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Abstract. Identification of homologous chromosomal regions is impor-
tant for understanding evolutionary processes that shape genome evolu-
tion, such as genome rearrangements and large scale duplication events.
If these chromosomal regions have diverged significantly, statistical tests
to determine whether observed similarities in gene content are due to his-
tory or chance are imperative. Currently available methods are typically
designed for genomic data and are appropriate for whole genome analy-
ses. Statistical methods for estimating significance when a single pair of
regions is under consideration are needed. We present a new statistical
method, based on generating functions, for estimating the significance of
orthologous gene clusters under the null hypothesis of random gene order.
Our statistics is suitable for noisy comparative maps, in which a one-to-
one homology mapping cannot be established. They are also designed
for testing the significance of an individual gene cluster in isolation, in
situations where whole genome data is not available. We implemented
our statistics in Mathematica and demonstrate their utility by applying
them to the MHC homologous regions in human and fly.

1 Introduction

Identification of pairs of homologous chromosomal regions is an important step
in solving a broad range of evolutionary and functional problems that arise in
comparative mapping and genomics. Closely related homologous regions will be
characterized by conserved gene order and content and may have substantial sim-
ilarity in non-coding regions as well. However, in more distantly related regions,
significant sequence similarity will typically only be observable in coding regions.
In this case, genes are frequently treated as markers and putative homologous
regions are identified by searching for gene clusters, regions that share similar
gene content but where neither content nor order are preserved. Statistical tests
to distinguish significant clusters from chance similarities in gene organization
become essential as gene content and order diverge.

Conserved regions in whole genome comparisons are the basis of compara-
tive map construction, studies of genome rearrangements [15, 40, 41] and gene
order conservation [23, 45, 47], alternative approaches to phylogeny reconstruc-
tion [7, 10, 18, 38, 39, 47] and operon prediction in prokaryotes [9, 46]. Genome
self-comparison is used to test hypotheses of whole genome duplication [42, 52].



Studies such as these consider gene clusters in a genomic context, focusing on
large scale evolutionary processes and chromosomal organization.

In addition, many evolutionary and functional studies are based on studies
of a single linkage groups [3, 11, 16, 22, 22, 24–27, 34, 37, 43, 44, 49]. Some studies
examine the evolutionary history of a particular conserved region and the selec-
tive forces that hold it together. Others seek to exploit local similarities in gene
organization for functional inference, gene annotation or to disambiguate or-
thology identification. For organisms whose lifestyle (e.g., lamprey) or longevity
(e.g., fig) precludes construction of a genetic map, further research depends on
identification of a homologous region in a species that is more suited to genetic
manipulation or metabolic studies.

Analyses of such individual clusters often cannot take broader genomic con-
text into consideration. For example, many researchers in fields such as ecology
and organismal, behavioral and evolutionary biology work on species which have
not been sequenced and are unlikely to be sequenced in the foreseeable future.
In such cases, the amount of information about a region of interest, is limited by
the laboratory’s sequencing budget and available sequences in public data bases.

Our goal is to develop methods for estimating the statistical significance of
individual gene clusters that can be carried out with knowledge of a local region
plus aggregate properties such as an estimate of total gene number.

1.1 Related work

While statistical models for testing cluster significance are beginning to appear
in the literature [8, 12–14, 49, 50], none are currently suitable for testing the
significance of individual clusters. The lack of genomic context imposes a number
of constraints on the statistical approach. Monte Carlo methods typically involve
randomization of the entire genome, which is possible only with a complete
genomic data set. When this information is not available, analytical tests that
are parameterized by aggregate properties (e.g., the size of the genome, the size
and number of gene families, etc.) are required.

The statistical tests for individual clusters must be based on an appropriate
cluster definition. The intuitive notion that gene clusters share similar, but not
conserved, gene content has been translated into a number of different formal
models for finding and testing clusters [4–6,8,17,19,20,30,31,33,36,45,50,51], yet
most of these are not suitable for individual clusters. Cluster statistics depend on
the size of the search space. A number of statistical tests have been developed for
a reference region model [13,21,49,50], in which an investigator is interested in a
particular genomic region and searches the entire genome for additional regions
containing the same genes. This is equivalent to considering O(n) pairs of regions.
However, when the investigator selects one or more pairs of homologous anchor
genes and searches their genomic neighborhoods for additional homologs, the
search space is O(1). For such studies, the O(n) reference region approach will
underestimate the significance of the cluster.

Furthermore, the cluster definition must not require whole genome context
to make sense. Many studies are based on the max-gap cluster, a maximal set
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of homologous pairs where the distance between adjacent homologs on the same
chromosome is no greater than a pre-specified parameter, g. The nature of the
max-gap definition creates a “look-ahead” problem [6, 21], such that maximal
max-gap clusters cannot be found using local, greedy heuristics. Although a local
search may suggest that a particular region does not contain a max-gap cluster,
a whole genome search is required to verify that a cluster meeting the max-gap
criterion does not exist. Thus, while statistical tests for max-gap clusters based
on the reference region model have been developed [21], these are not appropriate
for individual clusters found by local search.

Finally, most current statistical tests do not take gene families into account,
yet the significance of a cluster decreases as gene family size grows, because a
given gene in one genome can be homologous to more than one gene in the other.
As the number of possible matches increases, so do chance occurrences of gene
clusters. As a result, tests that do not take gene family size into account risk
overestimation of cluster significance.

1.2 Results

We propose a statistical test for individual clusters, under the null hypothesis
of random gene order. These may be used without complete genomic context,
are suitable for individual clusters found by local search, incorporate gene family
size and are computationally tractable. In previous work [13], we proposed a test
for individual clusters based on a window sampling model. Given two genomes
with gene families, our measure of significance was the probability of observing
a conserved set of linked genes in close proximity on both genomes. However,
the treatment presented was mainly of theoretical interest since it did not lend
itself to a computationally tractable implementation.

In the current paper, we recast this model in terms of generating functions,
allowing us to obtain a general expression for our test statistic under the as-
sumption of arbitrary gene family sizes. This statistic requires only the size of
the conserved region, number of homologous genes in the linkage group and esti-
mates of the distribution of gene family sizes and of the total number of genes in
the genome. No information about the spatial organization of the genome out-
side the conserved region is needed. Under the additional assumption of fixed
gene family sizes, we use the generating function model to obtain closed form
expressions approximating cluster probabilities that can be calculated efficiently
using Mathematica.

We describe our model and give a formal statement of the problem in Sec-
tion 2. In Section 3, we derive the probability of observing an individual cluster
under the null hypothesis of random gene order. In Section 4, we demonstrate
how our model may be applied, using the heavily studied conserved homologous
regions associated with Major Histocompatibility Complex (MHC) in human
and fly.
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2 Model

We develop tests for individual clusters based on the probability of observing
a cluster in a genome with uniform random gene order (a “random genome”).
A genome, Gi = (1, . . . , ni) is modeled as an ordered set of ni genes, ignoring
chromosome break and physical distances between genes. We assume that genes
do not overlap.

2.1 The 1-1 model

We begin with a simple model of two genomes, G1 and G2, with identical gene
content and a one-to-one mapping between genes in G1 and genes in G2. That
is, every gene in G1 has exactly one homolog in G2 and vice versa. We define
an orthologous cluster as a pair of windows, W1 and W2, of length r1 and r2

selected from genomes G1 and G2, respectively, that share m homologous gene
pairs. Figure 1 shows a cluster of three genes in a window of size five.

· · · • • • ( v w • • u ) • • • • • • • · · ·
· · · • • • • • • ( u • w v •) • • • • · · ·

Fig. 1. A cluster with r = 5, m = 3 in the 1-1 model . Genes without homologs in this
region shown as dots.

In this simple model, the probability that a pair of windows, of length r1 and
r2, have exactly m genes in common is simply the probability that m of the r1

genes in W1 also appear in W2 and can be calculated using a hypergeometric
distribution:

p1−1(m) =

(

r1

m

)(

n2−r1

r2−m

)

(

n2

r2

)

The probability that the windows share at least m genes is then
∑r

i=m p1−1(i).
The 1-1 model requires a perfect, unambiguous homology mapping between G1

and G2. This may be possible after a recent speciation or polyploidization event.
In general, however, because of variations in mutation rates, convergent evolu-
tion, non-homologous gene displacement and multi-domain proteins generated
by exon shuffling, it is not possible to identify a unique match.

In this case, a many-to-many model is required. Genes are partitioned into
families, such that any gene in a given family in G1 can match any gene in the
same family in G2. The probability of finding a cluster by chance increases with
family size. Consider, for example, the simple scenario where just one of the genes
in W1 matches f genes in G2. The probability of finding m matches to the genes
in a fixed size in G2 increases since there are f possible matches for this one gene.
However, it is surprisingly difficult to obtain a straightforward closed formula
expressing this probability, even for this simple scenario. Therefore, accurate
statistics require a model of gene family size. However, this raises the challenge
that once gene families are incorporated in the model, it is no longer easy to
determine the expected number of matches in a window of size r.
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2.2 General gene family model

The problem of identifying true homologs has been much debated and numerous
of solutions have been proposed (e.g., [2, 28, 33, 48, 50]). The first step is typi-
cally sequence comparison. A variety of approaches are applied to rule out false
positives or negatives due to weak sequence similarity and/or matches based
on homologous domains in otherwise unrelated sequences. These include bi-
directional best hits, imposing a minimum alignment length requirement and
phylogeny reconstruction. Despite these efforts, homology frequently remains
unresolved. Furthermore, gene duplications that occur after the speciation sep-
arating G1 and G2, result in situations where a gene in one genome has two or
more legitimate orthologs in the other.

We therefore extend our model to include gene families. A gene family is a
set of homologous genes; that is, genes that share a common ancestor, through
either duplication (paralogs) or speciation (orthologs). Gene family membership
in our model does not depend on inherent functional or structural properties of
the family but rather on what type of information the user brings to bear on
identification of homology relationships. We define a gene family to be the set
of indistinguishable homologous genes; i.e., homologous genes, where subfamily
classification cannot be further disambiguated.

This is illustrated by the tyrosine kinases, a large multi-domain family of
eukaryotic signaling proteins with 90 members in human [29]. While sequence
similarity in the kinase domain shows that all tyrosine kinases are related, the
domain composition of these sequences varies greatly, so that domain architec-
ture can be used to disambiguate orthology. For instance, the Insulin Receptor
(IR), in addition to the kinase domain, has two Furin-like domains, a Leucine-
rich domain and two fibronectin domains, a domain architecture shared only
with two other human genes: the Insulin Growth Factor 1 Receptor and the
Insulin-Receptor Related Receptor. Thus, while an analysis based on sequence
comparison alone, might map mouse IR to almost 100 kinases in human, an
analysis based on domain architecture would associate mouse IR with only three
human homologs.

We will assume that the set of genes in genomes G1 and G2 can be partitioned
into non-intersecting gene families. Let fij ⊂ Gi denote the members of the jth
gene family in genome i. Then, the jth gene family, fj = f1j ∪ f2j , is a set of
genes such that each gene in fj is homologous to all other genes in fj and only
those genes. There are φij = |fij | genes in the jth family in genome Gi. Let
F = {fj} be the set of all gene families in both genomes. In the gene family
model, we define an orthologous gene cluster to be a pair of windows of length
r1 and r2, drawn from G1 and G2, respectively, that have m gene families in
common.

3 Cluster Statistics

We develop a test for individual clusters based on the probability of observing a
cluster in two genomes with uniform random gene order (a “random genome”).
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In calculating cluster probabilities for the general case, we will need to count
the number of ways that a window of a particular size can be filled with a given
set of gene families in several contexts. We therefore derive a general solution
to this problem using generating functions, a powerful combinatorial approach
which can be used to determine a sequence of interest from the coefficients of a
power series(see, for example, [35]). Here the sequence of interest is the number
of ways filling the window. It is this formalism that allows us to compute cluster
probabilities efficiently.

3.1 Window packings

Define T to be a set of λ gene families of arbitrary size φ1 . . . φλ. Given the sample
space of all sets of w genes sampled from a genome of size n, we wish to enumerate
those that contain at least one gene from each family in T . Since we do not take
into account the order of genes in a window, this enumeration is equivalent to
finding all window packings. The generating function formulation allows us to
determine the number of such window packings, denoted by N (w, λ, T ).

We represent contribution of the jth family in T by the generating function

αj(t) =

(

φj

1

)

t +

(

φj

2

)

t2 + ... +

(

φj

φj

)

tφj . (1)

The coefficient of ti in αj(t), denoted by [ti]αj(t), represents the number of ways
of choosing i genes from jth family. The contributions of all λ families to the
window can then be derived from the product of their generating functions:

α(t) =

λ
∏

j=1

[

(

φj

1

)

t +

(

φj

2

)

t2 + ... +

(

φj

φj

)

tφj

]

. (2)

The coefficient [tw]α(t) gives the number of ways of filling w slots with genes
from the λ families, which is just N (w, λ, T ). Note that the tw term in α(t)
will be a sum of products of the form β1t

x1 · β2t
x2 · · ·βλtxλ = (

∏

j βj)t
w, where

the exponents of the dummy variable, t, sum to w. By inspecting Equation (2),
we see that since βj is the coefficient of txj , it must be of the form βj =

(

φj

xj

)

.

The term [tw]α(t) corresponds to packings containing x1 genes from the first
family, x2 genes from the second family and so forth, where βj corresponds to
the number of ways of choosing xj genes from the jth gene family. Summing
over all packings, we obtain

N (w, λ, T ) =
∑

(x1,···xλ)

(

φ1

x1

)(

φ2

x2

)

· · ·

(

φλ

xλ

)

, (3)

where the sum is over the set of all λ-tuples (x1, . . . , xλ) such that

λ
∑

j=1

xj = w, (4)
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and 1 ≤ xj ≤ φj , ∀j.
Let us illustrate the window packing problem with a simple example. Suppose

we wish to find the number of ways a window of size w = 7 can be packed with
four gene families (λ = 4), such that the window has at least one gene from
each gene family. Let the gene family sizes of T be φ1 = 1, φ2 = 2, φ3 = 3 and
φ4 = 4 and the 4-tuple (x1, x2, x3, x4) refers to a window packing that has x1

genes from the first gene family, x2 genes from the second gene family, x3 genes
from third gene family and x4 genes from the fourth gene family.

In order to find all possible packings, we need to find all 4-tuples satisfying
Equation (4); in this example

∑4
j=1 xj = 7. Since jth gene family can contribute

xj genes in
(

φj

xj

)

ways, the 4-tuple (x1, x2, x3, x4) can contribute
(

φ1

x1

)(

φ2

x2

)(

φ3

x3

)(

φ4

x4

)

window packings. For example, the tuple (1, 1, 1, 4) can contribute
(

1
1

)(

2
1

)(

3
1

)(

4
4

)

=
6 window packings. Table 1 lists the set of all possible 4-tuples and the number
of packings associated with each 4-tuple. By adding the number of packings for
each 4-tuple, we get the total number of ways the window can be filled with genes
from the four gene families as given in Equation (3). Here, N (7, 4, T ) = 76.

λ-tuple Number of
(x1, x2, x3, x4) packings

(1, 1, 1, 4) 6
(1, 1, 2, 3) 24
(1, 1, 3, 2) 12
(1, 2, 1, 3) 12
(1, 2, 3, 1) 4
(1, 2, 2, 2) 18

N (7, 4, T ) 76
Table 1. Number of ways packing a window of size w = 7 with four gene families of
size {1,2,3,4}

3.2 Orthologous clusters with arbitrary gene families

We estimate the significance of a gene cluster using the probability that two
windows, arbitrarily chosen from two random genomes, share at least m gene
families. We enumerate over all sets of k gene families, for each value of k from
m to r. For each such set, F , we determine the probability that W1 contains
only genes in families in F , including at least one from each family, followed by
the conditional probability that at least l of the families in F also appear in W2.

Expressed formally, the probability that W1 and W2 share at least m gene
families is

qo(m) =

r
∑

k=m

[

∑

F∈Fk

p1(F )

k
∑

l=m

∑

E ∈ F l

E ⊆ F

p2(E)

]

, (5)
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where F is the set of gene families in G1 and G2.
The probability that a given set, F , of k gene families is seen in W1 is

p1(F ) =

(

n1

r1

)−1

N (r1, k, F ) (6)

where N (r, k, F ) is the number of window packings given by Equation (3). To
determine, p2(E), we enumerate over all subsets of F of size l, where l ranges
from m to k. For each subset, E, we seek the probability that each family in E

is represented in W2 at least once and that no other family in F appears in W2.
We exclude all other families in F to avoid overcounting.

At least l slots in W2 must be filled with genes in E. The remaining r2 − l

slots may be filled either from families in E or from families that do not appear
in W1; i.e., genes from F \F . Let z be the number of slots filled with genes from
F \ F . By considering all possible values of z, we obtain

p2(E) =

(

n2

r2

)−1
∑

z

N (r2 − z, l, E)

(

n2 − Φ(F )

z

)

(7)

where Φ(F ) =
∑

j∈F φ2j . The parameter z ranges from max{0, r2 − Φ(E)} to
r2 − l where Φ(E) is defined as above. The first term in the numerator is the
number of ways of filling r2 − z slots with genes from the l families in E. The
second term corresponds to all the ways of choosing the z outsiders from the set
of genes not included in any gene family in W1.

By substituting the expression in Equation (3) in Equations (6) and (7),
we get a statistic for individual clusters in terms of n1, r1, n2, r2, m and the
set of the gene families in G1 and G2. However, calculating this probability
requires the enumeration of all subsets of k gene families. For each such subset,
we must enumerate all packings satisfying Equation (4) and calculate a product
of binomials for each packing. Computing this probability is prohibitively slow.

3.3 Orthologous clusters with fixed size families

The complexity of calculating q(m) can be substantially reduced under the as-
sumption that all gene families are of equal size, φ. When gene families are of
equal size, it is not necessary to enumerate Fk, since all subsets of k gene fam-
ilies are indistinguishable. We can simply replace the first term,

∑

F p1(F ), in
Equation (5) with the product of the number of sets of k gene families times
p1(k), the probability that exactly k gene families of size φ are represented in
the window:

∑

F∈Fk

p1(F ) =

(

|F|

k

)

p1(k). (8)

Invoking a similar transformation of the second term in Equation (5), the prob-
ability that W1 and W2 share at least m gene families simplifies to

qo(m) =

r
∑

k=m

[

(

nf

k

)

p1(k)

k
∑

l=m

(

k

l

)

p2(l)

]

. (9)
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Under the fixed size assumption, p1(k) and p2(l) correspond to the probability
that exactly k families appear in W1 and exactly l families appear in W2, respec-
tively. To calculate p1(k) and p2(l), we require an expression for N ′(w, λ, φ), the
number of window packings when all families are of fixed size. When φj = φ, βj

reduces to
(

φ
xj

)

and Equation (2) becomes

α′(t) =
[

(

φ

1

)

t +

(

φ

2

)

t2 + ... +

(

φ

φ

)

tφ
]λ

. (10)

The number of ways of observing λ gene families in a window of size w is given
by [tw]α′(t), yielding

N ′(ω, λ, φ) =
∑

(x1,···xλ)

(

φ

x1

) (

φ

x2

)

· · ·

(

φ

xλ

)

, (11)

where the sum is over the set of all λ-tuples (x1, . . . , xλ) satisfying Equation(4),
under the constraint that 0 < xi ≤ φ, ∀i.

In this case, we can avoid enumerating the λ-tuples using the following sim-
plification. Note that the right hand side of Equation (10) is a binomial series of
the form [(1 + t)φ − 1]λ. By applying two binomial expansions, we obtain

α′(t) = (−1)λ

λ
∑

i=0

[

(−1)i

(

λ

i

)

(

i∗φ
∑

j=0

(

i ∗ φ

j

)

tj
)

]

. (12)

The number of ways of filling w slots with genes from the λ fixed size families is
just [tw]α′(t), yielding

N ′(w, λ, φ) = (−1)λ

λ
∑

i=0

[

(−1)i

(

λ

i

)(

i ∗ φ

w

)

]

. (13)

Notice that at least dw
φ
e gene families are required to fill a window of size w.

Substituting the expression for N ′(w, λ, φ) in Equation (6) and restricting the
lower bound on the dummy variable i to d r1

φ
e, we obtain

p1(k) =

(

n1

r1

)−1

(−1)k

k
∑

i=d
r1

φ
e

[

(−1)i

(

k

i

)(

i ∗ φ

r1

)

]

. (14)

Similarly, p2(l), the probability that W2 contains exactly l gene families is

(

n2

r2

)−1
∑

z

(−1)l

l
∑

i=d
r2−z

φ
e

[

(−1)i

(

l

i

)(

i ∗ φ

r2 − z

)

]

(

n2 − kφ

z

)

(15)

where z ranges from max{0, r2 − kφ} to r2 − l.
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The fixed size approximation and the use of generating functions to enumer-
ate window packings result in an efficient approximation to the probability that
two windows, arbitrarily chosen from two random genomes, share at least m gene
families. The general gene family model, Equations (6) and (7), requires imple-
mentation of an algorithm to enumerate all λ-tuples satisfying Equation (4).
Furthermore, it is necessary to compute the product of λ binomial terms for
each of the tuples in the enumeration. In contrast, Equations (14) and (15) re-
quire only a simple summation and can be easily computed in Mathematica.
We can compute Equation (9) using the number of genes in each genome, the
window sizes, gene family sizes and the number of gene families shared between
the windows. Therefore, we only need information about the local regions and
the aggregate properties of the genomes to determine significance of individual
clusters.

4 Experimental results

In this section, we demonstrate how the results derived in Section 3 can be
applied to test the validity of a pair of putative homologous chromosomal re-
gions. As an example, we applied our models, implemented in Mathematica, to
the MHC-like region, so called because it contains a conserved linkage group
that resides near the human Major Histocompatibility Complex. This conserved
homologous region, which has four copies in mammalian genomes, has been dis-
cussed in the molecular evolution literature extensively [1,12,16,22,24,25,43,49].

In recent literature, there have been many papers about conserved linkage
groups observed in eukaryotes that appear to be duplicated and, in some cases,
also conserved across several distantly related species (surveyed in [1, 12, 13]).
These include the mammalian MHC region, the regions surrounding the Hox
clusters [3], a region on chromosome 8 in human (FGR) [44] and a region con-
taining a Tbox subfamily on chromosomes 5 and 11 in mouse [37]. These clusters
typically contain five to fifteen genes spread over a window of 15 to 300 slots.
Most of these studies do not present any statistical analysis testing the signif-
icance of the clusters. A few use simple statistical tests based on a reference
region model with no correction for gene family size [1, 12, 49].

Several of these conserved regions have been the focus of particular inter-
est because four paralogous copies have been observed in mammals, leading
to the speculation that they could have arisen through the early vertebrate
tetraploidization postulated by Ohno [32]. The MHC-like region contains a con-
served linkage group of roughly a dozen genes (depending on which analysis you
look at) on chromosome 6p21.3 in human. Paralogous subsets of these genes are
also found on human chromosomes 1, 9 and 19. The four putative paralogous
regions in human and mouse have been studied extensively [16, 22, 24, 25, 43] as
new sequence and mapping data has provided additional insights into the evolu-
tionary implications of the regions. The increasing availability of whole sequence
data has also led to the investigation of regions in other species with ortholo-
gous gene content and organization that is suggestive of common ancestry for
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the entire region. These include mouse, C. elegans, D. melanogaster, S. Pombe

and several species of amphioxus [1, 12, 49].
We use a recent comparative analysis [12] of a chromosomal region on Droso-

phila chromosome X and the human MHC-like regions as an example for demon-
strating the application of our statistical tests. Danchin et. al. [12] investigated
a region delimited by Drosophila genes USP and Notch. USP is homologous to
human RXRA, RXRB and RXRG. RXRA and Notch are ”anchor” genes that
bracket the MHCII region on human chromosome 6, a region also containing
COL, ABC, RING and PSMB genes. Their analysis of Drosophila contigs in
the public databases turned up 183 non-redundant transcripts in this region. Of
these, 161 had significant matches in human, 32 of which included at least one
significant hit in one or more of the MHC-like regions. Based on phylogenetic
analysis, they [12] concluded that 19 of these were reliable orthologs. The two
original anchor genes used to identify the region were eliminated from the study,
since these were used to find the region do not constitute independent observa-
tions. Of the remaining 17 Drosophila genes in the study that had trusted human
orthologs within one or more MHC-like regions, four fell into a region containing
44 genes on chromosome 6p21.3 in human.

We investigated the probability of observing such a cluster by chance using
Equations (9), (14) and (15) and the following parameters nhs = 24194, ndm =
13833, rhs = 44, rdm = 161 and m = 4. Genome sizes were obtained from the
ensembl database (www.ensembl.org). Note that our method to determine the
significance of a gene cluster is not symmetric. When the sizes of the genomes
and/or the windows are different (n1 6= n2 and/or r1 6= r2) the results will
depend on which genome is designated G1. Therefore, we estimated the cluster
significance twice, using both the Drosophila and human regions as references.

The dependence of cluster statistics on gene family size is shown in Figure 2.
These results show that cluster significance decreases rapidly with gene family
size. Note that the probability of observing a gene cluster is slightly lower when
Drosophila is used as reference. Since the second term in Equation (15) depends
on n2, the significance will decrease when G2 is the larger genome. The prob-
ability of observing a homologous cluster structured like the human MHC-like
cluster under the null hypothesis is greater than 0.1 for gene family sizes of four
or greater and is close to one by the time φ reaches ten. While these numbers,
taken alone, would suggest that the observed gene cluster is not statistically sig-
nificant, a comprehensive analysis would require comparison of the chromosomal
region in Drosophila with all four paralogous regions in human using a multiple
testing approach. Our intent here is not to reanalyze the data or question the
conclusions of the studies cited above, but rather to provide a concrete example
of how our models can be put to practical use in real biological studies.

5 Conclusion

We have presented a new combinatorial approach to determine the significance of
individual gene clusters. Our method takes gene family size into account and can
be used to determine the significance of gene clusters in the absence of complete
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Fig. 2. Significance of MHC-like cluster using the fly genome as reference (×) and the
human genome as reference (+)

genomic context. We estimate the significance of gene clusters by determining
the probability that two regions, containing r1 and r2 genes respectively, share at
least m gene families. By using generating functions, we have developed tractable
expressions for the estimating the probability of observing orthologous gene clus-
ters in two genomes. To demonstrate the utility of the method, we have applied
it to estimate the significance of a well-studied conserved region in the fly and
human genome.
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