition survey. Participants ranged in age from 22 to 45 years, and the sample

was 45% female and 65% male. Participant background varied, ranging from airline

pilots to architects.

Instrumented environment. Participants were asked to complete a CARS

that used data generated by complete strangers in a previous study [92]. None of the

participants participating in this experiment were involved in generating this data.

In the previous study, a real home in the Seattle area was selected and instrumented

with over 100 RFID tags. Objects as diverse as faucets and remote controls were

tagged. Figure 4.3 illustrates the RFID infrastructure that was assumed. On the left

is a bracelet which has incorporated into it an antenna, battery, RFID reader, and

radio. On the right are day-to-day objects with RFID tags (battery-free stickers that

currently cost 20-40 cents apiece) attached to them.2 The bracelet-mounted reader

constantly scans for tags within a few inches of the hand. When the wearer of the

bracelet handles a tagged object, the tag on the object modulates the signal from the

reader to send back a unique 96-bit identifier (ID). The reader can then ship the tag

ID wirelessly to a base computer which can map the IDs to object names.

Activity recording. In the previous study, 9 non-researcher participants with a

wearable RFID reader performed, in any order of their choice, 14 ADLs each from a

possible set of 65; in practice they restricted themselves to 26 activities over a single

20 to 40 minute session. There were no interleaved activities and a written log was

used to establish ground truth. See Appendix H on page 155 for the complete list of

tagged objects and activities performed.

Automatic Episode Recovery. We used bootstrapped HMMs for automatic

episode recovery, however, there are dozens of other successful techniques available

to solve the same problem. See [65] for a survey of segmentation techniques and

[96] for an introduction to HMMs. We chose to use the HMM approach because it

2We assume that participants or their caregivers will tag a multitude of objects in the home
environment. In experiments we have tagged over a hundred objects in a real home in a few hours.
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is extremely straightforward, fast, and required minimal human intervention. Also,

in other research we are already using similar HMM models for activity recognition.

Segmentation accuracy could probably be improved with a more high-powered seg-

mentation technique, however, we intentionally choose to keep segmentation simple

and rely on active learning to filter out badly segmented episodes. Ideally, the ac-

tive learning mechanism should never choose to show a badly segmented episode to

the end user, as long as there are some unlabeled and well-segmented episodes still

available.

A hidden Markov model (HMM) was trained on information gathered from the

Internet. This data-mining process used word appearances on “how to” websites to

compute the probability that an object was used during each activity. Using the

website www.ehow.com, 65 different web pages were chosen that described activities

ranging from using the microwave to using the toilet. Each web page contained some

number of nouns that matched tagged objects in the environment. For example,

we tagged the microwave and the term “microwave” appeared 7 times on the page

entitled “How to Boil Water in the Microwave.”

From this mined information we assembled an HMM with one state for each of the

65 possible activities, and a set of observations composed of the set of mined objects,

pruned to include only those which we knew were in our set of deployed tags. The

observation probabilities were then set to normalized values of the mined probabil-

ities. We set the HMM’s transition probabilities to reflect an expected number of

observations (5) for each activity, as well as a uniform probability of switching to any

other activity. See [92] for a detailed description of this data-mining process.

Next, for each of the 9 sensor traces (one for each participant) we used the Viterbi

algorithm [96] to compute the most likely sequence of labels for each sensor read-

ing (i.e., each object touched). We then simply segmented the labeled trace into

contiguous sequences of the same label. See Table 4.1 for an example of this data.

We used the Pk metric to measure segmentation accuracy [17]. The Pk metric is the

probability that two observations at a distance of k from one another are incorrectly

segmented. As such, it can be thought of as the error rate for the segmentation, and 1

- Pk can be thought of as the segmentation’s accuracy. The value of k is set to one half
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RFID tag HMM label Segment #
14 9 0
23 9 0
21 9 0
14 9 0
26 5 1
29 5 1
12 7 2
11 7 2
13 7 2

Table 4.1: Example of automatically segmented data.

of the average segment length (in our case k = 3). The Pk score for our segmentation

using only the mined parameters (i.e., with no training) is 29.7, indicating that we

should expect to be able to segment sensor traces in a completely unsupervised manner

with higher than 70% accuracy. This is a promising indication that bootstrapped

HMM models can be used to perform unsupervised episode recovery.

Active learning for episode selection. After automatic episode recovery, we

were left with 145 unlabeled episodes. We decided to present only 30 episodes to each

user, resulting in an experiment that usually lasted from 10 to 15 minutes. (Practically

speaking, it was infeasible to expect participants to label all 145 episodes.) In order

to select the “best” 30 episodes, we borrowed a well-known algorithm from the active

learning community, called query-by-committee (QBC) [103].

The key idea behind QBC is to 1) sample a “committee” of slightly different HMM

models (each constituting a “member” of the committee); 2) use each sampled model

to label every episode (each member “votes”); and then 3) choose to label episodes

which have high entropy between committee members’ labels (the episodes where

members most disagree). Finally, we use the newly labeled episode to re-train the

original HMM model, before repeating the same process for the next episode. The

algorithm is implemented as follows:

Step 1. We wish to sample a committee of models from the posterior parameter

distributions P (αi = ai|S) of the original HMM model, given HMM statistics S (we
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Episode # Label one Label two Label three Vote entropy
1 8 8 8 0.0
2 2 3 2 .667
3 4 1 5 1.0
4 3 6 1 1.0
5 7 7 4 .667

Table 4.2: Entropy between 3 committee members for 5 episodes.

assume a uniform prior). We note that the parameters of an HMM represent a set of

multinomial probability distributions. Let {ui} denote the set of possible values of a

given multinomial variable (e.g., the possible observations for a given activity), and

let S = {ni} denote a set of statistics extracted from the training set, where ni is the

number of times that the value ui appears in the training set. We denote the total

number of appearances of the multinomial variable as N =
∑

i ni. The parameters

whose distributions we wish to estimate are αi = P (ui).

The maximum likelihood estimate for each of the multinomial’s distribution pa-

rameters, αi, is α̂i = ni

N
. We smooth this estimator to compensate for data sparseness:

α̂S
i =

(1− λ)ni + λ

(1− λ)N + λv
, (4.1)

where λ << 1 is a smoothing parameter controlling the amount of smoothing (set

to .05 in our experiments), and v is the number of possible values for the given

multinomial, i.e., the number of possible observations (in our case 68, for the full list

see Table H.2).

The posterior P (αi = ai|S) is a Dirichlet distribution [58]. To simplify implemen-

tation, we assume that a multinomial is a collection of independent binomials, each

of which corresponds to a single value ui of the multinomial. For each such binomial,

we sample from the truncated normal approximation for the smoothed estimate, with

mean µ = α̂S
i and variance ρ2 = µ(1−µ)

N
. Here, ni equals the number of times value ui

appears, N equals the total number of appearances of the multinomial variable, and v

equals the number of possible values for the multinomial. Afterwards, we renormalize

the sampled parameters so that they sum to 1.
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Figure 4.5: Symbols from left to right: (a) Faucet, (b) bleach, (c) toothbrush.

Step 2. The next step is to label each episode according to the parameters of

our newly sampled models. This is done in the traditional method, via the Viterbi

algorithm [96]. Next, we must calculate the entropy between different answers. We

denote the number of committee members assigning a label c for input example e

by V (c, e). Now, we can measure the disagreement between committee members

by the entropy of the distribution of labels “voted for” by the committee members.

This measure, called vote entropy, quantifies the uniformity of classes assigned to an

example by many different committee members. The vote entropy is normalized by

a bound on its maximum possible value, log(min(k, |c|)), resulting in a value between

0 and 1 (corresponding to complete agreement or disagreement, respectively). The

formula for normalized vote entropy is as follows:

D(e) = − 1

log min(k, |C|)
∑

c

V (c, e)

k
log

V (c, e)

k
. (4.2)

See Table 4.2 for an example of this data.

Step 3. We use a simple selection criteria called randomized selection to decide

which episode to present to the user. By this technique, an example is selected

randomly, weighted by the vote entropy (higher vote entropy corresponds to a higher

probability of selection).

4.6.2 Context Aware Recognition Survey

Once again, we presented our computer-based recognition survey as a “game” in

which the goal was to correctly guess which activities were happening given only the

sensor readings collected from the instrumented home.
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The automatically segmented episodes were again converted into episodes of im-

ages and text via the Narrator program [116]. Each episode consisted of a series

of scrolling images that corresponded to which object had been touched.3 See Fig-

ure 4.5 for example symbols, or see Appendix G on page 153 for a complete list of

symbols. No location information was given, although location was often obvious

when occupants had touched objects such as “bathroom door,” or “microwave.” The

total duration of the episode was not displayed, nor was any other explicit timing

information. Participants were able to pause the scrolling pictures, but were not able

to replay an episode. After viewing an episode, participants were asked to select from

a multiple choice list of every possible activity (of which there were 26) plus a “None

of the Above” answer. Participants were also asked to rate how confident they were

about their choice on a scale of one to five.

Participants (N=20) were administered the CARS on a laptop computer. All par-

ticipants were given a “walkthrough” of the program, and a brief description of how to

answer ambiguous questions. See Appendix I on page 158 for a copy of the informa-

tion sheet. A group of 10 participants was presented with 30 activity episodes chosen

randomly from 145 possible. Another group of 10 participants was presented with

30 activity episodes chosen according to the query-by-committee algorithm described

above. We call these the “random” and “active” question sets, respectively.

4.6.3 Results

1. On average, participants were able to answer about 20 of 30 questions correctly

(M=19.4, SD=3.38), although scores ranged from 14 to 26. There was no significant

difference between scores on actively chosen questions sets versus randomly chosen

data sets. This indicates that participants were able to successfully label over

25 different activities completed by complete strangers in an instrumented

environment.

2. Participants assessing their confidence in their selections on the Likert scale of

1-5 (1=Not Very Sure, 5=Very Sure) reported being Mostly Sure across all questions

3Using Google, we assembled 68 prototype object-symbols in a few hours.
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Figure 4.6: Relation between confidence and labeling accuracy.

(M=4.02, SD=1.07). Confidence between active and random question sets was not

significantly different. Also, there was no significant change in confidence as the

number of questions increased (i.e., participants did not seem to become more or less

confident over time). Labels that were associated with a confidence of Not Very Sure

were wrong 50% of the time, A Little Sure 57% of the time, Somewhat Sure 60% of

the time, Mostly Sure 37% of the time and Very Sure 20% of the time, on average.

This corroborates earlier findings indicating that participants’ confidence

ratings can be used to predict labeling accuracy. See Figure 4.6.

3. Note that the 145 possible episodes available for labeling were segmented

automatically. As a result, 17 of these episodes were so badly segmented that they

did not correspond to any activity (i.e., the correct label for these episodes is None

of the Above). During the study, participants were instructed to choose None of

the Above for episodes which seemed incomprehensible or which seemed to represent

more than one activity at the same time.

On average, participants chose None of the Above about 4 times out of 30 questions

(M=4.4, SD=3.5), with a range from 0 to 14. Participants were significantly more
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likely to choose None of the Above on the randomly chosen question set (M=6.2,

SD=3.91) than on the actively chosen question set (M=2.6, SD=1.84), with a factor

of t(20)=2.63, p=.017. There was also a difference between the number of “bad”

episodes (i.e., episodes that corresponded with no activity) presented by the active and

random question sets. In the active question set there were significantly fewer of these

questions (M=2.5, SD=1.27) than in the random question set (M=3.7, SD=1.34),

with a trend level significance factor of t(20)=2.01, p=.054. This indicates that

the active learning algorithm intentionally avoided presenting participants

with badly segmented episodes.

4. We recorded the number of seconds that each participant spent before choosing

an answer for each question. The timer started as soon as the entire question had

been displayed and ended when the participant pressed the “Submit” button. This

number was recorded as “0” when participants answered before the entire question

had been shown (which they were instructed not to do).

We found that for the actively chosen questions there was a fairly even amount of

time spent for every question. However, for the randomly chosen questions partici-

pants spent considerably longer on each of the first three questions (M=10, SD=12)

than on each of the last 27 questions (M=5.1, SD=5.5). This difference was ex-

tremely statistically significant, t(300)=3.96, p<.0001. We hypothesize that this data

represents a steep “learning curve” which may have been exacerbated by the fact

that episodes were chosen randomly, with participants more likely to be confronted

initially with badly segmented questions which required more time to figure out. In

addition, we found a significant difference between overall amount of time spent on

actively chosen questions (M=3.7, SD=4) vs. randomly chosen questions (M=5.6,

SD=6.7), with participants recorded spending an average of 2 seconds less on the ac-

tively chosen questions, t(600)=4.22, p<.0001. This indicates that episodes in the

active question set were labeled faster, possibly because they were easier

for participants to answer.

5. Time spent answering a question was significantly correlated to whether the

question was answered correctly, with incorrectly answered questions usually taking

approximately 2 seconds longer to answer on average, with t(600)=20.85, p<.0001.
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Figure 4.7: Model accuracy as number of trained episodes increases.

It appears that the longer a user spends on a question, the more likely the

question is to be answered incorrectly.

6. The goal of collecting labeled examples is to use them to train the activity

recognition model, thereby improving classification accuracy. We explored how much

model improvement was gained by training on the episodes labeled during this experi-

ment. Note that with perfect labeling of all 145 episodes we found that the maximum

possible accuracy for the supervised learner was 73%. The starting accuracy for the

model (i.e., the baseline accuracy) was 42.21%.

Accuracy improved as more episodes were labeled, however the rate of improve-

ment differed between participants who labeled actively chosen episodes and those

who labeled randomly chosen episodes. On average, the final accuracy after 30

episodes was higher for the actively chosen episodes (M=.53, SD=.036) than for

the randomly chosen episodes (M=.50, SD=.034). This difference was significant,

t(20)=2.17, p=.043. See Figure 4.7 for a graph of accuracy over both question sets

as the number of labeled episodes grows from 1 to 30. These data indicate that la-

bels from the actively chosen question set improved model accuracy faster
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and pushed model accuracy higher than labels from the randomly chosen

question set.

4.7 Discussion

In this section, we introduce several pieces of advice for future designs of context-

aware recognition surveys.

• Use “warm up” questions. An active learning scheme is designed to present

users with the most important questions first. However, our data suggested

that a “learning curve” exists, with participants 1) taking longer to answer

the first few questions, 2) performing worse on the first few answers, and 3)

reporting lower confidence on the first few questions. We suggest opening with

a few warm-up questions, so that participants will be more likely to answer the

most important questions correctly.

• Limit the number of displayed activities. In the second experiment, the “mul-

tiple choice” aspect of our CARS included 27 possible activities. Such a large

number of activities displayed at once made it difficult for participants to keep

all possibilities in mind. In particular, we recommend that possible activities

be segmented by room (as in our first experiment) and that similar activities

be nested, so that the participant can “drill down” to greater levels of detail

(e.g., Using Microwave drills down to Boiling Water in Microwave and Cooking

Popcorn in Microwave, etc.).

• Allow user to segment episodes. Using automatic segmentation (i.e., episode

recovery) will inevitably result in some number of badly segmented episodes.

We found that using an active learning scheme decreased the number of these

segments displayed to the user, however, at some point the user will likely be

asked to label a question that is ill-segmented. In many cases, the boundaries

between segments were obvious to the end user. We suggest allowing users

to choose the start and finish of the episode, as well as the label and their

confidence level.
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• Re-segment data on the fly. In both reported experiments we segmented a

number of activity episodes off-line, before participants were asked to perform

labeling. When using HMMs for automatic segmentation, however, segmenta-

tion accuracy improves with a better model. Therefore, we suggest that after

each new label is collected from the user (and the model subsequently up-

dated/trained), the CARS program should perform a re-segmentation of the

data, thereby improving segmentation accuracy and improving the likelihood

that users will be presented with well-segmented, viable episodes of activity.

• Model user abilities. Labeling accuracy varied widely between individuals over

both experiments. Significant accuracy might be gained by gauging the abilities

of each user and presenting questions appropriate to the user’s skill level. In this

way, expert labelers could be utilized for difficult episodes and novice labelers

could hone their skills on simpler fare. We suggest introducing redundancy by

allowing multiple users to label the same episodes – following the QBC model,

the most “challenging” episodes would be those with highest entropy between

users. Possibly, the skill level of a labeler could be determined similarly, with

highest skill accompanying those with lowest entropy between other labelers.

• Display more timing information. In our first experiment we displayed the total

length of time that the episode required. In both experiments we displayed

symbols that represented sensor readings chronologically, in the order that they

were triggered by people acting inside the instrumented environment. We found

that in some cases it could be useful to utilize negative information, in the form

of gaps in time when the occupant did nothing. This information comes for free

and is a key portion of many activities, most notably watching television.

• Allow user to change scrolling speed. Again, participants’ abilities varied widely

through both experiments. We suggest catering to user preferences by allowing

control over the scrolling speed of symbols and captions.
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4.8 Conclusion

In this chapter, we described an approach for data collection called the context-aware

recognition survey. This approach uses contextual information collected by sensors to

allow users to label episodes of activity in the home. CARS is desirable and practical

because it does not require additional sensor infrastructure, does not interrupt the

activities it collects data about, and allows anyone to label activities. We presented

results from two experiments that indicate such an approach can be effective and at

the same time remain completely unsupervised. We used our results to offer several

“lessons learned” that could potentially help other researchers design a better CARS.



Chapter 5

Application to Activity Rating

Rating how well a routine activity is performed can be valuable in a variety of do-

mains. In this chapter, we describe a general-purpose activity rating system built on

the familiar hidden Markov model (HMM) framework.1 We formalize the problem as

MAP estimation in HMMs where the incoming trace needs repair. We present poly-

nomial time algorithms for computing minimal repairs with maximal likelihood for

HMMs, hidden semi-Markov models (HSMMs) and a form of HMMs incorporating

partial temporal logic constraints. We present some results to show the promise of

our approach.

5.1 Introduction

Rating how well a person performs a routine activity is a broadly useful capability

with many applications: professors train medical students by rating their execution of

established procedures, caregivers assess the well-being of their wards by rating how

well they are able to perform activities of daily living, and managers and workflow

experts identify poorly performed procedures that cause bottlenecks in a system.

Although rating routine activity is certainly useful, as conventionally done it is also

very expensive – each activity performance requires a dedicated human observer (often

1This chapter is a revised version of [120] and this work was performed in collaboration with
researchers at Intel Research Seattle.

114
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an expert). Many situations where gauging the performance of routine activities

could be helpful are therefore either not rated at all, or rated in a cursory manner.

Clearly, an opportunity exists for automated techniques to reduce the cost of rating.

In this chapter, we explore methods for automatically rating performances of routine

activities.

The basic classification task of rating, going from observations to scores, is amenable

to a variety of standard approaches. Rating becomes challenging, however, if we wish

to make it both incrementally inexpensive and credible. We define an incrementally

inexpensive rater to be a rater in which the extra cost of rating a new activity is rel-

atively low. The main determinant of cost is whether rating a new activity requires a

custom classifier to be developed from scratch, or whether a generic classifier of some

kind can be easily customized to the task. A credible rater is one that is both relevant

and transparent. By relevant, we mean that the classification model for a particu-

lar rating task should reflect constraints on activity performance that are important

to those using the rating. For example, a professor grading anesthesiology students

performing an intubation may want to indicate what her notion of good performance

is. By transparency, we mean that the system should be able to justify why it has

assigned a particular rating. Ideally, the justification should be constructive, in that

it should suggest how a low-rated performance may be altered to obtain a high-rated

one.

Our techniques for rating activity routines are designed to satisfy the above re-

quirements. To lower incremental cost, we choose a representation that is easily

learned: all activities to be rated in our system are modeled by variants of hidden

Markov models (HMMs). We intend that these models, especially given simple prior

information, can be learned easily from training examples. More crucially, we formu-

late the justification for a rating relative to this model generically as the set of edits

required on the trace generated by the rated activities; we therefore do not require spe-

cial identification and modeling of errors and their causes. A fundamental weakness

of these models is that they are first order, preventing them from capturing certain

important correlations. We augment the Markov models with an intuitive constraint
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formalism (a small fragment of the temporal logic LTL [32]) that allows raters to ex-

plicitly state relevant constraints. Given these relevant and easy-to-construct models,

we formulate rating as the likelihood of (possibly edited) observation sequences.

The core of this chapter consists of efficient algorithms to compute maximum

likelihood paths of minimally edited versions of incoming observations with respect

to various representations for activities, including HMMs, HSMMs and temporally

constrained HMMs. The algorithms build on the dynamic programming technique

used to great effect by the well-known Viterbi algorithm. We conduct a preliminary

evaluation, demonstrating the promise of our technique.

5.2 Overview

In this section, we describe how we expect our system to be used, and we sketch how

our system supports this usage model. Our goal is to develop a system that rates

how well an elder performs day-to-day activities. Such a system is of great interest

to the eldercare industry. In theory, caregivers will assess the elders’ well-being by

consulting ratings summaries and credible explanations of performance deficits. For

example, the system may recognize that an elder is no longer able to prepare their

daily bowl of soup, and report why (e.g., can’t reach cabinet or difficulty holding

spoon).

To end-users, our system represents activities as a set of steps. Each step has a

duration and a set of observed actions performed, and is succeeded by other steps.

For instance, the activity “making soup” for a particular elder may have the following

steps: “preheat water,” “open can,” “mix and boil ingredients,” “serve,” and “clean

up.” The step “open can,” may have an average duration of 45 seconds and contain

the following actions: “use utensil drawer,” “use can opener,” “use can,” and “use

pantry door.”

For concreteness, we will assume in what follows that we are using RFID-based

[93] sensors that will directly sense the action of using particular objects. Therefore,

all of our actions are of the form “use X” where X is some object. Inherently, our

system requires that actions are observable by sensors. Given an activity trace (i.e.,
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a trace of actions that constitutes a particular execution of an activity), our system

provides a rating (e.g., pass or fail). If the grade is a fail, the system provides an

alternate sequence of actions as close to the original as possible that would have

elicited a pass grade (essentially a constructive justification of the grade). In more

detail, use of the system proceeds as follows:

Learning the model: A human demonstrator performs the routine in an exemplary

fashion. The system collects traces Y1, . . . , Yn of the routine. Each trace Yi

is a sequence of time-stamped observations yi1, . . . , yimi
of the demonstrator’s

actions. The traces are used to learn a dynamic stochastic model (either an

HMM or an HSMM) with parameters λ. The hidden states s1, . . . , sN of the

model correspond to the “activity steps” above, and are labelled l1, . . . , lN with

the names of the step.

Adding global constraints: Typically, the first-order model learned in the previ-

ous step cannot capture important higher-order correlations. For instance, in

a successful soup-making routine, the stove, if it is used, should eventually be

turned off. The turning on would happen in the “preheat water” step, but the

turning off may not happen until the end of the “serve” step. The human rater

explicitly adds a set C of constraints on the sequence of hidden states or ob-

servations that specify these required higher-order correlations. In this case, a

possible constraint would be of the form use(“stove control knob”) E use(“stove

control knob”), read as “a use of a stove control knob should eventually suc-

ceeded by a use of a stove control knob.”

Learning rating thresholds: A human rater rates each trace Yi with a rating

ri ∈ {pass, fail}. Let the constrained MAP likelihood of trace Y given model

parameters λ and temporal constraints C, l̂Y = CMAP(M,Y, C), be the likeli-

hood of the path ŜY with maximum a posteriori (MAP) likelihood given λ and

Y that satisfies C. We perform a simple thresholding computation to calcu-

late the likelihood threshold L such that, given the classification function R(l)

= if l < L then fail else pass, R(l̂Yi
) = ri for as many of the Yi as possible.

Intuitively, the likelihood threshold L separates the passes from the fails.
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Generating a rating and justification: Given the constrained model (λ, C) and

threshold L, the automated rater is ready for use. The person to be rated

generates a trace Y = y1, . . . , ym to be rated automatically. The rater finds

the constrained MAP likelihood l̂Y and path ŜY = (ŝ1, y1), . . . , (ŝm, ym) for Y ,

and assigns it the rating r = R(l̂Y ). If r = fail, the rater attempts to produce

a repaired trace trace Y ′ = y′1, . . . , y
′
m such that the edit distance between Y

and Y ′ is as small as possible, and l̂Y ′ > L. In other words, Y ′ is the closest

trace to T that passes. The rater offers r as the rating for the activity and, if

appropriate, δŜY ,ŜY ′ , the set of edits needed to transform ŜY into ŜY ′ , as the

justification for the rating.

As described above, our rating system employs two key non-standard pieces of

machinery.

1. A method to compute the repaired observation trace T ′, that is a minimum edit

distance from a given trace T with likelihood above threshold L.

2. A method to compute the constrained MAP likelihood function CMAP(M,T, C).

5.3 Trace Repair for Hidden Markov Models

A hidden Markov model (HMM) λ = (A,B, π) is a commonly used stochastic model

for dynamic systems [96]. We formally pose the trace repair problem as a varia-

tion of estimating the most likely state sequence given a sequence of observations

(classically solved via the Viterbi algorithm). An HMM is defined as follows. Let

QA = {q1, . . . , qN} be the states of the process being modeled, and OB = {o1, . . . , oM}
the observation signals possibly generated by the process. We use meta-variables st

and yt to denote the states and observations respectively at time t. Aij is the proba-

bility p(st+1 = qj|st = qi) of transitioning from state qi at time t to qj at time t + 1

for any t; Bij is the probability p(yt = oj|st = qi) of generating observation oj when

in state qi (we write Biyt for Bij such that yt = oj). The initial state distribution

πi = p(s0 = qi).
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5.3.1 The Repaired MAP Path Estimation Problem

We now formulate the problem of MAP path estimation given an observation sequence

if we are allowed to first make a limited number of edits or “repairs” to the sequence.

We begin by formalizing the notion of an edit. We then state the repaired MAP path

estimation problem and present a variation of the Viterbi algorithm to solve it.

Let Y N be the set of length-N strings of observations over some finite alphabet Y .

Then ek,N = ((b1, s1), ...(bN , sN)) is a length-N k-Edit vector on Y N , with bi boolean,

si strings over Y , and k =
∑

1≤i≤N(bi + |si|). For instance, ŷ1 = “cat” is a string in

Y 3; e4,3
1 = ((false, “BB”), (false, “”), (true, “R”)) is an edit vector on Y 3. Applying an

edit vector e to string ŷn = y1 . . . yn, written e(ŷ) results in a new string ŷ′ obtained

as follows. For 1 ≤ i ≤ n, let if e.bi is true, then replace yi with ŷ′i, else replace yi

with yie.si (e.si appended to yi). For example, e4,3
1 (ŷ1) = “cBBaR”. A string ŷ′ is a

k-Edit of another ŷ if there exists edit vector ek,N such that ŷ′ = ek,N(ŷ).

We are now ready to specify the problem of MAP estimation with repairs:

Definition 1. (Repaired MAP Path Estimation Problem (RMAP)) Given observa-

tion sequence ŷT , HMM λ = (A,B, π) and edit distance K find observation sequence

ŷ′T ′ = ẏ1 . . . ẏT ′ that is a K-edit of ŷT and path ŝT ′ = ṡ1, . . . , ṡT ′ maximizing p(ŝT ′ , ŷ′T ′)

over all T ′, ŝT ′ and ŷ′T ′.

Before discussing our solution, we define string ŷ′ as the (k,a)-edit of string ŷn

if ŷ′ = ek,n(ŷ) for some ek,n, |ek,n.sn| ≤ a, and additionally, ek,n.bn if a = 0 and

|ek,n.sn| > 0 if a > 0. The (k, a)-edit of a string requires its last character to be either

preserved or replaced by at least one character, with at most a characters added.

Edits compose as follows (dνn = n− ν ; a′ = 1 if a 6= 0, 0 otherwise; (ν, α)<k(n, a) if

ν < n and α ≤ k, or if ν = n and α < a):

Lemma 1. (Edit Composition) Let Y kaŷ
n be the set of all (k, a)-edits of the n-prefix of

string ŷ over Y . Then Y kaŷ
n = {ŷ′y|y ∈ Y, ŷ′ ∈ Y καŷ

ν , (ν, α)<k(n, a), κ+ dνn + a′ = k}.

Table 5.1 specifies an algorithm (the k-Edit Viterbi (KEV) algorithm) to solve

RMAP. KEV iterates over the T original observations in the incoming observation

string. For each original observation, it iterates over possibilities for the K added
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Figure 5.1: Trellis for k-Edits Viterbi on HMMs.

observations at that position, for a total of TK + T iterations. At each iteration t

corresponding to original obervation [t] = t div (K + 1) + 1 and added observation

#t = t mod (K+1), KEV computes the likelihood δtik of the most likely path ending

in state i given an observation string that is a (k,#t)-edit of y1 . . . y[t] over all such

edit vectors; KEV also records as ψtik the penultimate state and edit in this path.

Following the chain of ψtik’s back to the start state iteration gives the MAP repaired

path.

The trellis of Figure 5.1 illustrates KEV. Columns of the trellis represent edits

considered for inclusion into the final string. Large circles represent original obser-

vations and small ones represent adds. For technical reasons (to allow skipping the

first original observation), we add a distinguished start state q0 with new start prob-

abilities π′0 = 1, A0i = πi and Ai0 = 0 and add a column (t = 0) processed in the

initialization step. To allow skipping the last original observation with no adds, we

add a column (t = TM = TK + T + 1). Rows represent possible hidden states.

The end result of the algorithm is a forward path (shown in light grey in Figure 5.1)

through the trellis that, unlike in the conventional Viterbi algorithm, may jump

between nodes in non-adjacent time slices. If the path jumps over the slice for an

original observation yi (where i is the position of the observation in the input string
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Initialization:
t = 0, k = 1 . . . K, 1 ≤ i ≤ N

δt0k = 1 δtik = 0 ψtik = −1

Iteration:
1 ≤ t ≤ TK + T, k = at, at + 1, . . . , K

(ψtik)δtik = (arg)max
τ,j,κ s.t. κ+at+dτt=k

δτjκBiyit
Aji

Termination:
t = TM = TK + T + 1

(ψtik)δtik = (arg)max
τ,j,κs.t. κ+at+dτt=k

δτiκ ;

iM = argmax
1≤i≤N

δtiK

Backtracking:
(t, i, k) = ψTM iMK ; while t > 0,

1) (ṡt, ẏt) = (qi, yit) 2) (t, i, k)← ψtik

Table 5.1: The k-Edits Viterbi Algorithm for HMMs.
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ŷ), we conclude that yi was deleted from ŷ, otherwise not. Further, if the path passes

through a sequence of added nodes with no intervening original node such that yi

is the first original observation to the left of the sequence, and the observations at

these nodes are yi1 , . . . , yin , we conclude that the string yi1 . . . yin was added at the

i’th spot in the incoming string. The forward path is the required solution ŝT ′
, and

the string of observations along the path is the edited string ŷT ′
.

The algorithm uses three intermediate variables, at, dtτ and yit. Variable at = 1

if #t 6= 0 and 0 otherwise; dτt = [t] − [τ ], represents the number of deletes skipping

original observations between τ and t; yit is the observation considered when process-

ing state i at slice t. Note that we only process original observations at time slices

1, K+1, 2K+1, .... In all other “added” slices, we need to propose the observed value

to be added. A simple but inefficient approach would be to consider for each state,

k-value and iteration t, every possible observable o ∈ OB as a candidate. In fact, we

can consider a single observation instead of all |OB|. The key insight is that, when

processing state i in an added slice, it is sufficient to consider adding as observable

the most likely observable in that state. Let SN and YN be the sets of all length-N

sequences of states and observables. Let ẏi = argmax
1≤j≤M

Bij. Let ŝq be the result of

appending state q to sequence ŝ, and similarly for ŷy. Then, for all qi ∈ QA:

Lemma 2. max
ŝ,ŷ′∈SN ,YN+1

p(ŝqi, ŷ
′) = max

ŝ,ŷ∈SN ,YN

p(ŝqi, ŷẏi)

This follows from the fact that,

max
yi

p(ŝqi, ŷyi) = max
yi

πs1Bs1y1(
∏

1≤i≤N,siqj∈ŝN

AijBjyj
)(AsN iBiyi

)

= πs1 . . . AsN i max
yi

Biyi
= πs1 . . . AsN iẏi.

Given this identity for the optimal observable to be added in state qi, we set yit to ẏi

if t is an “added” timeslice, and to y[t] otherwise.

We are now ready to establish the soundness of the KEV algorithm. Let Si
n be the

set of length-n sequence of states ending in state qi. Let Y tik
n be the set of length-n

strings of observables that are (k,#t)-edits of y1 . . . y[t].
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Lemma 3. (ψtik)δtik = (arg)max
n,ŝ∈Si

n,ŷ∈Y tik
n

p(ŝ, ŷ)

Proof sketch. Proof is by induction on t. We focus on the inductive case for δ. For

ψ, replace “max” with “argmax”.

δtik = max
τ,j,κ

AjiBiyit
δτjκ∀j,τ,κ s.t. (κ+ at + dτt) = k

= (by the inductive hypothesis)

max
τ,j,κ

(AjiBiyit
max

n,ŝ∈Sj
n,ŷ∈Y τjκ

n

p(ŝ, ŷ))

Given sn, sn+1 is independent of ŝn−1, ŷn:

Aji = p(sn+1 = qi|ŝ, sn = qj, ŷ) ∀n,ŝ∈Sn−1,ŷ∈Y τjκ
n

= p(sn+1 = qi|ŝ, ŷ) ∀n,ŝ∈Sj
n,ŷ∈Y τjκ

n

Similarly, for yn+1 given sn+1:

Biyit
= p(yn+1 = yit|ŝ, sn+1 = qi, ŷ) ∀n,ŝ∈Sj

n,ŷ∈Y τjκ
n

Substituting for Aji and Biyit
above, and using p(A,B) = p(A|B)p(B) twice, we have,

with (κ+ at + dτt) = k:

δtik = max
τ,j,κ,n,ŝ∈Sj

n,ŷ∈Y τjκ
n

p(sn+1 = qi, ŝ, yn+1 = yit, ŷ)

Lemma 2 ensures that maximizing over ŷyit maximizes over all strings ŷy. By

lemma 1 maximizing over all ŷy with ŷ ∈ Y τjκ
n maximizes over ŷ ∈ Y tik

n+1. Finally,

∀1≤j≤N,ŝ∈Sj
nqi
ŝ = ∀1≤i≤N,ŝ∈Si

n+1
ŝ. Modifying the previous equation to reflect these

insights:

δtik = max
n,ŝ∈Si

n+1,ŷ∈Y tik
n+1

p(ŝ, ŷ) = max
n,ŝ∈Si

n,ŷ∈Y tik
n

p(ŝ, ŷ)

The soundness of KEV follows in a straightforward way from the above lemma.

Further, given that the trellis has O(TKN) nodes, that at each node we compute
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Figure 5.2: Trellis for k-Edits Viterbi on HSMMs.

O(K) δ and ψ values, and we consult O(NK) preceding data values to do so, the

complexity of KEV as a whole is O(TN2K3).

5.4 Trace Repair for Hidden Semi-Markov Models

A hidden semi-Markov model (HSMM) [88] λ = (A,B,D, π) is identical to an HMM

except for the duration distribution D. Where an HMM generates a single observation

according to B on each visit to a state s, the HSMM generates l independent obser-

vations from B on each visit, where l is drawn according to Dsl = p(l|s). The added

flexibility is useful when modeling human activities, since the duration of stay in a

state is restricted to be geometric (and therefore biased to small values) in HMMs.

In what follows, we assume that D is over a finite set (of size |D|) of durations, where

the longest duration is L steps.

The RMAP problem is: given HSMM (A,B,D, π), observations ŷT and limit K,

find argmax
t,ŝ∈Qt

A,ŷ∈Ot
B ,ŷ k-Edit of ŷT

p(ŝ, ŷ).

Table 5.2 specifies a variant of KEV to solve the problem, and Figure 5.2 shows a

trellis for this algorithm. The trellis is identical to that used by KEV (we represent

k added nodes with a single small circle), only its use is different. We focus on how

δtik is calculated. At each timestep t, state i and edit distance k, as with KEV, we

iterate over previous timesteps, states and edit distances τ , j and κ. However, this

time instead of discarding the observations in the intervening timesteps, we seek their
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Initialization:
t = 0, k = 1 . . . K, 1 ≤ i ≤ N

δt0k = 1 δtik = 0 ψtik = −1

Iteration:
1 ≤ t ≤ TK + T, k = at, at + 1, . . . , t

(ψtik)δtik = (arg)max
1≤τ≤t,j,κ,yκkτti

δτjκp(yκkτti)AjiDi|yκkτti|

Termination:
t = TM = TK + T + 1

(ψtik)δtik = (arg)max
τ,j,κs.t. κ+at+dτt=k

δτiκ ;

iM = argmax
1≤i≤N

δtiK

Backtracking:
(t, i, k) = ψTM iMK ; while t > 0,

1) (ṡt, ẏt) = (qi, yit) 2) (t, i, k)← ψtik

Table 5.2: The k-Edits Viterbi Algorithm for HSMMs.

sub-sequence yκkτti. We assume that step t only ends a stay in state qi that begins

immediately after the stay in qj that ended in step τ . If eτt is the number of edits in

yκkτti (added nodes included + original nodes ignored), we require κ + at + eτt = k.

The problem of maximizing the likelihood of the path ending at (i, t) then reduces to

the problem of finding yκkτti maximizing p(yκkτti)Di|yκkτti|.

We find this maximum by iterating through durations l in Di; for each l, we iterate

through predecessors (τ, j, κ) of (t, i), finding a sequence yκkτti of length l with the

highest probability; we keep a running tally of the maximum p(yκkτti)Dil. Finding

yκkτti reduces to identifying NA added nodes (to include in yκkτti) and NO original

nodes (to ignore), such that NA +NO = k − κ − at (to satisfy the k-Edit criterion),

and NA +(([t]− [τ ])−NO) = l (to satisfy the duration constraint). The two equations

fix NA and NO. Since all the added nodes have the same probability ẏi = p(ôi|qi),
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it doesn’t matter which particular NA we pick. On the other hand, we pick the NO

original nodes with lowest probability of observation for exclusion; this can be done

by sorting the original nodes in O(T log T ) time offline, with O(L) access during

execution. Once the sequence of nodes is picked to get yκkτti, we simply multiply

their observation and transition probabilties together to get p(yκkτti), a process that

takes l operations, since |yκkτti| = l = O(L).

Given O(TNK) trellis nodes, computing O(K) δ and ψ values at each node,

consulting O(|D|NK) preceding values for each value, and spending O(L) for each

preceding value considered, the entire algorithm takes O(TN2|D|LK3) steps. Note

that in the (fairly) common case that D and L are unbounded, this running time

becomes O(T 3N2K3).

5.5 Trace Repair for Constrained HMMs

We define a temporally constrained HMM (TCHMM) as λ = (A,B, C, π), where C is

a temporal constraint of the form φ1Eφ2E . . . Eφ|C|. The φi are propositional boolean

formulas over state labels l and observations y: φ ::= state(l)|obs(y)|φ ∧ φ|¬φ. Path

suffix si . . . sT and observations yi . . . yT satisfy the constraint suffix Cj = φj . . . φW

if for any k ≥ j, φj(sk, yk) implies that (sk+1 . . . sT , yk+1 . . . yT ) satisfy Cj+1, written

(sk+1 . . . sT , yk+1 . . . yT ) ` Cj. Intuitively if one formula in the constraint sequence is

true w.r.t. the head of the state/observation sequences, then the formulas that follow

must also eventually be true in their specified order later in the sequences. The

constraint (state(COOK) ∧ obs(oil))E(state(WASH) ∧ obs(soap)) could, for instance

capture the constraint that if oil is used in the cooking step of making dinner, soap

should be used in the eventual required washing step.

The RMAP problem may now be reformulated as given TCHMM with constraints

C, observations ŷT and limit K, find SY = argmax
t,ŝ∈Qt

A,ŷ∈Ot
B ,ŷ k-Edit of ŷT

φ(ŝ, ŷ) such that

SY ` C.
Our solution for RMAP estimation is restricted to formulas of the form φ ::=

state(l)|φ ∧ φ|¬φ (we disallow dependences on observables). A small modification to

the KEV algorithm enables polynomial time solution of this problem. We use the



5.6. EVALUATION 127

same trellis as in KEV. For each timestep t, state i and edit distance k, we also now

maintain an additional |C|-vector. An element δtikm with 0 ≤ m < |C| represents the

likelihood of the MAP path ending at state i in time slice t with (k,#t) edits that still

requires constraint suffix Cm+1 to be satisfied (except δtik0, which has no outstanding

constraints to be satisfied). This likelihood can be computed compositionally from

δτjκµ, with τ < t and (κ, µ) pointwise ≤ (k,m) in O(TN2k3|C|2P ) steps, where

formulas φi can be evaluated in O(P ) steps (where P is the size of the formulas).

Even MAP estimation (without trace perturbation) for TCHMM’s has apparently

neither been formulated nor solved previously, although it is potentially quite pow-

erful. For instance, the constrained inference work of Culotta et. al. [37] is a special

case of TCHMM k-Edit MAP estimation (with k = 0, and C = state(q0)Estate(qi)).

MAP estimation is a special case of RMAP estimation with k = 0. Our variant of

KEV above therefore performs MAP estimation. Interestingly with k = 0, we can

allow the more general version of formulas φ and still retain the fast running time. It

is open how general C can be while remaining tractable. For instance, our constraints

can be viewed as a fragment of Linear Temporal Logic (LTL) [32]. It is interesting

to consider larger fragments as candidates.

5.6 Evaluation

How does model choice affect advice? The k-Edits Viterbi algorithm dispenses

advice based on the parameters of its activity models. The credibility of this advice

will suffer from any differences between these models and the reality they represent.

In order to illustrate this point, we conducted two experiments over three different

activity models. The two experiments compare a regular HMM and a time-sensitive

HSMM, and a regular HSMM with an HSMM that has temporal logic constraints,

respectively.

First, we compare the output of HMMs versus HSMMs on three activity traces

from different activity models (see the top row of Figure 5.3). Each activity trace was

intentionally made incorrect: for making tea, the preparation step was hurried; for

making a sandwich, not enough ingredients were collected; and for grooming, brushing
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Figure 5.3: HMMs vs. HSMMs (top) and HSMMs vs. TCHMMs (bottom).

teeth and combing hair were performed too rapidly. In the top row of Figure 5.3,

we plotted the maximum likelihood values at each step of the activity traces (where

a “step” is considered to be a state transition). HMMs fail to detect any problem,

exhibiting high likelihood. However, HSMM likelihoods plummet, due to sensitivity

to the amount of time spent in each state. The KEDIT trace correctly adds the

proper number of observations to each state, resulting in a high likelihood.

Second, we compare the output of HSMMs with and without temporal logic con-

straints (TLCs) (see the bottom row of Figure 5.3). Again, we intentionally chose

incorrect sequences for the three activities: for making tea, the stove is turned on but

never turned off; for preparing a sandwich, the refrigerator door is opened and never

closed; and for grooming, the sink water is turned on and never turned back off. In

the top row of Figure 5.3, we plotted the maximum likelhood values at each step of

the activity traces. Regular HSMMs fail to detect any problem, reporting high like-

lihood. HSMMs with TLCs report low likelihood, because they are only allowed to

consider state-transitions which satisfy all constraints. In these traces, constraints are

broken and alternate, low-likelihood, paths must be considered. The KEDIT trace

correctly adds the necessary steps (i.e., turn off stove, shut refrigerator, and turn off
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Figure 5.4: The likelihood of KEDIT traces as k increases.

sink), resulting in high likelihood.

How does the rating change as k increases? The k-Edits Viterbi algorithm

provides advice for up toK edits. Ideally, we desire a trace that is above the likelihood

threshold with the minimum number of edits. One method is to incrementally increase

k until the threshold is exceeded. For this reason, we are interested in how the

likelihood changes as k increases.

In this experiment we ran k-Edits Viterbi for HSMMs on an empty trace of the

“making tea” activity. In Figure 5.4 we plotted the overall likelihood of each trace as

the number of possible edits was increased. The dashed line is a threshold showing

the likelihood of an acceptable “good” trace. Obviously, the original empty sequence

had low likelihood. As k was increased from one to three, the algorithm was forced to

assemble partially complete activity traces which had even lower overall likelihood.

When k = 4 the algorithm formed a complete trace and met the threshold. As k

increased further, the algorithm tweaked the sequence for a slightly higher likelihood.

The most likely possible path was reached at k = 6. Afterwards, we see an “odd-

even” effect as the algorithm is forced to add new (less likely) observations, and then
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opportunistically delete other observations. For k ≥ 9, the likelihood drops as the

algorithm performs too many modifications to the trace and is unable to reach the

optimal solution.

How intuitive is the advice? We now examine the advice dispensed by k-Edits

Viterbi in several scenarios. We ran the algorithm on activity traces that had the

following problems: restarted the activity, got two steps out of order, performed a step

too quickly, and missed or sped through several non-consecutive steps. All traces are

from the “making tea” activity and likelihoods are reported using the optimal number

of edits (i.e., k value).

The beginning steps of the next trace were performed twice (i.e., a “start” and a

“restart”). The algorithm finds the maximum likelihood solution by deleting extra

observations. However, the algorithm did not delete the entire start or restart, but

decided to “pick and choose” among the two, keeping the best observations of both.

In contrast, our intuition would be to advise the user to keep either the start or the

restart. Similarly, in a trace in which two steps were performed out of order, the

algorithm deletes one of the mis-ordered steps and inserts new steps in the correct

position. We found this to be less intuitive than simply telling the user to switch the

two steps to the correct order.

In the next trace, one step was performed too quickly; the “preparation step” only

generated one observation, when it should have generated at least two. The algorithm

suggested new observations that corrected the amount of time is spent in the state.

However, the algorithm will always suggest the most likely observation from the state,

because this maximizes the overall likelihood. We found this suggestion strategy to

be non-intuitive (although mathematically optimal), however, it became a non-issue

for models in which observations were spread across multiple states.

In the last trace several non-contiguous steps were missed entirely or performed

too quickly. As k increased, the algorithm first chose to insert states that had been

missed entirely, and then to add more observations to states that had been visited

too briefly. In other words, the algorithm advises the user to at least visit each step

of the activity before it advises how to perfect each step. This “top-down” approach

fits with our intuition of how advice should be given.
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5.7 Conclusions

In this chapter, we described the credible activity rating problem. We introduced the

k-Edits Viterbi algorithm and showed that given model parameters and an activity

trace it can provide optimally repaired traces with from zero to k edits. We improved

the algorithm by incorporating high-level temporal logic constraints. Finally, we

evaluated the strengths and limitations of the algorithm on data from three activity

models.



Chapter 6

Conclusion

In this thesis, we focused on the area of automatic health monitoring, in which health

information is automatically collected with the help of sensors and learning algorithms

and distributed to caregivers. The work in this thesis – both qualitative studies and

quantitative experiments – contributes to the present and future of automatic health

monitoring in the following ways:

• In-depth knowledge of current practices in in-home health monitoring could

inform the development of future technologies, ultimately helping an increased

portion of the growing elderly population to live safely and independently in

their own homes.

• Algorithms using sensors common to security systems could relatively instantly

introduce ubiquitous computing services to thousands of corporate and residen-

tial buildings, possibly changing the way our society lives and works.

In this thesis work, we conducted a nationwide study of the professionals who

currently perform in-home health assessment and identified promising areas for tech-

nological innovation. We posed the simultaneous tracking and activity recognition

problem and offered a particle filter-based solution. We invented a novel data collec-

tion technique to help meet the practical need for labeled training examples. Finally,

we approached an important application area called activity rating, and provided a

132
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unique algorithm which can pinpoint and explain irregularities in routine behavior.

In the next section, we review each of these contributions in more detail.

6.1 Summary

In this section, we briefly summarize the major findings of this thesis work:

6.1.1 The Activities of Daily Living Study

In this study, we interviewed and distributed questionnaires to nearly one hundred

professionals who routinely conduct in-home health assessments. Our findings were

broadly applicable to people tracking, activity recognition, and the study of care

networks for elders.

• We enumerated a “top ten” list of the most valuable activities of daily living.

• We identified gaps between privacy and perceived privacy constraints, e.g., mo-

tion detectors are okay as part of a home security system, but not alone.

• We described the home environment, including the number of occupants, pres-

ence of pets, public and private locations, and usage of assistive technology.

6.1.2 Simultaneous Tracking & Activity Recognition

In this work, we sought to automatically collect the information most important to

automatic health assessment, including: location, locomotion, activities of daily liv-

ing, extended activities of daily living, and instrumented activities of daily living. We

defined the simultaneous tracking and activity recognition problem, whose solution

provides this information. We utilized Bayes filters and particle filters to provide

location estimation and activity recognition for multiple occupants and evaluated our

approach on three different data sets.

• We showed that a Bayes filter which leverages location estimation to improve

activity recognition can effectively recognize several activities of daily living.
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• For tracking multiple occupants, we demonstrate a Rao-Blackwellised particle

filter approach that can efficiently perform data association on information from

anonymous sensors.

• We explored a neglected set of pre-existing sensors that are non-invasive, cheap,

and easy to install and maintain, to introduce cost-effective automatic health

monitoring.

6.1.3 The Context-Aware Recognition Survey

In this work, we built a completely unsupervised data collection technique in which

information collected from an existing sensor infrastructure is placed into a game-like

computer program where users are able to label anonymous episodes of activity.

• We described a novel data collection technique which can be used alone or in

concert with existing methods to provide labeled training examples without

interrupting the daily routines it is designed to learn about.

• We showed that participants were able to successfully label episodes of activity,

and we narrowed down the conditions under which accuracy was optimal.

• We provided a series of “lessons learned” to help future researchers design a

better data collection vehicle.

6.1.4 The k-Edits Viterbi Algorithm

In this work, we derived a new algorithm which is a more general version of the well-

known Viterbi algorithm to provide automatic activity rating. Given HMM model

parameters and an input trace, our polynomial time approach provides the maximum

a posteriori likelihood sensor trace with up to k edits.

• We define the credible activity rating problem, identifying key components of a

good rater, including incremental inexpensiveness, credibility, and justifiability.
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• We extended the algorithm to be compatible with time sensitive hidden semi-

Markov models.

• We further extended the algorithm to be compatible with high-level temporal

logic constraints.
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Figure A.1: Questionnaire from ADL study phase #1.



Appendix B

ADL Study Phase # 1:

Questionnaire Results

138



139

Figure B.1: Responses to questionnaire from ADL study phase #1.
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Figure C.1: Interview guide from ADL study phase #1 – page 1.
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Figure C.2: Interview guide from ADL study phase #1 – page 2.
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Figure C.3: Interview guide from ADL study phase #1 – page 3.
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Figure D.1: Physical layout for STAR experiment # 1.

D.1 Physical Layout

D.2 Models

1 2 3 4 5 6
1 0 1 0 0 0 0
2 0 0 0 0 0 1
3 0 1 0 0 0 0
4 0 0 1 0 0 0
5 0 0 0 1 0 0
6 0 0 0 0 1 0

Table D.1: SAME model.
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1 2 3 4 5 6
1 0 1 0 0 0 0
2 0 0 0 0 0 1
3 0 1 0 0 0 0
4 0 0 1 0 0 0
5 0 0 0 1 0 0
6 0 0 0 0 1 0

Table D.2: OPPOSITE model, occupant A.

1 2 3 4 5 6
1 0 1 0 0 0 0
2 0 0 1 0 0 0
3 0 0 0 1 0 0
4 0 0 0 0 1 0
5 0 0 0 0 0 1
6 0 1 0 0 0 0

Table D.3: OPPOSITE model, occupant B.

1 2 3 4 5 6
1 0 1 0 0 0 0
2 0 0.25 0 0 0 0.75
3 0 0.75 0.25 0 0 0
4 0 0 0.75 0.25 0 0
5 0 0 0 0.75 0.25 0
6 0 0 0 0 0.75 0.25

Table D.4: MIDDLE model.

1 2 3 4 5 6
1 0 1 0 0 0 0
2 0 0.33 0.33 0 0 0.33
3 0 0.33 0.33 0.33 0 0
4 0 0 0.33 0.33 0.33 0
5 0 0 0 0.33 0.33 0.33
6 0 0.33 0 0 0.33 0.33

Table D.5: UNIFORM model
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Figure E.1: Physical layout of STAR experiment # 1.

E.1 Physical Layout

E.2 Models

0 1 2 3 4 5 6 7 8 9
0 0.1 0.9 0 0 0 0 0 0 0 0
1 0.1 0.04 0.2 0.04 0.04 0.04 0.1 0.05 0.19 0.2
2 0 0.05 0.95 0 0 0 0 0 0 0
3 0 0.85 0 0.1 0.05 0 0 0 0 0
4 0 0.7 0 0.1 0.1 0.1 0 0 0 0
5 0 0.6 0 0 0.1 0.3 0 0 0 0
6 0 0.1 0 0 0 0 0.7 0.2 0 0
7 0 0.6 0 0 0 0 0.3 0.1 0 0
8 0 0.1 0 0 0 0 0 0 0.7 0.2
9 0 0.1 0 0 0 0 0 0 0.2 0.7

Table E.1: Occupant A.
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0 1 2 3 4 5 6 7 8 9
0 0.1 0.9 0 0 0 0 0 0 0 0
1 0.1 0.04 0.1 0.04 0.18 0.18 0.1 0.2 0.04 0.02
2 0 0.4 0.6 0 0 0 0 0 0 0
3 0 0.6 0 0.1 0.3 0 0 0 0 0
4 0 0.1 0 0.05 0.7 0.15 0 0 0 0
5 0 0.1 0 0 0.2 0.7 0 0 0 0
6 0 0.1 0 0 0 0 0.6 0.3 0 0
7 0 0.1 0 0 0 0 0.2 0.7 0 0
8 0 0.7 0 0 0 0 0 0 0.2 0.1
9 0 0.6 0 0 0 0 0 0 0.1 0.3

Table E.2: Occupant B.

0 1 2 3 4 5 6 7 8 9
0 0.1 0.9 0 0 0 0 0 0 0 0
1 0.15 0.02 0.2 0.2 0.17 0.02 0.1 0.1 0.02 0.02
2 0 0.2 0.8 0 0 0 0 0 0 0
3 0 0.05 0 0.8 0.15 0 0 0 0 0
4 0 0.05 0 0.2 0.7 0.05 0 0 0 0
5 0 0.3 0 0 0.6 0.1 0 0 0 0
6 0 0.1 0 0 0 0 0.6 0.3 0 0
7 0 0.1 0 0 0 0 0.4 0.5 0 0
8 0 0.9 0 0 0 0 0 0 0.05 0.05
9 0 0.9 0 0 0 0 0 0 0.05 0.05

Table E.3: Occupant C.
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0 1 2 3 4 5 6 7 8 9
0 0.1 0.9 0 0 0 0 0 0 0 0
1 0.15 0.1 0.3 0.1 0.1 0.03 0.04 0.1 0.04 0.04
2 0 0.05 0.95 0 0 0 0 0 0 0
3 0 0.1 0 0.8 0.1 0 0 0 0 0
4 0 0.1 0 0.3 0.5 0.1 0 0 0 0
5 0 0.7 0 0 0.2 0.1 0 0 0 0
6 0 0.3 0 0 0 0 0.6 0.1 0 0
7 0 0.3 0 0 0 0 0.5 0.2 0 0
8 0 0.85 0 0 0 0 0 0 0.1 0.05
9 0 0.85 0 0 0 0 0 0 0.1 0.05

Table E.4: Occupant D.

0 1 2 3 4 5 6 7 8 9
0 0.1 0.9 0 0 0 0 0 0 0 0
1 0.2 0.03 0.6 0.01 0.03 0.01 0.07 0.01 0.03 0.01
2 0 0.1 0.9 0 0 0 0 0 0 0
3 0 0.9 0 0.05 0.05 0 0 0 0 0
4 0 0.7 0 0.05 0.2 0.05 0 0 0 0
5 0 0.9 0 0 0.05 0.05 0 0 0 0
6 0 0.2 0 0 0 0 0.7 0.1 0 0
7 0 0.3 0 0 0 0 0.6 0.1 0 0
8 0 0.75 0 0 0 0 0 0 0.2 0.05
9 0 0.9 0 0 0 0 0 0 0.05 0.05

Table E.5: Occupant E.
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Figure F.1: Images used in CARS experiment # 1.
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Figure G.1: Images used in CARS experiment # 2.
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Object # Object Name Object # Object Name
1 alarm system 35 lotion
2 bathroom door 36 magazine
3 bleach 37 microwave
4 bread 38 peanut butter
5 toilet brush 39 telephone
6 stove burner 40 phone book
7 cabinet 41 razor
8 calcium vitamin 42 TV remote
9 playing cards 43 shaving cream
10 cleaner 44 baby shirt
11 closet door 45 silverware
12 baby clothes 46 sink
13 clothes dryer 47 soap
14 coffee mug 48 softener
15 couch 49 spoon
16 kitchen counter 50 stereo
17 cutting board 51 drain stop
18 detergent 52 sugar
19 diaper 53 tea bag
20 dishwasher 54 teapot
21 bathroom fan 55 television
22 water faucet 56 thermostat
23 dental floss 57 tissue
24 baby formula 58 toilet
25 refrigerator 59 toilet paper
26 hair dryer 60 toothbrush
27 hair brush 61 toothpaste
28 high-chair 62 baby wipe
29 jelly 63 trash can
30 key 64 vacuum cleaner
31 butter knife 65 vacuum cleaner
32 laundry basket 66 vitamin c
33 light switch 67 washing machine
34 lipstick 68 water

Table H.1: The complete list of tagged objects from experiment # 2.
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Activity # Activity Name
1 Adjusting thermostat.
2 Apply make-up, lotion.
3 Brewing tea.
4 Brushing hair.
5 Brushing teeth.
6 Cleaning toilet.
7 Cleaning bathroom.
8 Cleaning kitchen.
9 Changing baby’s diaper.
10 Dressing the baby.
11 Doing laundry.
12 Drinking water.
13 Making a PB&J sandwich.
14 Making a snack.
15 Playing solitaire.
16 Reading magazine.
17 Shaving face.
18 Taking vitamins.
19 Using dishwasher.
20 Using microwave.
21 Boil water with microwave.
22 Using telephone.
23 Using toilet.
24 Vacuuming.
25 Washing hands.
26 Watching TV.
27 None of the above.

Table H.2: The complete list of possible activities from experiment # 2.
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Figure I.1: Instruction sheet for experiment # 2.
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