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Abstract

We revisit the well-studied problem of constructing strat-
egyproof approximation mechanisms for facility location
games, but offer a fundamentally new perspective by consid-
ering risk averse designers. Specifically, we are interested
in the tradeoff between a randomized strategyproof mecha-
nism’s approximation ratio, and its variance (which has long
served as a proxy for risk). When there is just one facility,
we observe that the social cost objective is trivial, and de-
rive the optimal tradeoff with respect to the maximum cost
objective. When there are multiple facilities, the main chal-
lenge is the social cost objective, and we establish a surpris-
ing impossibility result: under mild assumptions, no smooth
approximation-variance tradeoff exists. We also discuss the
implications of our work for computational mechanism de-
sign at large.

1 Introduction
A facility location game consists of n players who are lo-
cated on the real line; xi denotes the location of player i. A
mechanism f takes the vector of player locations x ∈ Rn as
input, and outputs a vector of k facility locations y ∈ Rk.
The facilities are usually thought of as public goods, such
as libraries or police stations, but the facility location set-
ting can be interpreted in many other ways, e.g., player lo-
cations can represent opinions on a (quantitative) political
spectrum, and a facility can be a policy choice. The cost
of player i is her distance from the nearest facility, that is,
min`∈[k] |xi − y`|. We wish to minimize one of two natu-
ral objectives: the utilitarian objective of social cost, which
is the sum of individual costs; and Rawlsian objective of
maximum cost, which is, obviously, the maximum individ-
ual cost.

However, naı̈ve optimization of these objectives may lead
to undesirable strategic behavior on the part of the players.
For example, the optimal solution for the case of k = 1
(a single facility), and the maximum cost objective, is to
place the facility at the average of the leftmost and right-
most player locations, that is, at (mini xi+maxi xi)/2. The
problem is that, say, the rightmost player can drag the facil-
ity towards her true location by reporting a location that is
further to the right, thereby decreasing her cost. The goal is,
therefore, to design facility location mechanisms that opti-
mize the foregoing objectives, and are also strategyproof, in

the sense that no player can decrease her cost by misreport-
ing her location.

This challenge is the original and paradigmatic instance
of approximate mechanism design without money (Procac-
cia and Tennenholtz 2013), an agenda that focuses on prob-
lems where monetary transfers are not allowed, which is
why the need for approximation typically stems from strate-
gic considerations (the optimal solution is not strategyproof)
rather than computational complexity. Procaccia and Ten-
nenholtz advocate using the approximation ratio of a strate-
gyproof mechanism (the worst-case ratio between the objec-
tive value of the mechanism’s solution and the optimal so-
lution) to quantify the solution quality that must inevitably
be sacrificed in order to achieve strategyproofness. The de-
sign of strategyproof approximation mechanisms for facility
location has been extensively studied (Procaccia and Ten-
nenholtz 2013; Alon et al. 2010; Lu, Wang, and Zhou 2009;
Lu et al. 2010; Nissim, Smorodinsky, and Tennenholtz 2012;
Fotakis and Tzamos 2010; 2013a; 2013b; Thang 2010;
Cheng, Yu, and Zhang 2013; Wilf and Feldman 2013; Feld-
man, Fiat, and Golumb 2016; Golomb and Tzamos 2017),
and, in particular, has been a topic of significant interest
in recent AI conferences (Todo, Iwasaki, and Yokoo 2011;
Zou and Li 2015; Serafino and Ventre 2015; Filos-Ratsikas
et al. 2015; Cai, Filos-Ratsikas, and Tang 2016).

Our point of departure from this dense literature is that we
re-examine the assumptions underlying randomized strate-
gyproof mechanisms, which are known to provide better
guarantees than their deterministic counterparts (Procaccia
and Tennenholtz 2013). Specifically, in line with the liter-
ature on randomized approximation algorithms in general,
previous work measures the expected objective value of a
randomized mechanism, and disregards its variance. How-
ever, a risk-averse designer would be concerned with both.
In fact, expectation-variance analysis has long been viewed
as one of the fundamental approaches to reasoning about
risk aversion, and nowadays it is ubiquitous in economics
and finance (Markowitz 1952). In our case, given two dis-
tributions over facility locations with the same expected ob-
jective value, the designer should prefer the one with lower
risk (variance); and may prefer a distribution with higher
risk only if that risk is offset by sufficiently lower expected
objective value (for a minimization objective). The opti-
mal distribution depends on the designer’s individual level



of risk aversion, as well as on the optimal tradeoff between
expected objective value and risk.

We therefore aim to characterize the optimal tradeoff be-
tween approximation (equivalently, expectation) and vari-
ance in facility location games. Formally, our research ques-
tion is:

Given γ ∈ R+, what is the optimal approximation ra-
tio achievable by a strategyproof (randomized) facility
location mechanism whose variance is at most γ?

We believe this question is important for two reasons. First,
it provides a fundamentally new viewpoint on facility lo-
cation games. Second, it can serve as a starting point for
a broader investigation of expectation-variance tradeoffs in
mechanism design, as we discuss in §4.

1.1 Our Results
In §2, we study the case of a single facility. For the social
cost objective, placing the facility on the median reported
location is strategyproof, optimal, and deterministic (so the
variance of the social cost is 0). We focus, therefore, on the
maximum cost objective.

We define a family of mechanisms, parameterized by
α ∈ [0, 1/2], which includes the LEFT-RIGHT-MIDDLE
(LRM) Mechanism of Procaccia and Tennenholtz (2013) as
a special case. Informally, given a location profile x ∈ Rn,
the GENERALIZED-LRMα Mechanism chooses uniformly
at random among four potential facility locations: leftmost
player location, rightmost location, and two locations whose
distance from the optimal solution depends on α. We prove:

Theorem 2.3 (informally stated). For all α ∈ [0, 1/2],
GENERALIZED-LRMα is a (group) strategyproof mecha-
nism for the 1-facility location problem. Moreover, on lo-
cation profile x ∈ Rn, the expectation of its maximum cost
is (3/2 + α) · opt(x) (that is, its approximation ratio is
3/2 + α), and the standard deviation of its maximum cost
is (1/2− α) · opt(x).

Theorem 2.3 is especially satisfying in light of the
next theorem — our first major technical result — which
implies that GENERALIZED-LRM(α) gives the optimal
approximation-variance tradeoff for the maximum cost ob-
jective.

Theorem 2.4 (informally stated). For any strategyproof
mechanism for the 1-facility location problem with the max-
imum cost objective, given a location profile x ∈ Rn, if the
mechanism’s maximum cost has standard deviation at most
(1/2−α) ·opt(x), then its expected maximum cost is at least
(3/2 + α) · opt(x). In other words, the sum of expectation
and standard deviation is at least 2 · opt(x).

In §3, we explore the case of multiple facilities. This time
it is the maximum cost objective that is less challenging:
We observe that the best known approximation ratio for any
number of facilities k ≥ 2 is given by a randomized mecha-
nism of Fotakis and Tzamos (2013b), which (miraculously)
happens to have zero variance.

Next we consider the social cost objective, and things take
a turn for the strange: Our second major result asserts that, in

this setting, a “reasonable” approximation-variance tradeoff
simply does not exist, even when there are just two facilities.

Theorem 3.1 (very informally stated). For the 2-facility
location problem with the social cost objective, there is no
family of mechanisms fθ for every θ ∈ [0, 1] that satisfies
two mild technical conditions, and smoothly interpolates be-
tween zero variance and constant approximation ratio, i.e.,
which satisfies the following properties: (i) f0 has a con-
stant approximation ratio, (ii) the variance of the social cost
decreases monotonically with θ, down to zero variance at
f1, and (iii) fθ changes continuously with θ.

Importantly, for the case of 2 facilities, determinis-
tic strategyproof mechanisms are severely limited (Fotakis
and Tzamos 2013a), but a randomized strategyproof 4-
approximation mechanism is known (Lu et al. 2010). Our
initial goal was to provide an approximation-variance trade-
off with this mechanism on one end, and a bounded de-
terministic mechanism on the other, but surprisingly, The-
orem 3.1 rules this out.

1.2 Related Work
We are aware of only a single paper in computational mech-
anism design that directly studies variance (Esfandiari and
Kortsarz 2016), in the context of kidney exchange. In con-
trast to our paper, it does not investigate the tradeoff be-
tween variance and approximation. Rather, the main result
is a mechanism whose approximation ratio matches that of a
mechanism of Ashlagi et al. (2015), but has lower variance.

Bhalgat, Chakraborty, and Khanna (2012) study multi-
unit auctions with risk-averse sellers, where risk aversion
is modeled as a concave utility function. They design
polynomial-time strategyproof mechanisms that approxi-
mate the seller’s utility under the best strategyproof mech-
anism. The results depend on the notion of strategyproof-
ness in question, and whether the buyers are also risk averse;
in one case Eso and Futó (1999) have previously shown
how to achieve the maximum utility. This work is differ-
ent from ours in many ways, but one fundamental differ-
ence is especially important to point out: The goal of Bhal-
gat, Chakraborty, and Khanna (2012) is to achieve utility as
close as possible to that of the optimal strategyproof mecha-
nism; in principle it is possible to achieve an approximation
ratio of 1 by running the optimal mechanism itself (which
incorporates the concave utility function of the seller) —
the obstacle is computational efficiency. Crucially, there is
no tradeoff in their setting. In contrast, in our setting the
benchmark is the unconstrained optimum, and the smaller
the allowed variance, the worse our approximation becomes;
our goal is to quantify this tradeoff. Relatedly, Sundararajan
and Yan (2017) also endow a risk-averse seller with a con-
cave utility function, and seek to simultaneously provide an
approximation to the optimal utility of any possible seller,
independently of her specific utility function.

Further afield, there is a body of work in auction theory
that studies optimal auctions for risk averse buyers (Maskin
and Riley 1984; Bhalgat, Chakraborty, and Khanna 2012;
Fu, Hartline, and Hoy 2013; Dughmi and Peres 2012). See
§4 for a discussion of our problem with risk-averse players.



2 One Facility: The Optimal Tradeoff
In this section we consider the one-facility game. Let us
first briefly discuss the social cost objective. As observed
by Procaccia and Tennenholtz (2013), selecting the median1

is an optimal GSP (group strategyproof) mechanism for this
objective. (The proof of optimality and group strategyproof-
ness is left as a very easy exercise for the reader.) As the
median is a deterministic mechanism, the variance of its so-
cial cost is zero. It follows that the approximation-variance
tradeoff is a nonissue in one-facility games with the social
cost objective. We therefore focus in this section on the max-
imum cost objective.

2.1 Upper Bound
Our starting point is the optimal SP mechanism for the
maximum cost, without variance constraints: the LEFT-
RIGHT-MIDDLE (LRM) Mechanism of Procaccia and Ten-
nenholtz (2013). This simple mechanism selects lt(x) with
probability 1/4, rt(x) with probability 1/4, and the opti-
mal solution mid(x) — whose maximum cost is opt(x) =
diam(x)/2 — with probability 1/2 (see Figure 1). The ap-
proximation ratio of the mechanism is clearly 3/2: with
probability 1/2 it selects one of the extreme locations, which
have maximum cost diam(x) = 2opt(x); and with probabil-
ity 1/2 it selects the optimal solution. Why is this mecha-
nism SP? In a nutshell, consider a player i ∈ N ; she can only
affect the outcome by changing the position of lt(x) or rt(x).
Assume without loss of generality that i reports a location x′i
to the left of lt(x), such that lt(x) − x′i = δ > 0. Then the
leftmost location moves away from xi by exactly δ, and that
location is selected with probability 1/4. On the other hand,
the midpoint might move towards xi, but it moves half as
fast, that is, i might gain at most δ/2 with probability 1/2
— and the two terms cancel out. This argument is easily
extended to show that LRM is GSP (in fact, the proof of
Theorem 2.3 rigorously establishes a more general claim).
Furthermore, even if we just impose strategyproofness, no
mechanism can give an approximation ratio better than 3/2
for the maximum cost (Procaccia and Tennenholtz 2013).

A first attempt: The CONVEXp Mechanism. On a lo-
cation vector x ∈ Rn, the LRM Mechanism has variance
opt(x)2/4, or, equivalently, standard deviation opt(x)/2.
Given a smaller variance “budget”, how would the approxi-
mation ratio change? The most natural approach to reducing
the variance of the LRM Mechanism is to randomize be-
tween it and the optimal deterministic (G)SP mechanism,
which gives a 2-approximation for the maximum cost by
simply selecting lt(x). Specifically, we select lt(x) with
probability 1 − p ≥ 0, and with probability p follow LRM
(see Figure 1). This is a special case of a general mech-
anism, which randomizes between the optimal determinis-
tic mechanism and the optimal randomized mechanism. We
call this mechanism CONVEXp, and analyze it in some gen-
erality in Appendix A. For the specific problem in question,
this mechanism yields the following result.

1Take the left median when the number of players is even.

Corollary 2.1 (of Theorem A.2). Let X be the maximum
cost of CONVEXp on input x. Then,

E[X] + std(X) =

(
2− p

2
+

√(
1− p

2

)
· p

2

)
· opt(x).

In particular, if p 6= 0, 1 then E[X] + std(X) > 2 · opt(x).
As we shall see in Section 2.1, this approximation to stan-
dard deviation tradeoff is suboptimal.

It is worth noting that another natural approach — modi-
fying LRM by increasing the probability of each of the two
extreme points to q ∈ [1/4, 1/2], and decreasing the proba-
bility of the midpoint to 1− 2q — turns out to be equivalent
to CONVEXp for p = 4q− 1. Indeed, the former mechanism
is just a symmetrized version of CONVEXp.

The optimal mechanism. In retrospect, the extension of
LRM that does achieve the optimal approximation-variance
tradeoff is no less intuitive than the ones discussed earlier.
The idea is to think of mid(x), which is selected by LRM
with probability 1/2, as two points, each selected with prob-
ability 1/4. These two points can then be continuously
moved at equal pace towards the extremes (see Figure 1).
In what follows, this mechanism is defined formally.

lt(x) mid(x) rt(x)

LRM

CONVEX1/2

GENERALIZED-LRM1/4

Figure 1: Illustration of the three randomized mechanisms.
The balls’ radii correspond to their points’ probabilities of
being selected.

Definition 2.2. The GENERALIZED-LRMα Mechanism is
parameterized by α ∈ [0, 1/2]; on location vector x,
GENERALIZED-LRMα outputs a point y chosen uniformly
at random from the set {lt(x),mid(x)−α·diam(x), mid(x)+
α · diam(x), rt(x)}.

The next theorem presents the properties satisfied by
GENERALIZED-LRMα.

Theorem 2.3. For all α ∈ [0, 1/2], GENERALIZED-LRMα

is a GSP mechanism for one-facility games. Moreover, if X
is the random variable corresponding to the maximum cost
of the mechanism on input x, then E[X] = (3/2+α) ·opt(x)
and std(X) = (1/2− α) · opt(x).

Proof. Table 1 summarizes the maximum cost for each
possible y that GENERALIZED-LRMα outputs (recall that
opt(x) = diam(x)/2). Inspecting this table we find that in-
deed the expectation satisfies

E[X] =

(
3

2
+ α

)
· opt(x).



Table 1: Maximum cost of GENERALIZED-LRMα for its different choices of y.

y arg maxxi∈x |y − xi| X = maxxi∈x |y − xi|
mid(x)− α · diam(x) rt(x) (1 + 2α) · opt(x)
mid(x) + α · diam(x) lt(x) (1 + 2α) · opt(x)

lt(x) rt(x) 2 · opt(x)
rt(x) lt(x) 2 · opt(x)

Given E[X] and our table of X given y, we see that the
variance is

Var(X) =

(
1

2
− α

)2

· opt(x)2,

and so

std(X) =

(
1

2
− α

)
· opt(x),

as claimed.
To establish that GENERALIZED-LRMα is GSP, suppose

a group of players S ⊆ [n] misreport their locations, re-
sulting in a different location vector x′. Denote ∆L ,
lt(x) − lt(x′) and ∆R , rt(x′) − rt(x). Note that ∆L and
∆R may be positive for any misreporting group S ⊆ [n], but
for ∆L (or ∆R) to be negative requires the leftmost (respec-
tively, the rightmost) player in [n] to be in S. By consider-
ing the cases given by the signs of ∆L and ∆R, we show
that for any values of ∆L,∆R, there is some misreporting
player i ∈ S whose cost does not decrease.

Case 1: ∆L,∆R ≥ 0. Let zL , mid(x) − α · diam(x)

and zR , mid(x) + α · diam(x) and let z′L, z
′
R be defined

analogously for the misreported location vector x′. Then,
for any player location xi (clearly xi ∈ [lt(x), rt(x)]) we
have

cost(f(x), xi) =
1

4
· ((xi − lt(x)) + (rt(x)− xi)

+ |zL − xi|+ |zR − xi|),

and

cost(f(x′), xi) =
1

4
· ((xi − lt(x) + ∆L)

+ (rt(x)− xi + ∆R)

+ |z′L − xi|+ |z′R − xi|).

But by the triangle inequality, we find that

|z′L − xi| ≥ |zL − xi| −
∣∣∣∣∆R −∆L

2
− α(∆L + ∆R)

∣∣∣∣ ,
|z′R − xi| ≥ |zR − xi| −

∣∣∣∣∆R −∆L

2
+ α(∆L + ∆R)

∣∣∣∣ .
For

α ∈
{

0,
|∆R −∆L|

2(∆L + ∆R)
,

1

2

}
,

it is easily verified that the implied lower bound on |z′L −
xi|+ |z′R−xi| is at least |zL−xi|+ |zR−xi|−(∆L+∆R).
Furthermore, as this lower bound is linear in α in the two

ranges defined by these values, the same holds for all α ∈
[0, 12 ]. Putting the above together we get

cost(f(x′), xi)

≥ cost(f(x), xi)) +
1

4
· (∆L + ∆R − (∆L + ∆R))

≥ cost(f(x), xi).

Case 2(a): ∆L < 0 and ∆R ≥ 0. As observed above,
for ∆L to be negative the leftmost player must be in the
deviating set S, but this player cannot gain from this change,
and in fact only stands to lose from such a change, as all four
points in the support of the mechanism’s output move further
away from the leftmost player’s location.

Case 2(b): ∆L ≥ 0 and ∆R < 0. This is symmetric to
case 2(a) above.

Case 3: ∆L,∆R < 0. In this case the mechanism out-
puts a location y ∈ [lt(x′), rt(x′)] ⊆ [lt(x), rt(x)] with prob-
ability one, and by the triangle inequality |rt(x) − y| +
|y − lt(x)| = diam(x). Thus, by linearity of expecta-
tion, cost(f(x′), lt(x)) + cost(f(x′), rt(x)) = diam(x). By
the same argument cost(f(x), lt(x)) + cost(f(x), rt(x)) =
diam(x). Consequently, either

cost(f(x′), lt(x)) ≥ cost(f(x), lt(x))

or
cost(f(x′), rt(x)) ≥ cost(f(x), rt(x)).

But for ∆L and ∆R to both be negative, both the leftmost
and rightmost players must be in the deviating set S, and so
some player in S does not gain from S misreporting their
locations.

2.2 Matching Lower Bound
We are now ready to present our main technical result for
the single-facility location problem: a lower bound for the
expectation-variance tradeoff matching the upper bound of
Theorem 2.3.
Theorem 2.4. For all α ∈ [0, 1/2], no SP mechanism for
one-facility location games which is (3/2 +α)-approximate
for maximum cost minimization has standard deviation of
maximum cost less than (1/2−α) · opt(x) on every location
vector x.

In our proof we fix some SP mechanism f . We will con-
sider inputs of the form x = (l, r), where l ≤ r, that is,
two-player inputs; this is without loss of generality as the
two extreme player locations always define the maximum
cost.2 Throughout the remainder of this section, we denote

2The extension to more than two players is almost immediate,
as we can identify more than one player with either extreme loca-
tion, using Lemma C.2.



by Y (x) ∼ f(x) the random variable corresponding to the
location of the facility output by the mechanism f on input
x. We write Y = Y (x), whenever the input x is clear from
context. The following two definitions will prove useful in
our proof of Theorem 2.4.
Definition 2.5. Given an instance x = (l, r) and a “gap” t,
the normalized leakage of (l, r) with relaxation parameter t
is

Λ(l, r, t) , E
[∣∣∣∣Y − l + r

2

∣∣∣∣ ∣∣∣∣Y 6∈ (l + t, r − t)
]

· Pr [Y 6∈ (l + t, r − t)] ·
(
r − l

2

)−1
.

Intuitively, Λ(l, r, t) is the contribution of probabilities
outside (l+t, r−t) to the expected distance from the facility
to mid(x) = l+r

2 , normalized by opt(x) = r−l
2 .

Definition 2.6. The left- and right-normalized distance of
an instance (l, r) are defined to be

dL(l, r) , E[|Y − l|] ·
(
r − l

2

)−1
,

dR(l, r) , E[|Y − r|] ·
(
r − l

2

)−1
.

By the triangle inequality, f satisfies dL(l, r)+dR(l, r) ≥
2. Moreover, as we may safely assume that f is at worst 2-
approximate, we also have dL(l, r), dR(l, r) ≤ 2, and so
dL(l, r) + dR(l, r) ≤ 4.

The next result is the core lemma underlying the proof of
Theorem 2.4; its rather intricate proof is relegated to Ap-
pendix B.1.
Lemma 2.7. For all δ > 0 and t ∈ (0, 1/2) there exists
some input x = (l, r), such that

Λ(l, r, t(r − l)) ≥ 1

2
− δ.

We proceed to inspect the variance of bounded SP approx-
imate single-facility mechanisms for maximum cost mini-
mization. For the remainder of the section we assume f is
an SP mechanism with expected approximation ratio at most
3
2 + α for all inputs (with α < 1

2 , as Theorem 2.4 is trivial
for α ≥ 1

2 .)
By Lemma 2.7, for any (δ, t), there exists an instance x =

xδ,t satisfying Λ(x, t) ≥ 1
2 − δ. Without loss of generality

we shift and scale x to be (−1, 1). Let Y (δ, t) ∼ f(xδ,t)
denote the output of the mechanism on the instance xδ,t.
We omit the parameters δ and t when the context is clear.
Let Z = |Y |. The following lemma, due to Procaccia and
Tennenholtz (2013), relates Z to X , the maximum cost of f
on x.
Lemma 2.8 (Procaccia and Tennenholtz 2013). Let X be
the maximum cost of f on input (−1, 1). Then X = Z + 1.

Consequently, the maximum cost X has variance
Var(X) = Var(Z) and so we turn our attention to lower
bounding the variance of Z. Moreover, as mechanism f is(
3
2 + α

)
-approximate and clearly opt(−1, 1) = 1, Lemma

2.8 implies that E[Z] = 1
2 + α′ for some α′ ≤ α. By our

choice of x = (−1, 1) satisfying Λ(−1, 1, t) ≥ 1
2 − δ, we

have E[Z|Z ≥ 1 − t] · Pr[Z ≥ 1 − t] ≥ 1
2 − δ. In order to

lower bound Var(Z) we first consider a simpler distribution,
defined below.
Definition 2.9. The concentrated version Zc(δ, t) ,
{(xc, pc), (yc, 1−pc)} of Z(δ, t) is a two-point distribution,
where

yc = E[Z|Z ∈ [0, 1− t)],
xc = E[Z|Z ∈ [1− t,∞)],

pc = Pr[Z ∈ [1− t,∞)].

In words, Zc is obtained from Z by concentrating prob-
abilities in the intervals [1 − t,∞) and [0, 1 − t) respec-
tively to points xc and yc. Note that concentrating prob-
abilities in both intervals to points yields the same expec-
tation as Z and can only decrease the variance. That is,
E[Zc] = E[Z] = 1

2 + α′ and Var(Zc) ≤ Var(Z). Moreover,
the contribution to E[Z] of Z conditioned on Z 6∈ [0, 1− t)
and the equivalent contribution to E[Zc] are the same. That
is,

pcxc = Λ(−1, 1, t) ≥ 1

2
− δ.

Revisiting the variance of Zc, it is easy to see that

Var(Zc) = E[Z2
c ]− E[Zc]

2

= pcx
2
c +

(
1
2 + α′ − pcxc

)2
1− pc

−
(

1

2
+ α′

)2

.

Extracting the form of Var(Zc), we obtain the following def-
inition.
Definition 2.10. The formal variance v(p, x, ε) is the ex-
pression

v(p, x, ε) , px2 +

(
1
2 + ε− px

)2
1− p

−
(

1

2
+ ε

)2

,

and the simplified formal variance is v(p, x) , v(p, x, α).
We aim to bound v(p, x, ε) and v(p, x) with some con-

straints on (p, x, ε), instead of bounding Var(Zc) or Var(Z)
directly.
Definition 2.11. The feasible domain Ω(δ, t) is defined to be

Ω(δ, t) ,

{
(p, x)

∣∣∣∣ p ∈ [0, 1], x ∈ [1− t,∞),
1

2
− δ ≤ px

}
and the relaxed variance bound V (δ, t) is defined to be

V (δ, t) , inf{v(p, x) | (p, x) ∈ Ω(δ, t)}.
In words, Ω(δ, t) is a domain of simplified formal vari-

ance v(p, x) containing all possible concentrated versions of
Z(δ, t), and V (δ, t) is the tightest lower bound on the sim-
plified formal variance v(p, x) in this domain.

The next lemma establishes that the relaxed variance
bound serves as a lower bound for Var(Z(δ, t)); its first in-
equality was observed earlier, and the proof of the second
inequality appears in Appendix B.2.



Lemma 2.12. For any δ and t ≤ 1
2 − α,

Var(Z(δ, t)) ≥ Var(Zc(δ, t)) ≥ V (δ, t).

By Lemma 2.12, it suffices to derive a lower bound on
V (δ, t). The final lemma helps us do that, by giving a for-
mula for the relaxed variance bound; its proof is relegated to
Appendix B.3.

Lemma 2.13. For t ≤ 1
2 − α, the relaxed variance bound

V (δ, t) satisfies

V (δ, t) = v

( 1
2 − δ
1− t

, 1− t
)
.

With Lemma 2.13 in hand, we are finally ready to prove
this section’s main result.

Proof of Theorem 2.4. Consider a sequence of (δ, t) values{
( 1
i ,

1
i ) | i ∈ N

}
. By Lemmas 2.12 and 2.13, for i large

enough, i.e., 1
i ≤

1
2 − α (recall that α < 1

2 , so such an i
exists), we have

Var

(
Z

(
1

i
,

1

i

))
≥ V

(
1

i
,

1

i

)
= v

( 1
2 −

1
i

1− 1
i

, 1− 1

i

)
.

Note that v
(

1
2−τ
1−τ , 1− τ

)
, a function of τ , is continuous at

0. Therefore

sup
x

Var(Z(x)) ≥ sup
1
i≤

1
2−α

Var

(
Z

(
1

i
,

1

i

))

≥ lim
i→∞

v

( 1
2 −

1
i

1− 1
i

, 1− 1

i

)
= v

(
1

2
, 1

)
=

(
1

2
− α

)2

,

completing the proof.

3 The Curious Case of Multiple Facilities
Having fully characterized the optimal approximation-
variance tradeoff for the case of a single facility in Section 2,
we turn our attention to multiple facilities. Our first obser-
vation is that now the tables are turned: the maximum cost
objective is relatively straightforward (given previous work),
whereas the social cost objective turns out to be quite con-
voluted.

In more detail, the best known SP mechanism for the
maximum cost objective, and any number of facilities k ≥
2, is the EQUAL COST (EC) Mechanism of Fotakis and
Tzamos (2013b). The mechanism first covers the player lo-
cations with k disjoint intervals [αi, αi + `], in a way that
minimizes the interval length `. Then, with probability 1/2,
the mechanism places a facility at each αi if i is odd, and at
αi + ` if i is even; and, with probability 1/2, the mechanism
places a facility at each αi if i is even, and at αi + ` if i is i
is odd.

It is easy to see that the EC Mechanism is 2-approximate.
Moreover (if not as obvious), it is GSP. The crucial observa-
tion in our context is that the maximum cost under the EC
Mechanism is always exactly `, that is, its maximum cost
has zero variance — even though it relies strongly on ran-
domization!

We conclude that, in order to establish any kind of
approximation-variance tradeoff for the maximum cost ob-
jective, we would need to improve the best known SP
approximation mechanism without variance constraints,
which is not our focus. In the remainder of this section,
therefore, we study the social cost objective. Moreover, we
restrict ourselves to the case of two facilities; the reason is
twofold. First, very little is known about SP mechanisms
for social cost minimization with k ≥ 3 facilities — not for
lack of trying. Second, and more importantly, we establish
an impossibility result, that holds even for the case of two
facilities.

The best known SP mechanism for social cost minimiza-
tion in two-facility games is due to Lu et al. (2010). It selects
the first facility from the player locations uniformly at ran-
dom. Then, it selects the second facility also from the player
locations with each location selected to be the second facil-
ity with probability proportional to its distance from the first
selected facility. Lu et al. show that this mechanism is an SP
4-approximate mechanism. The best deterministic approxi-
mation is given by the GSP mechanism which simply selects
lt(x) and rt(x) — its approximation ratio is Θ(n).

It is natural to think that it should at least be possible to
obtain some (possibly suboptimal) approximation-variance
tradeoff by randomizing between the two foregoing mech-
anisms, via the CONVEXp Mechanism. Strangely enough,
the following theorem — our second major technical result
— essentially rules this out.

Theorem 3.1. Let {fθ}θ∈[0,1] be a family of SP mechanisms
for two-facility games that satisfy the following technical as-
sumptions:

1. For any θ ∈ [0, 1] and location vector x, fθ(x) places
facilities only on locations in x.

2. For any θ ∈ [0, 1], if the location vector x contains at least
two different locations, then fθ(x) always selects two dif-
ferent locations.

Define the random variable C(fθ,x) to be the social cost
of mechanism fθ on location vector x. Then the following
conditions are mutually exclusive:

3. f0 is constant-approximate; i.e., there is a constant α ≥ 1
such that E[C(fθ,x)] ≤ α · opt(x).

4. For any location vector x ∈ Rn, Var(C(fθ,x)) decreases
monotonically with θ, down to Var(C(f1,x)) = 0.

5. For any location vector x ∈ Rn, E[C(fθ,x)] is continu-
ous in θ.

We think of Conditions 3–5 as the basic requirements
that any “reasonable” tradeoff must satisfy. We also con-
sider the first two assumptions as rather mild. In partic-
ular, they are both satisfied by every “useful” SP mecha-



nism for minimizing the social cost in two-facility games,3
including the best known SP approximation mechanism of
Lu et al. (2010), all the mechanisms characterized by Miya-
gawa (2001),4 and the winner-imposing mechanism of Fo-
takis and Tzamos (2010).

Let us now revisit CONVEXp in this setting; why is it not a
counterexample to the theorem? To be clear, we are thinking
of f0 as the 4-approximation mechanism of Lu et al. (2010),
and of f1 as the rule that deterministically selects lt(x) and
rt(x) (and has a bounded, though not constant, approxima-
tion ratio). It is easy to see that this mechanism satisfies
Conditions 1, 2, 3, and 5. Therefore, the theorem implies
that CONVEXp (surprisingly) violates Condition 4: the vari-
ance does not decrease monotonically with θ. This stands in
contrast to Section 2.1, where the variance of CONVEXp (as
well as GENERALIZED-LRMα) is monotonic.

The proof of Theorem 3.1 relies on establishing the fol-
lowing, clearly contradictory lemmas.
Lemma 3.2. If {fθ}θ∈[0,1] is a family of SP mechanisms
for 2-facility location which satisfies the conditions of Theo-
rem 3.1, then mechanism f1 has unbounded approximation
ratio for the social cost, (even) when restricted to 3-location
instances.

In the proof of the lemma, which can be found in Ap-
pendix C.1, we first show that the zero-variance mechanism
f1 must, in fact, be deterministic. We can therefore leverage
a characterization of deterministic bounded SP mechanisms
for 2-facility location (Fotakis and Tzamos 2013a) to estab-
lish that f1 has unbounded approximation ratio, by proving
that it cannot belong to this family. We then prove the oppo-
site statement in Appendix C.2 — and Theorem 3.1 follows.
Lemma 3.3. If {fθ}θ∈[0,1] is a family of SP mechanisms
for 2-facility location which satisfies the conditions of The-
orem 3.1, then mechanism f1 has bounded approximation
ratio for the social cost, (even) when restricted to 3-location
instances.

4 Discussion
We wrap up with a brief discussion of a few salient points.

Possible criticism: Why is the designer risk averse and
the players risk neutral? One may wonder why we are
studying approximation-variance tradeoffs for the designer,
yet the players care only about expected cost. But the two
issues are orthogonal. For example, the papers we discuss
in Section 1.2 consider sellers and buyers, and typically as-
sume that one side is risk averse while the other is risk neu-
tral. Our model is even more asymmetric as we have two
completely different types of objective functions (individual
distance from the facility versus an aggregate cost function).
Furthermore, to be able to distill the approximation-variance
tradeoff in facility location games, we study the simplest

3Unlike the maximum cost objective, for which “useful” mech-
anisms such as LRM and GENERALIZED-LRMα are known to
make use of the freedom to choose facilities outside the player lo-
cations.

4Miyagawa (2001) assumes Pareto efficiency, which implies
our Assumption 2

version of the problem, which includes risk-neutral players,
in addition to several other strong assumptions made by Pro-
caccia and Tennenholtz (2013), e.g., the cost of a player is
exactly her distance to the nearest facility, and players and
facilities are located on the real line.

That said, it is worth discussing whether our results can
be extended to the case of risk-averse players. If we mod-
eled the players’ risk aversion by changing their utility func-
tions, we would change the set of strategyproof mecha-
nisms. Nevertheless, it might be the case that the opti-
mal approximation-variance tradeoff — for the social cost
or maximum cost objective — is independent of the play-
ers’ individual utility functions. It is somewhat encourag-
ing that the EQUAL COST Mechanism (see §3) of Fotakis
and Tzamos (2013b) gives the same approximation guaran-
tees (the best known for the maximum cost) for players with
any concave cost function. But risk aversion corresponds
to a convex cost function (or a concave utility function), for
which Fotakis and Tzamos establish negative results.

Possible criticism: Is GENERALIZED-LRMα actually a
good mechanism? A curious — perhaps even troubling —
property of the GENERALIZED-LRMα mechanism is that
for α < α′, GENERALIZED-LRMα has higher variance
than GENERALIZED-LRMα′ , yet the outcome of the for-
mer mechanism stochastically dominates that of the latter,
in the sense that for every t, the probability that the for-
mer mechanism has maximum cost at most t is at least as
high as that probability under the latter mechanism. How-
ever, this is not an inherent property of our model: There are
certainly examples of mechanisms such that one has higher
variance than the other, yet neither one stochastically dom-
inates the other. We therefore view Theorem 2.3, and the
GENERALIZED-LRMα mechanism itself, mainly as a tight
upper bound on the optimal approximation-variance trade-
off, rather than as a mechanism that a risk-averse designer
would necessarily want to employ.

A broader agenda. As briefly mentioned in §1, we be-
lieve that our paper potentially introduces a new research
agenda. Just to give one example, the problem of impar-
tial selection (Alon et al. 2011; Fischer and Klimm 2014;
Holzman and Moulin 2013) exhibits an easy separation be-
tween the approximation ratio achieved by deterministic and
randomized SP mechanisms (much like facility location);
what is the optimal approximation-variance tradeoff? Even
more exciting are general results that apply to a range of
problems in mechanism design. And, while our work mainly
applies to facility location, it does tease out general insights
and questions: Can we build on the ideas behind the CON-
VEXp mechanism (see Appendix A) to obtain “good” (al-
beit suboptimal, see §2.1), general approximation-variance
tradeoffs? Is a “linear” upper bound of the form c · opt on
the sum of expectation and standard deviation (Theorem 2.3)
something that we should expect to see more broadly? Can
we characterize problems that do not admit approximation-
variance tradeoffs satisfying the conditions of Theorem 3.1?
These challenges can drive the development of a theory of
expectation-variance analysis in computational mechanism
design.
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Appendix: Approximation-Variance
Tradeoffs in Facility Location Games

A General Mechanism: Convex
Combinations of Mechanisms

In this section we analyze a natural and general mechanism
to obtain approximate-variance tradeoffs.

Definition A.1. LetMa andMb be two approximate mech-
anisms for some (common) optimization problem. Then
mechanism CONVEXp(Ma,Mb) is defined as follows: this
mechanism emulates Ma with probability p and emulates
Mb with probability 1− p.

Linearity of expectation ensures that if Ma and Mb

are both SP, then so is the derived mechanism CON-
VEXp(Ma,Mb). Moreover, also by linearity of expecta-
tion, Mp obtains an approximation ratio of p · αa + (1 −
p) ·αb; that is, its approximation ratio varies linearly with p.
Unfortunately, standard deviation does not degrade linearly,
as we shall see.

Specifically, our analysis focuses on minimization prob-
lems. We show that CONVEXp yields a super-linear approx-
imation to standard deviation tradeoff. Consequently, for 1-
facility games with the maximum cost objective, this mech-
anism is suboptimal.

Theorem A.2. Let Ma and Mb be approximate mecha-
nisms for some minimization problem. Consider an input x
which (up to scaling) has optimal value opt(x) = 1. Sup-
pose that on this input these mechanisms’ respective ap-
proximation ratios and variances are αa, αb and σ2

a, σ
2
b .

If X is the random variable corresponding to the cost of
CONVEXp(Ma,Mb) on input x, then for all p ∈ (0, 1), if
αa 6= αb or σa 6= σb, then

E[X] + std(X) > p · (αa + σa) + (1− p) · (αb + σb).

Generally, E[X] = p · αa + (1− p) · αb and

std(X)2 = (p · σa + (1− p) · σb)2

+ p · (1− p) ·
(
(αa − αb)2 + (σ2

a − σ2
b )
)
.

Proof. By linearity of expectation we have that indeed
E[X] = p · αa + (1 − p) · αb. Next, denote by Xa and
Xb the cost of mechanisms Ma and Mb respectively. By
definition, we have that

σ2
a = Var(Xa) = E[X2

a ]− E[Xa]2,

or equivalently E[X2
a ] = α2

a + σ2
a. Likewise, E[X2

b ] =
α2
b + σ2

b . Conditioning on whether or not mechanism CON-
VEXp(Ma,Mb) followsMa, we find that

Var(X) = E[X2]− E[X]2

= p · E[X2
a ] + (1− p) · E[X2

b ]

− (p · E[Xa] + (1− p) · E[Xb])
2

= p · (α2
a + σ2

a) + (1− p) · (α2
b + σ2

b )

− (p · αa + (1− p) · αb)2

= (p · σa + (1− p) · σb)2

+ p · (1− p) ·
(
(αa − αb)2 + (σ2

a − σ2
b )
)
.

The term p · (1 − p) ·
(
(αa − αb)2 + (σ2

a − σ2
b )
)

above is
strictly greater than zero, provided p 6= 0, 1 and αa 6= αb or
σa 6= σb, in which case we have that indeed

E[X] + std(X) > p · (αa + σa) + (1 − p) · (αb + σb).

At this point, we should note a delicate point, namely
that αa, αb, σ2

a and σ2
b in Theorem A.2’s statement need

not be the worst-case approximation ratios and variances
of both mechanisms. In particular, if the “hard inputs” for
mechanismMa andMb do not coincide, the above expres-
sion parameterized by the worst-case approximation ratios
and variances of the mechanisms serves as an upper bound
for the approximation-variance tradeoff achieved by Mecha-
nism CONVEXp(Ma,Mb). However, for 1-facility location
games, the hard instances for the best-known optimal deter-
ministic and randomized mechanisms are one and the same,
as the distributions of these mechanisms’ approximation ra-
tios are invariant under shifting and scaling. Therefore, for
this problem, we may replace αa, αb, σ2

a and σ2
b with the

worst-case approximation ratios and variances. In particu-
lar, by Theorem A.2 and our lower bound of Theorem 2.4,
we obtain the corollary stated in §2.

Corollary 2.1 (reformulated). For one-facility maximum
cost minimization, using an optimal (2-approximate) deter-
ministic mechanism and the optimal ( 32 -approximate and 1

4 -
variance) randomized mechanism LRM to play the roles of
Ma and Mb in CONVEXp(Ma,Mb) yields a randomized
mechanism whose approximation ratio X satisfies E[X] =

2− p
2 and std(X) =

√
p
2 ·
(
1− p

2

)
.

This corollary coupled with our upper bound of The-
orem 2.3 implies that the approximation-variance tradeoff
achieved by Mechanism CONVEXp for single-facility maxi-
mum cost minimization,

E[X] + std(X) =

(
2− p

2
+

√
p

2
·
(

1− p

2

))
> 2,

is supobitmal for this particular game, as Mechanism
GENERALIZED-LRMα has approximation ratio X satisfy-
ing E[X] + std(X) ≤ 2. For reference, Figure 2 contains
a comparison of the standard deviation to expectation curve
obtained by CONVEXp compared to the optimal mechanism,
GENERALIZED-LRMα, and the ”error term” (their differ-
ence) as a function of E[X]. Note that the standard deviation
of CONVEXp decreases monotonically with its expectation,
though not linearly.

B Proof of Theorem 2.4: Omitted Lemmas
This section contains proofs of lemmas that were omitted
from the body of the paper. The lemmas themselves are
stated in §2.2.

B.1 Proof of Lemma 2.7
Assume for the sake of contradiction that the lemma does
not hold; then (throughout the proof) we can fix some δ > 0
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Figure 2: CONVEXp contrasted with
GENERALIZED-LRMα.

and 0 < t < 1
2 such that for all (l, r),

Λ(l, r, t(r − l)) < 1

2
− δ. (1)

We begin by studying local properties of normalized leak-
age. The inputs of interest are given in the following defini-
tion.
Definition B.1. A gadget G with parameters l, r and offset
x ≤ r − l is a set of three 2-player instances,

G(l, r, x) , {(l, r), (l + x, r), (l, r − x)}.
Lemma B.2. For a gadget G(l, r, x) where x ≤ t(r − l),

dL(l, r) + dR(l, r)

≥
(
dL(l + x, r) + dR(l, r − x)

)
·
(

1 +
x

r − l − 2x

)
− x

r − l − 2x
·
(
2− 4δ

)
.

Proof. Let Y ∼ f(l, r) be the location output by mechanism
f on input (l, r). By strategyproofness of f , the left player
in (l+x, r) will not deviate to (l, r), nor will the right player
in (l, r − x). Thus,

r − l − x
2

· dL(l + x, r) ≤ E
[∣∣Y − l − x∣∣] ,

r − l − x
2

· dR(l, r − x) ≤ E
[∣∣Y − r + x

∣∣] .
Adding the two inequalities we obtain

r − l − x
2

· (dL(l + x, r) + dR(l, r − x))

≤ E
[∣∣Y − l − x∣∣+

∣∣Y − r + x
∣∣] . (2)

We focus on the right-hand side of the above expression,
E
[∣∣Y − l − x∣∣+

∣∣Y − r + x
∣∣], conditioned on the events

I and O, corresponding to Y ∈ (l + x, r − x) and Y 6∈
(l+ x, r− x). That is, whether or not Y is inside or outside
the range (l + x, r − x). For the latter case, we rewrite the
definition of normalized leakage,

Λ(l, r, x) = E
[∣∣∣∣Y − r + l

2

∣∣∣∣ | O] · Pr[O] ·
(
r − l

2

)−1
.

By the triangle inequality, this yields

E
[
|Y − l − x

∣∣+
∣∣Y − r + x

∣∣ | O] · Pr[O]

= 2 · E
[∣∣∣∣Y − r + l

2

∣∣∣∣ | O] · Pr[O]

= (r − l) · Λ(l, r, x).

(3)

For the former case (i.e., Y ∈ (l+x, r−x)), again by the
triangle inequality we have that

E
[∣∣Y − l − x∣∣+

∣∣Y − r + x
∣∣ | I] = r − l − 2x,

and similarly E
[∣∣Y − l∣∣+

∣∣Y − r∣∣ | I] = r − l. We there-
fore have

E
[∣∣Y − l − x∣∣+

∣∣Y − r + x
∣∣ | I]

=
r − l − 2x

r − l
· E
[∣∣Y − l∣∣+

∣∣Y − r∣∣ | I] . (4)

In order to bound the above expectation conditioned on I ,
we consider the same expectation conditioned on I’s com-
plement, O. Now, for Y ∈ [l, r] we have 2 · |Y − l+r

2 | ≤
r − l = |Y − l|+ |Y − r|. On the other hand, for Y 6∈ [l, r]
we have that 2 · |Y − l+r

2 | = |Y − l| + |Y − r|. Therefore
we find that

2·E
[∣∣∣∣Y − l + r

2

∣∣∣∣ | O] ≤ E
[∣∣Y − l∣∣+

∣∣Y − r∣∣ | O] . (5)

Relating the above expressions to normalized distances,
we note that by the law of total expectation,(

dL(l, r) + dR(l, r)
)
· r − l

2

=
∑

E∈{I,O}

E
[∣∣Y − l∣∣+

∣∣Y − r∣∣ | E] · Pr[E].
(6)

Therefore, using Equations (5) and (6), and again relying on
the definition of Λ(l, r, x), we obtain

E
[∣∣Y − l∣∣+

∣∣Y − r∣∣ | I] · Pr[I]

≤
(
r − l

2

)
·
(
dL(l, r) + dR(l, r)

)
− 2 · E

[∣∣∣∣Y − r − l
2

∣∣∣∣ | O] · Pr[O]

=

(
r − l

2

)
·
(
dL(l, r) + dR(l, r)− 2 · Λ(l, r, x)

)
.

(7)

Concluding the above discussion,

E
[∣∣Y − l − x∣∣+

∣∣Y − r + x
∣∣]

=
∑

E∈{I,O}

E
[∣∣Y − l − x∣∣+

∣∣Y − r + x
∣∣ | E] · Pr[E]



≤ (r − l) · Λ(l, r, x)

+
r − l − 2x

2
·
(
dL(l, r) + dR(l, r)− 2 · Λ(l, r, x)

)
=
r − l − 2x

2
·
(
dL(l, r) + dR(l, r)

)
+ 2x · Λ(l, r, x)

<
r − l − 2x

2
·
(
dL(l, r) + dR(l, r)

)
+ 2x ·

(
1

2
− δ
)
,

where second transition follows from Equations (3), (4),
and (7), and the last transition follows from Λ(l, r, x) ≤
Λ(l, r, t(r − l)),5 and from Equation (1).

Combining Equation (2) with the foregoing upper bound
on E[

∣∣Y − l − x∣∣+
∣∣Y − r + x

∣∣], we obtain(
dL(l + x, r) + dR(l, r − x)

)
·
(

1 +
x

r − l − 2x

)
≤ dL(l, r) + dR(l, r) +

x

r − l − 2x
·
(
2− 4δ

)
.

The lemma follows.

Next, we study global properties of normalized leakage.
We define an alignment of instances to be a set of instances
with the same lengths and a certain offset. Formally:

Definition B.3. An alignment is defined by

A(l, r, x, n) , {(l, r), (l + x, r + x), . . . ,

(l + (n− 1)x, r + (n− 1)x)}.

We let (lj , rj) = (l+ (j− 1)x, r+ (j− 1)x) denote the j-th
instance in alignment A(l, r, x, n) when the context is clear.

Definition B.4. The average distance of an alignment A =
A(l, r, x, n) is defined to be

d(A) ,
1

n

n∑
j=1

(dL(lj , rj) + dR(lj , rj)).

As we noted before, for any input x = (l, r) mechanism
f satisfies 2 ≤ dL(l, r) + dR(l, r) ≤ 4. In particular we
have that the average distance for any alignment A satisfies
2 ≤ d(A) ≤ 4.

Definition B.5. An alignment hierarchy is a set of align-
ments with the same “starting points”, the same “ending
points”, the same offsets and different lengths of instances.
To be precise, a hierarchy with parameters x, n,m is defined
to be

H(x, n,m) , {A(0, 1 + x, x, n), A(0, 1 + 2x, x, n− 1),

. . . , A(0, 1 +mx, x, n−m+ 1)}.

We let Ai = A(0, 1 + ix, x, n− i+ 1) denote the i-th align-
ment in hierarchy H(x, n,m) when the context is clear.

5To see why Λ(l, r, x) ≤ Λ(l, r, t(r − l)) follows from x ≤
t(r − l), recall that Λ(l, r, x) is the contribution of Y outside the
range (l−x, r+x) ⊇ (l+ t(r− l), r− t(r− l)) to E[

∣∣Y − l+r
2

∣∣].
That is, Λ(l, r, x) corresponds to the contribution of a smaller range
of Y to this expectation than the range which Λ(l, r, t(r − l)) cor-
responds to.

Lemma B.6. For any hierarchy H(x, n,m), for any x ≤
t(1 + x) and i ∈ [2,m− 1],

d(Ai+1) ≥ d(Ai) +
4xδ

1 + (i− 1)x
− 4

n− i
.

Proof. Let (lij , r
i
j) denote the j-th instance in Ai, i.e., let

(lij , r
i
j) = ((j − 1)x, 1 + (j + i− 1)x). Note that for all j ∈

[n− i], the three inputs {(li+1
j , ri+1

j ), (lij+1, r
i
j+1), (lij , r

i
j)}

form a gadget G(li+1
j , ri+1

j , x) with offset x and width
ri+1
j − li+1

j = 1 + (i + 1)x, so x ≤ t(1 + x) = t(ri+1
j −

li+1
j ). Hence by Lemma B.2 we have that dL(li+1

j , ri+1
j ) +

dR(li+1
j , ri+1

j ) is lower bounded by(
dL(lij+1, r

i
j+1) + dR(lij , r

i
j)
)
·
(

1 +
x

1 + (i− 1)x

)
− x

1 + (i− 1)x
· (2− 4δ).

Summing over j, we find that

(n− i) · d(Ai+1) =

n−i∑
j=1

(dL(li+1
j , ri+1

j ) + dR(li+1
j , ri+1

j ))

is lower bounded by
n−i∑
j=1

(
dL(lij+1, r

i
j+1) + dR(lij , r

i
j)
)
·
(

1 +
x

1 + (i− 1)x

)

−
n−i∑
j=1

x

1 + (i− 1)x
· (2− 4δ)

=

n−i∑
j=1

(
dL(lij+1, r

i
j+1) + dR(lij , r

i
j)
)
·
(

1 +
x

1 + (i− 1)x

)
− x(2− 4δ)

1 + (i− 1)x
· (n− i).

First, we observe that the distances of the leftmost
and rightmost points in Ai, namely dL(li1, r

i
1) and

dR(lin−i+1, r
i
n−i+1), are not counted in the above expres-

sion. Recalling that for any input (l, r) mechanism f must
satisfy dL(l, r), dR(l, r) ≤ 2, we find that the above expres-
sion is lower bounded by

n−i+1∑
j=1

(
dL(lij , r

i
j) + dR(lij , r

i
j)
)
·
(

1 +
x

1 + (i− 1)x

)

− x(2− 4δ)

1 + (i− 1)x
· (n− i)− 4 ·

(
1 +

x

1 + (i− 1)x

)
.

Next, recalling that input (l, r) mechanism f must satisfy
dL(l, r) + dR(l, r) ≥ 2, we find that the above expression is
in turn lower bounded by
n−i+1∑
j=1

(
dL(lij , r

i
j) + dR(lij , r

i
j)
)

+
4xδ

1 + (i− 1)x
· (n− i)− 4 ·

(
1 +

x

1 + (i− 1)x

)
.

(8)



But, as we have x ≤ t(1 + x) and t < 1/2, this implies that
x

1+(i−1)x <
1
2 for all i ≥ 2. Therefore (8) is lower bounded

by
n−i+1∑
j=1

(
dL(lij , r

i
j) + dR(lij , r

i
j)
)

+
4xδ(n− i)

1 + (i− 1)x
− 6.

Finally, dividing through by n− i, we find that indeed

d(Ai+1) ≥ 1

n− i
·

n−i+1∑
j=1

dL(lij , r
i
j) + dR(lij , r

i
j)


+

4xδ

1 + (i− 1)x
− 6

n− i

≥ 1

n− i+ 1
·

n−i+1∑
j=1

dL(lij , r
i
j) + dR(lij , r

i
j)


+

4xδ

1 + (i− 1)x
− 6

n− i

= d(Ai) +
4xδ

1 + (i− 1)x
− 6

n− i
.

Given Lemma B.6, we are now ready to prove our core
lemma, Lemma 2.7.

Proof of Lemma 2.7. We note that for any x > 0 and δ > 0,
the series

∑∞
i=2

4xδ
1+(i−1)x diverges. We may therefore fix

some x > 0 such that x ≤ t(1 + x), an m such that
m−1∑
i=2

4xδ

1 + (i− 1)x
> 3, (9)

and n such that
m−1∑
i=2

6

n− i
< 1, (10)

and consider the hierarchy H(x, n,m) with these parame-
ters. By Lemma B.6, which held under the assumption that
Lemma 2.7 does not hold for the pair (δ, t), we have

d(Am)− d(A2) =

m−1∑
i=2

(d(Ai+1)− d(Ai))

≥
m−1∑
i=2

4xδ

1 + (i− 1)x
−
m−1∑
i=2

4

n− i

> 2,

where the last inequality follows from Equations (9) and
(10). That is, d(Am) > d(A2) + 2. But, as observed before,
the average distance of any alignment A must satisfy 4 ≥
d(A) ≥ 2, and so we find that 4 ≥ d(Am) > d(A2)+2 ≥ 4,
a contradiction.

B.2 Proof of Lemma 2.12
By definition of the formal variance v(p, x, ε) and the con-
straints on Zc, we have

Var(Zc) ≥ inf{v(p, x, ε) | (p, x) ∈ Ω(δ, t), ε ≤ α}.

Note that for fixed p and x, the formal variance v(p, x, ε)
is

v(p, x, ε) = px2 +

(
1
2 − px

)2
1− p

− 1

4

+
p

1− p
(
ε2 − (2x− 1)ε

)
.

which is quadratic in ε, with an axis of symmetry at ε =(
x− 1

2

)
. As t ≤ 1

2 − α, for all x ≥ 1 − t and ε ≤ α

the following holds: x − 1
2 ≥

1
2 − t ≥ α ≥ ε. By the

above we conclude that for any fixed p and x ≥ 1 − t, the
function v(p, x, ε) is monotone decreasing in ε for all ε ≤ α,
implying that

Var(Zc) ≥ inf{v(p, x, ε) | (p, x) ∈ Ω(δ, t), ε ≤ α}
= inf{v(p, x, α) | (p, x) ∈ Ω(δ, t)}
= inf{v(p, x) | (p, x) ∈ Ω(δ, t)}
= V (δ, t).

B.3 Proof of Lemma 2.13
Recall the definition of V (δ, t),

V (δ, t) = inf{v(p, x) | (p, x) ∈ Ω(δ, t)}.
In order to lower bound the above, we expand v(p, x) and

consider it as a function of x.

v(p, x) = px2 +

(
1
2 + α− px

)2
1− p

−
(

1

2
+ α

)2

=

(
p

1− p

)
x2 −

2p
(
1
2 + α

)
1− p

x

+

(
1
2 + α

)2
1− p

−
(

1

2
+ α

)2

.

For fixed p and α this expression is quadratic in x, with an
axis of symmetry at x =

(
1
2 + α

)
. As t ≤ 1

2 − α, for all
x ≥ 1 − t we have that x ≥ 1 − t ≥ 1

2 + α and so for
any fixed p and x ≥ 1− t, the function v(p, x) is monotone
increasing in x and therefore attains its minimum over the set
Sp , {x | x ≥ 1− t, 1

2 − δ ≤ px} at the minimum x ∈ Sp;
that is, at x = max{1− t, ( 1

2 − δ)/p}. We consider the two
cases corresponding to p(1 − t) ≥ 1

2 − δ and p(1 − t) ≤
1
2 − δ, for which the minimum is attained at x = 1 − t and
x = ( 1

2 − δ)/p, respectively.

Case 1: For fixed p ≥
1
2−δ
1−t , the minimum x ∈ Sp is x =

1 − t and so the minimum value of v(p, x) over all x ∈ Sp
is v(p, 1− t), which is precisely equal to

p(1− t)2 +

(
1
2 + α− p(1− t)

)2
1− p

−
(

1

2
+ α

)2

.

Taking the derivative of v(p, 1− t) with respect to p, we find
that this function is monotone increasing in p,

∂

∂p

[
p(1− t)2 +

(
1
2 + α− p(1− t)

)2
1− p

−
(

1

2
+ α

)2
]



=

(
t+ α− 1

2

)2
(1− p)2

≥ 0.

So, the minimal value of v(p, x) with p ≥
1
2−δ
1−t and x ∈ Sp

is precisely v
( 1

2−δ
1−t , 1− t

)
.

Case 2: For fixed p ≤
1
2−δ
1−t , the minimum x ∈ Sp is x =

(1/2 − δ)/p and so the minimum value of v(p, x) over all
x ∈ Sp is v(p, ( 1

2 − δ)/p)), which we rewrite as a function
of x = (1/2− δ)/p as v((1/2− δ)/x, x) and expand below.

v

( 1
2 − δ
x

, x

)
=

(
1

2
− δ
)
x+

(α+ δ)2

1−
1
2−δ
x

−
(

1

2
+ α

)2

.

Again, taking the derivative, this time with respect to x, we
find that

∂

∂x

[(
1

2
− δ
)
x+

(α+ δ)2

1−
1
2−δ
x

−
(

1

2
+ α

)2
]

=

(
1
2 − δ

) (
x+ 2δ + α− 1

2

) (
x− 1

2 − α
)(

x− 1
2 + δ

)2 ≥ 0.

That is, this bound is monotone increasing in x
(

=
1
2−δ
p

)
, or

monotone decreasing in p, and therefore the minimal value
of v(p, x) with p ≤

1
2−δ
1−t and x ∈ Sp is precisely v

( 1
2−δ
1−t , 1−

t
)
.
In summary, we find that indeed,

inf{v(p, x) | (p, x) ∈ Ω(δ, t)}
= inf

{
inf{v(p, x) | x ∈ Sp} | p ∈ [0, 1]

}
≥ v

( 1
2 − δ
1− t

, 1− t
)
.

C Proof of Theorem 3.1: Omitted Lemmas
In this section we prove Theorem 3.1 by proving two con-
tradictory lemmas, which are stated in §3.

Because we are proving an impossibility result, we
can focus without loss of generality on 3-location in-
puts with n players. We denote such inputs by x =
{(x1, n1), (x2, n2), (x3, n3)}, indicating that ni players are
at location xi, with x1 ≤ x2 ≤ x3. We denote the
set of inputs of this form by I3. For an instance x =
{(x1, n1), (x2, n2), (x3, n3)} ∈ I3, we denote by S(x) the
set of possible values of social cost when facilities are placed
on player locations. For example, when x2− x1 ≤ x3− x2,
S(x) = {(x2 − x1)n1, (x2 − x1)n2, (x3 − x2)n3}, where
the three elements correspond to the social costs obtained by
putting facilities at {x2, x3}, {x1, x3} and {x1, x2} respec-
tively. Finally, we denote by {(si, pi) | si ∈ S(x), i ∈ I ⊆
[3]} a distribution of social costs, indicating that cost si is
incurred with probability pi.

C.1 Proof of Lemma 3.2
In this section we establish that for any family of mecha-
nisms {fθ}θ∈[0,1] satisfying the conditions of Theorem 3.1,
the mechanism f1 must have an unbounded approximation
ratio for the social cost objective. We start by proving that
f1 must in fact be deterministic. To do so, we rely on the
notion of partial group strategyproofness, or partial GSP for
short, introduced by (Lu et al. 2010).

Definition C.1. A partial group strategyproof (partial GSP)
mechanism for facility location problems is a mechanism for
which a group of players at the same location cannot benefit
from misreporting their locations simultaneously.

As (Lu et al. 2010) observed, SP implies partial GSP.

Lemma C.2 ((Lu et al. 2010)). Any SP mechanism for 2-
facility location is also partial GSP.

Armed with Lemma C.2, we now move on to stating and
proving our characterization of 0-variance SP mechanisms
for 2-facility location social cost minimization. That is, we
characterize SP mechanisms which always produce the same
social cost on a given instance.

Lemma C.3. Restricted to 3-location instances I3, all 0-
variance SP mechanisms that place facilities on player lo-
cations are deterministic.

Proof. Fix a 0-variance SP mechanism f that always places
facilities on player locations.

For a 3-location instance

x = {(x1, n1), (x2, n2), (x3, n3)} ∈ I3

where x1 ≤ x2 ≤ x3, let the balance ratio r(x) of x be such
that

r(x) =

{
(x2 − x1)/(x3 − x2), if x2 − x1 ≤ x3 − x2
(x3 − x2)/(x2 − x1), otherwise

.

If x2 − x1 ≤ x3 − x2, we call x1 the near end of x and x3
the far end. Otherwise x3 is the near end and x1 is the far
end. Particularly, when x2−x1 = x3−x2, both ends can be
the near end or the far end. When talking about a particular
instance, we scale the instance and the mechanism itself at
the same time retaining all relevant properties, thereby dras-
tically simplifying the discussion. We will show that both
far and near end of an instance are both output deterministi-
cally That is, each of these points is output with probability
exactly 0 or 1. As f always chooses exactly two locations
and places facilities on player locations, this implies that f
is deterministic.

We first prove that on any instance x ∈ I3, mechanism
f outputs the far end with probability either 0 or 1. That is
(up to rescaling), for any input x = {(−t, a), (0, b), (1, c)}
where t ≤ 1, if we letA = −t, B = 0, C = 1 denote respec-
tively the leftmost, middle and rightmost group of players in
the instance x, then f outputs C with probability exactly 0
or 1. Clearly, S(x) = {at, bt, c}. Suppose f places a facil-
ity at C with probability p ∈ (0, 1); then the cost to players
in C is (1 − p). Pick a small δ > 0 such that δ < 1 − p,
1 + δ 6= at and 1 + δ 6= bt. As a 0-variance mechanism, on



instance x′ = {(−t, a), (0, b), (1 + δ, c)}, f cannot random-
ize nontrivially between putting a facility at 1+δ or not. If f
puts a facility at 1+ δ on x′, the group C in x will deviate to
1+δ such that their cost will decrease to δ < 1−p. If f does
not put a facility at 1 + δ, players at 1 + δ in x′ will deviate
to 1, decreasing their cost from 1 + δ to pδ+ (1− p)(1 + δ).
Partial GSP is ruined in both cases. We conclude that f acts
deterministically on the far end of any instance. As a corol-
lary, on any instance x whose balance ratio is r(x) = 1,
mechanism f acts completely deterministically.

We now prove that on any instance, f outputs the near end
with probability either 0 or 1. To this end, we first consider
the instance x = {(−1, a), (0, b), (1, c)}. By the previous
paragraph, we have that, as r(x) = 1, the probability that
location −1 is output some p ∈ {0, 1}. We prove that for
all 0 < t ≤ 1, on input xt = {(−t, a), (0, b), (1, c)} mech-
anism f outputs location −t with probability pt precisely p,
and in particular the probability of the near end being output
is 0 or 1. There are two cases to consider, depending on the
value of p.

Case 1: p = 0. If pt > 0, players at −1 in x will deviate
to −t in order to decrease their cost from 1 to pt · (1− t) +
(1− pt), contradicting partial GSP. Therefore pt = 0 = p.

Case 2: p = 1. This case is more intricate. We define a
sequence {li}∞i=0 where l0 = 1 and li+1 = (l2i +2li)/(2.5+
2li) and prove by induction that for all k ≥ 0, on any input
xt satisfying r(xt) = t ≥ lk, mechanism f outputs the near
end of xt with probability pt = 1(= p). The base case
corresponds to xt = x, and so trivially pt = p = 1. For
the inductive step, consider some instance xt with r(xt) =
t satisfying li > t ≥ li+1, and suppose pt < 1. By the
inductive hypothesis, on input x′ = {(−li, a), (0, b), (1, c)}
the probability of f outputting−li is 1. Therefore, by partial
GSP, as group A in x should not benefit from deviating to
−li, we must have (1− p) · t ≤ li − t, or put otherwise

pt · t ≥ 2t− li. (11)

On the other hand, consider the instance x′′ ={
(−t, a),

(
li−t
1+li

, b
)
, (1, c)

}
. Note that since

r(x′′) =
(li − t)/(1 + li) + t

1− (li − t)/(1 + li)
= li,

by the induction hypothesis together with Case 1, f chooses
the near and far end of x′′ with probability 0 or 1 each, and
as f always outputs exactly two facilities, each on a distinct
player location, this implies that f performs deterministi-
cally on x′′. By partial GSP, location li−t

1+li
in x′′ must get

a facility, or else the players at this location will deviate to
0 in order to decrease their cost from li−t

1+li
+ t to at most

li−t
1+li

+ pt · t. Now, by Case 1, the far end of xt is chosen
by f with probability 0 or 1. As f always outputs two facil-
ities on input xt, the far end must therefore be chosen with
probability precisely 1, else the expected number of output
facilities would be strictly less than two. Likewise, group B

in xt must get a facility with probability precisely 1 − pt,
and so the cost for players in group B on input xt is pre-
cisely pt · t. Consequently, again invoking partial GSP of f ,
we find that the players at group B in xt must not benefit
from deviating to li−t

1+li
and so we must have

pt · t ≤
li − t
1 + li

. (12)

Combining Equations (11) and (12), we get

2t− li ≤
li − t
1 + li

,

which implies that t ≤ l2i+2li
3+2li

<
l2i+2li
2.5+2li

= li+1, a contra-
diction, and so we conclude that pt = 1.

We are still to show that lk tends to 0 as k tends to infinity.
Note that lk > 0 for all k, and

li+1

li
=

li + 2

2li + 2.5
≤ max

{
li
2li
,

2

2.5

}
=

2

2.5
.

Therefore 0 < lk ≤
(

2
2.5

)k
. Clearly limk→∞ lk = 0.

From the above we conclude that for a 3-location instance
x ∈ I3, if r(x) > 0, f does not randomize nontrivially on
both ends of x. If r(x) = 0, x must be a 2-location, or
even a 1-location instance, on which there is only one way
to put 2 facilities. Altogether we conclude that, f acts de-
terministically on both ends of any 3-location instance, or
equivalently, f is deterministic restricted to 3-location in-
stances.

Given Lemma C.3, we may safely assume that f1 is a
deterministic mechanism whenever restricted to 3-location
instances. We will rely on the following characterization
of deterministic SP mechanisms for the 2-facility location
problem, established by (Fotakis and Tzamos 2013a, Theo-
rem 3.3).

Lemma C.4 ((Fotakis and Tzamos 2013a)). Let f be any
SP mechanism for 2-facility location with a bounded ap-
proximation ratio for the social cost. Then, restricted to 3-
location instances with n ≥ 5 players, either there exists a
unique dictator j ∈ [n] such that for all instances x ∈ I3 a
facility is allocated to player j, or for all instances x ∈ I3
the two facilities are placed on lt(x) and rt(x).

Using this characterization and Lemma C.3 we can now
prove Lemma 3.2.

Proof of Lemma 3.2. We prove that f1 neither chooses the
two extremes nor has a dictator, and therefore by Corol-
lary C.4 is not a bounded mechanism. Let α be the
approximation ratio of f0. Consider instance x =
{(−1, n), (0, n), (1, 1)} (i.e., n players at −1, n at 0 and
1 at 1) where n ≥ max{3α, 2}. Clearly S(x) = {1, n}. Let
C0 = C(f0,x). Then, by virtue of f0 being α-approximate
and by Markov’s Inequality, we have

Pr[C0 = n] ≤ Pr[C0 ≥ n] ≤ E[C0]

n
≤ α

3α
=

1

3
. (13)



If the deterministic mechanism f1 puts a facility at 1,
thereby producing social cost C(f1,x) = n, then by con-
tinuity of expected social cost, there is a 0 < θ′ < 1 satisfy-
ing E[C(fθ′ ,x)] = 1

2 (1 + n), and therefore Pr[C(fθ′ ,x) =

n] = 1
2 . Pick such a θ′ and let Cθ′ = C(fθ′ ,x). For a

random variable C chosen from the distribution {(1, 1 −
p), (n, p)} we have Var(C) = (n − 1)2 · (p − p2), which
is monotone increasing in p for all p ≤ 1

2 . By Equation (13)
we thus obtain

Var(C0) ≤ Var({(1, 2/3), (n, 1/3)})
< Var({(1, 1/2), (n, 1/2)}) = Var(Cθ′),

and also clearly Var(Cθ′) > 0 = Var(C1), a contradiction to
monotonicity of Var(fθ,x).

We conclude that, given the location vector x, f1 puts fa-
cilities at−1 and 0. In particular, f1 neither chooses the two
extremes (which are −1 and 1) nor has a dictator (because
any player can be the one located at 1), and hence has an
unbounded approximation ratio.

C.2 Proof of Lemma 3.3
In this section we establish that for any family of SP mecha-
nisms {fθ}θ∈[0,1] satisfying the conditions of Theorem 3.1,
the mechanism f1 must have a bounded approximation ratio
for the social cost objective.

Lemma C.5. Let {fθ}θ∈[0,1] be a family of SP mechanisms
satisfying the conditions of Theorem 3.1. If f0 restricted
to n-player 3-location instances has a bounded approxima-
tion ratio α = α(n), then for any n-player 3-location input
x ∈ I3, if S(x) = {s1, s2, s3} and s3 > 40α · opt(x), then
C(f1,x) 6= s3.

Proof. Without loss of generality let s1 = 1. In addition,
let t > 20. Assuming s3 = 2tα > 20α, we proceed by 2
cases. Throughout the proof we rely on the previously-stated
simple observation that for a random variableC chosen from
the distribution {(1, 1 − p), (z, p)} we have Var(C) = (z −
1)2·(p−p2), which is monotone increasing in p for all p ≤ 1

2

and monotone decreasing in p for p ≥ 1
2 .

Case 1: s2 > t · α. We prove that C(f1,x) = s1. Oth-
erwise, C(f1,x) ≥ s2 > α ≥ C(f0,x) and by continuity
of expected social cost there exists some θ ∈ (0, 1) such
that E[C(fθ,x)] = 1

2 (s1 + s2). Let C0 = C(f0,x) and
Cθ = C(fθ,x). Since f0 is α-approximate, by Markov’s
Inequality we have

Pr[C0 = s1] = 1− Pr[C0 ≥ s2] ≥ 1− α

tα
= 1− 1

t
.

Therefore, as shifting all the mass of C0’s distribution from
cost s2 > t · α > α = E[C0] to cost s3 can only
serve to increase the variance, and by our observation that
Var({(1, 1 − p), (z − p)}) is monotone increasing in p ≤ 1

2

(e.g., 1
t ≤

1
2 ), we have

Var(C0) ≤ Var({(s1, 1− 1/t), (s3, 1/t)})
= Var({(1, 1− 1/t), (2tα, 1/t)})

= (2tα− 1)2 · (1/t− 1/t2)

≤ 4t2α2 · (1/t)
= 4tα2.

On the other hand, for Cθ we have E[Cθ] = 1
2 (s1 + s2) and

so shifting all the mass from s3 to s1 and part of the mass
from s2 to s1 (in order to keep the expected cost unchanged)
can only decrease the variance,6 we have

Var(Cθ) ≥ Var({(s1, 1/2), (s2, 1/2)})
≥ Var({(1, 1/2), (tα, 1/2)})

= (tα− 1)2 ·
(1

2
− 1

4

)
=
t2α2 − 2tα+ 1

4

>
t2α2 − 2tα

4
.

But for t > 20 this implies that

Var(Cθ)− Var(C0) > 0,

contradicting monotonicity of variance. Therefore in this
case, C(f1,x) = s1 6= s3.

Case 2: s2 ≤ t · α. If C(f1,x) = s3, then by continuity
of expected social cost there exists some θ ∈ (0, 1) such
that E[C(fθ,x)] = 1

2 (s2 + s3). Let C0 = C(f0,x), Cθ =
C(fθ,x). Again, by Markov’s Inequality and f0 being α-
approximate, we have

Pr[C0 = s3] ≤ Pr[C0 ≥ s3] ≤ α

s3
=

1

2t
,

and so we have, by a similar argument to Case 1, that

Var(C0) ≤ Var({(s1, 1− 1/2t), (s3, 1/2t)}) ≤ 2tα2.

On the other hand,

Var(Cθ) ≥ Var({(s2, 1/2), (s3, 1/2)})
≥ Var({(tα, 1/2), (2tα, 1/2)})
= t2α2 · Var({(0, 1/2), (1, 1/2)})

=
1

4
t2α2.

But as t > 20 > 8, we have

Var(Cθ)− Var(C0) =
tα2

4
(t− 8) > 0,

again contradicting monotonicity of variance. Therefore in
this case, too, C(f1,x) 6= s3.

We conclude that when s3 = 2tα > 40α, we have
C(f1,x) 6= s3.

6This, as the difference between s3 and E[Cθ] = 1
2
(s1 + s2) is

greater than the differences between both other costs and 1
2
(s1 +

s2), which are both equal to 1
2
(s2 − s1).



Lemma C.6. For an n-player 3-location instance x, if
S(x) = {s1, s2, s3} where s1 ≤ s2 ≤ s3, then s2 ≤
(n− 2) · s1 = (n− 2) · opt(x).

Proof. Without loss of generality suppose x =
{(−1, a), (0, b), (t, c)}, where a + b + c = n, a, b, c ≥ 1
and t ≥ 1, in which case for all d, e ∈ {a, b, c}, we have
d
e ≤ n − 2. Clearly S(x) = {a, b, ct}. Now, regardless
of the ordering of S(x), we find that s1 is at least some
e in {a, b, c}, as t ≥ 1. Moreover, s2 is at most some d
in {a, b, c}, as s2 ≤ s3 and either s2 6= ct or s3 6= ct.
Consequently we find that

s2
s1
≤ d

e
≤ n− 2.

Proof of Lemma 3.3. Let α = α(n) be the approximation
ratio of f0 restricted to n-player 3-location instances. For
any 3-location instance x, if s3 ≤ 40α · opt(x), mech-
anism f1 is 40α-approximate. Else, by Lemma C.5 and
Lemma C.6, C(f1,x) ≤ s2 ≤ (n − 2) · s1, and so f1 is
(n− 2)-approximate. In both cases the approximation ratio
of f1 is bounded by max{(n− 2), 40α} for all x.


