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Abstract. There is widespread interest in comparative genomics in de-
termining if historically and/or functionally related genes are spatially
clustered in the genome, and whether the same sets of genes reappear
in clusters in two or more genomes. We formalize and analyze the desir-
able properties of gene clusters and cluster definitions. Through detailed
analysis of two commonly applied types of cluster, r-windows and max-
gap, we investigate the extent to which a single definition can embody
all of these properties simultaneously. We show that many of the most
important properties are difficult to satisfy within the same definition.
We also examine whether one commonly assumed property, which we call
nestedness, is satisfied by the structures present in real genomic data.

1 Introduction

Comparisons of the spatial arrangement of genes within a genome offer insight
into a number of questions regarding how complex biological systems evolve and
function. Spatial analyses of orthologous genomes focus on elucidating evolution-
ary processes and history, and on constructing comparative maps that facilitate
the transfer of knowledge between organisms [1,2]. Conserved segments between
different genomes have been used extensively to reconstruct the history of chro-
mosomal rearrangements and infer an ancestral genetic map for a diverse group
of species [3,4], as well as to provide novel features for new phylogenetic ap-
proaches. Genome self-comparisons reveal ancient large-scale or whole-genome
duplication events [5]. Finally, spatial comparative genomics can also help predict
protein function and regulation. In bacteria, conserved gene order and content
have been used for prediction of operons, horizontal transfers, and more generally
to help understand the relationship between spatial organization and functional
selection [6-11].

A prerequisite to all of these tasks is the identification of genomic regions
that share a common ancestor. Although offspring genomes immediately follow-
ing speciation or a whole-genome duplication will have identical gene content
and order, over time large and small scale rearrangements will obscure this re-
lationship, leading to pairs of regions, or gene clusters, that share a number of
homologous genes, but where neither order nor gene content is strictly conserved.



To identify such diverged homologous regions it is necessary to define the
spatial patterns suggestive of common ancestry, and then design a search algo-
rithm to find such patterns. The exact definition of the structures of interest is
critical for sensitive detection of ancient homologies without inclusion of false
positives. It is difficult to characterize what such regions will look like, however,
since in most cases evolutionary histories are not known. Consequently, cluster
definitions are generally based upon intuitive notions, derived either from small,
well-studied examples (e.g., such as the MHC region [12-14]), or from ideas
about how rearrangements of genomes proceed. However, not much is known
about the rates at which different evolutionary processes occur, and the little
that is known is often based (somewhat circularly) on inferred homology of chro-
mosomal segments.

The properties underlying existing cluster definitions are generally not stated,
and the dimensions along which they differ have been analyzed in only a cursory
manner. As a result, the formal tradeoffs between different models have been
difficult to understand or compare in a rigorous way. Most cluster definitions are
constructive, in the sense that they supply an algorithm to find clusters but do
not specify explicit cluster criteria. In order to verify that an algorithm will iden-
tify all clusters satisfying the underlying intuitive criteria, however, these criteria
must be stated formally. A few attempts have been made to formally define a
gene cluster, but in these cases the focus tends to be on the design of an efficient
and correct search algorithm, rather than on selecting a definition that captures
those underlying intuitions. In addition to the cluster definition, the design of
the search procedure may implicitly lead to additional unexpected or even un-
desirable properties, which would not be detected without explicit consideration
of the cluster criteria. Finally, analysis of cluster properties can be useful for
determining which characteristics actually reflect the types of structures found
in real genomes, and thus which will best discriminate truly homologous regions
from background noise (clusters of genes that occur by chance).

The goal of this paper is to characterize desirable properties of clusters and
cluster definitions, in order to develop a more rigorous understanding of how
modeling choices determine the types of clusters we are able to find, and how
such choices influence the statistical power of tests of segmental homology. In
Section 2, we describe the formal models and definitions discussed in this work.
In Section 3, we present a set of properties upon which many existing gene
cluster definitions, algorithms, and statistical tests are explicitly or implicitly
based. We also propose additional properties that we believe are desirable, but
are rarely stated explicitly. Through detailed analysis of two commonly applied
types of cluster, r-windows and max-gap, we investigate the extent to which a
single definition can embody all of these properties simultaneously. In Section 4,
we examine whether one property that is implicitly assumed in many analyses,
which we call nestedness, is actually satisfied by the structures present in real
genomic data.
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Fig. 1. Three ways in which to visualize a whole-genome comparison. Integers and stars
denote genes, with stars denoting genes with no homolog in the other genome. (a) A
comparative map. Lines show the mapping between homologous genes. (b) A dot plot
showing the same information in a matrix format. Columns represent genes in GG; and
rows represent genes in G2. A matrix element is filled with a black circle if the genes are
homologous, and empty otherwise. (¢) A graph in which vertices represent homologous
gene pairs, and edges connect vertices if the corresponding genes are close together in
both genomes. In this example, edges connect genes if the sum of the distances between
the genes in both genomes is no greater than two.

2 Models and Cluster Definitions

2.1 Models

We employ a commonly used model in which a genome is represented as an or-
dered set of n genes: G = (g1,. . .,gn ). We assume a single unbroken chromosome,
in which genes do not overlap. The distance between two genes in this model is
simply the number of genes between them. In a whole-genome comparison, we
are given two genomes (GG; and Ga, and a mapping between homologs in G; and
G2, where m of the genes in G have homologs in G (and vice versa). In this
paper, we assume that each gene has at most one homolog in the other genome.
We are interested in finding sets of homologs found in proximity in two different
genomes (or possibly in two distinct regions of the same genome).

This model can be conceptualized in a number of ways, shown in Figure 1.
Consider two genomes G = 1*2*34**x56789 and Go = *3%14%2567x98, where
the integers correspond to homologous gene pairs, and the stars indicate genes
with no homolog in the other genome. Figure 1(a) shows a comparative map
representation, in which homologous pairs are connected by a line. Alternatively,
in a dot-plot (Figure 1(b)), the horizontal axis represents Gy, the vertical axis
represents (G2, and homologous pairs are represented as dots in the matrix.
Finally, this data can be converted into an undirected graph (Figure 1(c)), where
vertices correspond to homologous gene pairs. Two vertices are connected by
an edge if the corresponding genes are close together in both genomes, where
“close” is determined based on a user-defined distance function and threshold.



2.2 Cluster Definitions

A number of cluster definitions and algorithms have been proposed. In this paper
we primarily focus on r-windows and max-gap clusters, two cluster definitions
that are used in practice [6,7,9,10,15-17], but briefly describe other definitions
as well.

An r-window cluster is defined as a pair of windows of r genes, one in each
genome under consideration, in which at least k genes are shared [15,18,19]. This
corresponds to a square in the dot-plot with sides of length r, which contains
at least & homologs. For example, for a window model with r =5 and k =4,
two clusters can be found in the example genome in Figure 1(b): {5,6,7,9}
(dotted box) and {6,7,8,9} (solid box). We distinguish between the homologs
shared in both instances of the cluster (the “marked” genes) and the intervening
“unmarked” genes that occur in only one instance of the cluster (but which may
have a homolog elsewhere in the genome).

The maz-gap cluster definition also ignores gene order and allows insertions
and deletions, but does not constrain the maximum length of the cluster to r
genes. Instead, a max-gap cluster is described by a single parameter g, and is
defined as a set of marked genes where the distance (or gap) between adjacent
marked genes in each genome is never larger than a given distance threshold,
g [20,21]. When g=0, max-gap clusters are referred to as common intervals [22—
24]. When the maximum gap allowed is g =1, two maximal max-gap clusters
are found in the example genome in Figure 1(b): {1,2,3,4} (dashed box) and
{5,6,7,8,9} (not shown). A max-gap cluster is mazimal if it is not contained
within any larger max-gap cluster. Correct search algorithms for this definition
require some sophistication. Bergeron et al. originally developed a divide-and-
conquer algorithm to conduct a whole-genome comparison, and efficiently detect
all maximal max-gap clusters [20]. Many groups design heuristics to find max-
gap clusters, but such methods are not guaranteed to find all maximal max-gap
clusters.

Other definitions include that of Calabrese et al. [25], in which the distance
between each pair of homologs is evaluated as a function of the gap size in
both genomes. Unlike the max-gap definition, which only requires that in both
genomes the distance to some other marked gene in the cluster is small, this
method requires that all marked genes that are adjacent in genome G1 also be
close in genome G2, but not vice versa. A very different approach by Sankoff et
al. [26] explicitly evaluates a cluster (or segment) by a weighted measure of
three properties: compactness, density, and integrity. They seek a global par-
tition of the genome into segments such that the sum of segment scores is
minimized. Clusters have also been defined in terms of graph-theoretic struc-
tures (e.g., Figure 1(c)), such as connected components [27] or high-scoring
paths [28,29]. Finally, a variety of heuristics have been proposed to search for
gene clusters [11,25,29-34], the majority of which are specifically designed to
find sets of genes in approximately collinear order (i.e., forming a rough diagonal
on the dot-plot).



3 Cluster Properties

Many of the cluster properties underlying existing definitions derive from the
processes that lead to genome rearrangements. As genomes diverge, large-scale
rearrangements break apart homologous regions, reducing the size and length of
clusters. Gene duplications and losses cause the gene complement of homologous
regions to drift apart, so that many genes will not have a homolog in the other
region, and gene clusters will appear less dense. Smaller rearrangements will
disrupt the gene order and orientation within homologous regions. Thus, clusters
are often characterized according to their size, length, density, and the extent to
which order and orientation are conserved. We discuss these properties in more
detail below, as well as a number of additional properties that are rarely stated
explicitly, but that we argue are nonetheless desirable.

Size: Almost all methods to evaluate clusters consider the size of a cluster,
i.e., the number of marked genes contained within it. In general it is assumed
that the more homologs in a cluster, the more likely it is to indicate common
ancestry rather than chance similarities. An appropriate minimum size threshold
will depend, however, on the specific cluster definition. For example, a cluster of
four homologs in which order is conserved may be less likely to occur by chance,
and thus more significant than an unordered cluster of size four.

Length: The length of a cluster, defined with respect to a particular genome,
is the total number of marked and unmarked genes contained within it. For
example, in Figure 1(b), the upper left cluster is of size four, and spans two
unmarked genes, so is of total length six. In a whole-genome comparison, the
number of unmarked genes spanned by the cluster in each genome may differ.
However, if the processes that degrade a cluster are operating uniformly, then
the length of the cluster in both genomes should be similar. This similarity of
lengths is implicitly sought by the length constraint of r-windows, and explicitly
sought in the clustering method of Hampson et al. [33].

Density: Although over time gene insertions and losses will cause the gene
content of homologous regions to diverge, in most cases we expect that signifi-
cant similarity in gene content will be preserved. Thus, the majority of existing
approaches attempt to find regions that are densely populated with homologs.
We define the global density of a cluster as its size divided by its length. For
example, in Figure 1(b), the first max-gap cluster is of size four and length six,
so has a density of 2/3. For a fixed value of r, the minimum global density of an
r-window is set by choosing the parameter k. The only way to set a constraint
on the global density of a max-gap cluster, on the other hand, is to reduce g,
which will also reduce the maximum length of a cluster.

Even when a minimum global density is required, regions of a cluster may not
be locally dense: a cluster could be composed of two very dense regions separated
by a large region with no homologs. In this case, it might seem more natural
to break the cluster into two separate clusters. Density as we have defined it
here reflects the average gap size, but does not reflect the variance in gap sizes.
The gap between adjacent marked genes in an r-window can be as large as r—k,
whereas max-gap clusters guarantee that the maximum gap will be no more



than g. Note that the two definitions have switched roles: the local density is
easily controlled by the parameter g for max-gap clusters but there is no way to
constrain the local density of r-window clusters without also further constraining
the maximum cluster length. This trade-off between global and local density
gives a simple illustration of how it can be difficult to design a cluster definition
that satisfies our basic intuitions about cluster properties.

Order: For whole-genome comparison, a cluster is considered ordered if the
homologs in the second genome are in the identical or opposite order of the
homologs in the first genome. For example, consider the two genomes shown
in Figure 1(b). The clusters {5,6,7} and {8,9} are ordered, but {1,2,3,4} is
not. Many cluster definitions require a strictly conserved gene order [6,11,31].
Over time, however, inversions will cause rearrangements, and thus conserved
gene order is often considered too strict a requirement. In order to allow some
short inversions, Hampson et al. [32] explicitly parameterize the number of or-
der violations that are allowed in a cluster. A number of groups use heuristic,
constructive methods that either implicitly enforce certain constraints on gene
order, or explicitly bias their method to prefer clusters that form near-diagonals
in the dot plot [17,25,29, 34]. The remainder, including r-windows and max-
gap clusters, completely disregard gene order. As we will see, however, though
a number of groups state that they ignore gene order, constraints on gene order
are often unintended consequences of algorithmic choices (see nestedness).

Orientation: Conserved spatial organization in bacterial genomes often points
to functional associations between genes. In particular, clusters of genes in close
proximity, with the same orientation, often indicate operons. In whole-genome
comparison of eukaryotes, similarities in gene orientation can provide additional
evidence that two regions share a common ancestor. To the best of our knowl-
edge, however, except for the method of Vision et al. [29], in which changes in
orientation decrease the cluster score, existing definitions either require all genes
in a cluster to have the same orientation, or disregard orientation altogether.

Temporal Coherence: Temporal information can be used to evaluate the
significance of a putative homologous region identified through whole-genome
comparison. If a set of homologous genes all arose through the same specia-
tion or duplication event, then the points in time at which each homolog pair
diverged will be identical, and consequently we would expect our estimates of
these divergence times to be similar. However, all existing methods to find clus-
ters are based solely on spatial information, and divergence times have been
used only to estimate the age of a duplicated block identified based on spatial
organization [6,35], but not to assess the statistical significance of a cluster. In
theory, combined analysis of temporal and spatial information could be used,
for example, to increase our confidence that a region is the result of a single
large-scale duplication event. However, due to the large error bounds that must
be associated with any sequence-based estimate of divergence times [36-38], the
practicality of such an approach is as yet unclear.

Nestedness: For whole-genome comparison, one cluster property that is
generally not considered explicitly, but may be assumed implicitly, is nestedness.



A cluster of size k is nested if for each h € 1...k—1 it contains a valid cluster of
size h. Intuitively it may seem that any reasonable cluster definition should have
this property. In fact, clusters with no ordering constraints are not necessarily
nested. For example, Bergeron et al. [20] state a formal definition of max-gap
clusters, and prove that there are maximal max-gap clusters of size k& which
do not contain any valid sub-cluster of size 2..k—1. For example, when g =0
they present a non-nested max-gap cluster with only four genes. The sequence
of genes 1234 on one genome and 3142 on the other form a max-gap cluster of
size four which does not contain any max-gap cluster of size two or three. Thus,
nested max-gap clusters comprise only a subset of general max-gap clusters found
through whole-genome comparison.

There are no definitions that explicitly require that clusters be nested; rather,
greedy search algorithms implicitly limit the results to nested clusters. Greedy
algorithms use a bottom-up approach: each homologous gene pair serves as a
cluster seed, and a cluster is extended by looking in its chromosomal neighbor-
hood for another homologous gene pair close to the cluster on both genomes [25,
31,33,39]. It can be shown that any greedy search algorithm that constructs
max-gap clusters iteratively, i.e., by constructing a cluster of size k by adding a
gene to a cluster of size k— 1, will find ezactly the set of all maximal nested max-
gap clusters, as long as it considers each homologous gene pair as a seed for a
potential cluster. In such cases, although order is not explicitly constrained, the
search algorithm enforces implicit constraints on gene order: nested clusters can
only get disordered to a limited degree. In most cases, however, such constraints
are not acknowledged, and perhaps not even recognized.

Disjointness: If two clusters are not disjoint, i.e., the intersection of the
marked genes they contain is not empty?3, our intuitive notion of a cluster may
correspond more closely to the single island of overlapping windows than to the
individual clusters. For example, Figure 1(b) shows two windows for which r=5
and k=4: {5,6,7,9} and {6,7,8,9}. Although both clusters contain genes 6,
7, and 9, there is no window of length five that contains all five of the genes.
Thus, r-windows are not always disjoint. Indeed, it is surprisingly hard to find a
cluster definition that guarantees that all clusters will be disjoint. The majority
of definitions lead to overlapping clusters that must be merged or separated in
an ad-hoc post-processing step for use by algorithms that require a unique tiling
of regions. The only definition for which maximal clusters have been shown to be
disjoint is the max-gap cluster [20]. However, when adding additional constraints
in addition to the maximum gap size, disjointness is quickly forfeited. For ex-
ample, consider the consequences of requiring conserved order when looking for
max-gap clusters in Figure 1(a). With a maximum gap of g =2, three clusters
with conserved order are identified {1,2}, {3,4,5,6,7,8}, {3,4,5,6,7,9}. Al-
though the last two clusters overlap, they cannot be merged without breaking
the ordering constraint (due to the inversion of the segment containing genes 8
and 9).

3 Note that it is possible, however, for two disjoint clusters to have overlapping spans
in one of the genomes, as long as they do not share any homologs.
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E. coli |B. subtilis| 4,108 | 4,245 | 1,315
Human| Mouse |22,216(25,383|14, 768
Human| Chicken |22,216(17,709|10, 338

Table 1. The genomes compared (Gi and Gg2), the total number of genes in each
genome (n1 and ng, respectively), and the number of orthologs identified, excluding
ambiguous orthologs (m).

More generally, a lack of disjointness strongly suggests that the cluster defini-
tion is too constrained. In the r-window example, these clusters are not disjoint
precisely because the definition artificially constrains the length of a cluster. In
the second example, the clusters were not disjoint because a definition with a
strict ordering constraint was not able to capture the types of processes, such as
inversions, that created the cluster.

Isolation: If we observe a cluster with some additional homologous pairs in
close proximity to its borders we might feel that the cluster border was arbitrary,
and should extend to cover the neighboring island of genes. Thus, we propose
that cluster definitions should guarantee that clusters will be isolated, that is:
the maximum distance between marked genes in a cluster should always be less
than the minimum distance between two clusters. A maximum-gap constraint
guarantees that clusters will be isolated, but only barely—the gap within a
cluster may be as large as g, whereas the gap separating two clusters may be
just g+1.

Symmetry: For whole-genome comparison, a desirable property that is
rarely considered explicitly is whether the definition is symmetric with respect to
genome. In some cases, such as the definition proposed by Calabrese et al. [25],
a cluster is defined in such a way that whether a set of genes form a valid cluster
may depend on whether genome G or genome G5 is represented by the vertical
axis in the dot-plot. Put another way, the set of clusters identified will differ de-
pending on which genome is designated as the reference genome. A surprisingly
large proportion of constructive definitions are not symmetric. These clustering
algorithms require the selection of a reference genome even when there is no
clear biological motivation for this choice. Definitions that are symmetric with
respect to genome include r-windows and max-gap cluster definitions, as well as
algorithms that represent the dot-plot as a graph and use a symmetric distance
function [27,29].

4 Are Max-Gap Clusters in Genomic Data Nested?

Cluster definitions that constrain the gap size between marked genes are widely
used in genomic studies [6,7,9,10,16,17,29,30,34,40,41]. In the majority of cases,
however, clusters are detected with a greedy algorithm, whereby larger clusters
are identified by extending smaller clusters. Remember that greedy methods
find the subset of max-gap clusters that are nested and that nestedness implies



for i= 1..n do // i iterates through all genes in G;

c = {i}; // C is the cluster being constructed

L1 =Ry = i; // L; and R; are the left/rightmost positions in C on G;
Ly = Ry = p(i); // p(i) indicates the position of gene i’s homolog in G2
j = Li-g-1; // j iterates through all genes close to C on G

while (Li-g-1 < j < Ri+gt+l) do
if j ¢ C and p(j) € {L2-g-1, ..., Ro+g+1} // if j is close to C in G2
C=CU j; // add it to C
L1 = min(L;,j); L2 = min(L2,p(§));

R1 = max(R1,j); Rz = max(R2,p(j));
j = Li-g-1; // start the search over
else
jtt;
end
end
clusters = clusters U C;

end

Fig. 2. Pseudo-code for a greedy, bottom-up algorithm to find nested max-gap clusters.

a certain degree of ordering. It is not clear whether greedy methods are used for
computational convenience or because researchers believe that nested clusters
better capture the biological processes of interest. In this section, we investigate
the practical consequences of choosing one search procedure over the other. We
compare three pairs of genomes to determine the proportion of max-gap clusters
in real genomes that are actually nested.

Whole-genome comparisons of three pairs of genomes at varying evolution-
ary distances were conducted. The first comparison was of E. coli and B. sub-
tilis, with a mapping of orthologs between the two genomes obtained from the
GOLDIE database [30]. The other two comparisons were of human and mouse,
and human and chicken, with ortholog mappings obtained from the InParanoid
database [42]. The total number of genes in each genome, and the number of
orthologs identified, is given in Table 1.

The GeneTeams software, an implementation of the top-down algorithm of
Bergeron et al. [20], was used to identify all maximal max-gap clusters shared be-
tween the two genomes, for g € {1, 5,10, 15,20, 30, 50}. In addition, we designed
a simple bottom-up, greedy algorithm to identify all maximal nested max-gap
clusters (Figure 2). This algorithm considers each pair of orthologs in turn, treat-
ing each as a cluster seed from which a greedy search for additional orthologs
is initiated. Occasionally different seeds may yield identical clusters. Any such
duplicate clusters are filtered out, as are non-maximal nested clusters (clusters
strictly contained within another nested cluster). However, overlapping clusters
(e.g., properly intersecting sets) are not merged together, since the resulting
merged clusters would not be nested.*

4 Tt is unclear whether those who employ a greedy heuristic merge all overlapping
clusters or not, since such heuristics are generally specified quite vaguely, if at all.
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Fig. 3. Comparison of the set of nested clusters to the set of gene teams, for for
g € {1,5,10,15,20,30,50}. (a) The fraction of gene teams that are nested. (b) The
fraction of maximal nested clusters that are not gene teams.

For the bacterial comparison, for all gap values except g=>50, both methods
found the same set of clusters, i.e., all gene teams were nested. In all eukary-
otic comparisons, however, at least one non-nested gene team was identified.
Nonetheless, the percentage of teams that were not nested remained low for all
comparisons, ranging from close to 0% to about 2% as the gap size was increased
(Figure 3(a)). The percentage of nested clusters that were not gene teams (in
other words, clusters that could have been extended further if a greedy algorithm
had not been used), was also close to zero for small gap sizes, but increased more
quickly, peaking at almost 15% for a gap size of g=>50 (Figure 3(b)). In contrast,
in randomly ordered genomes, although large gene-teams are much rarer, a much
higher percentage are not nested (data not shown).

Another quantity of interest is the number of genes that would be missed
altogether if a greedy approach is used rather than a top-down algorithm; that
is, the number of genes that are found in a large gene team but not in a large
nested cluster. For a minimum cluster size of two, very few genes are missed:
the number of genes missed remains under 20 for both eukaryotic datasets, no
matter how large the gap size (Figure 4, circles). For a more realistic minimum
cluster size of seven, however, the number of missed genes rises more quickly,
peaking near 80 for the human/chicken comparison (Figure 4, triangles), and
near 120 for the bacterial comparison (data not shown).

The gene teams that are not nested tend to be the larger clusters. For exam-
ple, Figure 5 compares the distribution of gene teams sizes to the distribution
of non-nested gene teams sizes, for the human/chicken comparison, for the com-
plete set of clusters identified at any gap size. The gene team size distribution

However, in our datasets, only a small percentage of clusters detected with the greedy
algorithm overlapped (e.g., 2% in the human/chicken comparison).
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triangles show the number of genes when chicken, for all gap sizes tested.

the the minimum cluster size is seven.

peaks very quickly: over 80% of gene teams contain fewer than ten genes. The
sizes of non-nested gene teams, however, peak much more slowly: only about
10% of non-nested gene teams contain fewer than ten genes. It is not until the
size reaches 270 genes that the CDF reaches 0.8.

In summary, when comparing E. coli with B. subtilis with reasonable gap
sizes, the nestedness assumption does not exclude any clusters from the data. For
the eukaryotic datasets, these results also suggest that for smaller gap sizes few
clusters are missed when using a greedy search strategy. For larger gap values,
the nestedness assumption does appear to lead to some loss of signal, especially
in the human /chicken comparison: large clusters are identified only in fragments,
and the spatial clustering of many genes is not detected at all. For more diverged
genome pairs, as clusters become more disordered, this loss of signal may be
exacerbated. This remains to be investigated, as do the practical implications
of the nestedness assumption on the detection of duplicated segments through
genome self-comparison.

5 Discussion

We have characterized desirable properties of cluster definitions, and compared
a number of existing definitions with respect to these properties. The detailed
catalog of cluster properties presented here will be useful for assessing whether
definitions satisfy the intuitive notions upon which they are implicitly based,
and whether these notions actually correspond to the types of structures present
in real-genomic data. Analyses of desirable cluster properties may also pave the
way for new, possibly more powerful cluster definitions.



Our analysis of cluster properties reveals that existing approaches to identi-
fying gene clusters differ both in terms of the characteristics of the clusters they
were explicitly designed to find, and in terms of the properties that emerge as un-
intended consequences of modeling choices. We show that the search procedure,
in addition to the cluster definition, often implicitly enforces additional types
of constraints. Such implicit constraints may be particularly problematic when
the goal is to characterize the properties of homologous regions. For example,
although the CloseUp algorithm was ostensibly designed to identify chromoso-
mal homology using “shared-gene density alone” [33], the greedy nature of the
search algorithm means that all clusters with a minimum gene density may not
actually be detected. If such an approach was used to evaluate the extent to
which order is conserved in homologous regions, incorrect inferences could be
made. For example, if clusters with highly scrambled gene order were not found,
one might erroneously conclude that no such clusters exist, rather than that the
clustering algorithm was simply not capable of finding them. Without a clear
understanding of which properties are constrained by the method, and which
properties are inherent in the data, it can be difficult to interpret such results.

Our results also show that, for the datasets considered here, a greedy search
strategy for max-gap clusters may actually improve statistical power, at least
for small gap sizes. A test of cluster significance will have increased power (i.e.,
a reduced number of false negatives) when the cluster definition is as narrow as
possible, while still capturing the properties exhibited by diverged homologous
regions. These properties, however, are generally not known, since there is little
data about evolutionary histories or processes. In some cases, however, the ap-
propriateness of a particular property can be evaluated even without full knowl-
edge of evolutionary histories. For example, if adding an additional constraint
to the cluster definition does not eliminate any of the clusters identified in the
data, then we argue that it is not only acceptable to include such a property in
the cluster definition, but desirable, in order to increase statistical power. Thus,
when comparing F. coli with B. subtilis with reasonable gap sizes, a nested clus-
ter definition appears to be a good choice: the nestedness assumption does not
exclude any clusters from the data, but significantly reduces the probability of
observing a cluster by chance, thereby strengthening the measurable significance
of detected clusters.

These results also suggest that in the three datasets we studied most clusters
remain quite ordered. Although an assumption of nestedness does implicitly
constrain gene order, more quantitative measures of order conservation may be
found that increase statistical power still further. How to best quantify the degree
to which order is conserved, however, remains an open question.

Although there is often overlap among the properties of different definitions,
there is as yet no consensus on what criteria best reflect biologically important
features of gene clusters. This lack of consensus reflects the sparsity of data about
evolutionary histories and evolutionary processes, and also that the relevance of
particular properties depends to a large degree on the dataset being analyzed,
as well as the researcher’s goals. For example, physical distances between genes



and gene orientation may not be very helpful for identifying homology between
eukaryotic genomes, but may be important for identifying functional clusters
in bacteria. For identifying gene duplications, which are often followed by sig-
nificant differential gene loss of the homologs on each duplicated segment [43],
gene density may be of reduced importance than for identifying paralogous seg-
ments. In addition, when clusters are being identified as a pre-processing step
for reconstructing rearrangement histories, the exact boundaries and sizes of the
cluster may be quite important [44]. In other cases, a researcher may be trying
to test a global hypothesis (such as finding evidence for one or two rounds of
whole-genome duplication), and may not necessarily care about the significance
or boundaries of any specific cluster.

Even if it were known which properties reflect biologically relevant features,
designing a definition to satisfy those properties may not be straightforward
because, in many cases, properties are not independent. Properties may interact
in subtle ways—a definition that guarantees one desirable property will often
fail to satisfy another. For example, one of the nice properties of the max-gap
definition is that clusters are always disjoint. However, as shown in Section 3,
adding additional constraints on order or length results in clusters that are no
longer guaranteed to be disjoint. The subtle and sometimes undesirable interplay
of some of these properties makes it difficult to devise a definition that satisfies
them all. In fact, many of the most important properties are difficult to satisfy
with the same definition. Thus, it remains an open question to what extent a
single definition can capture all of these properties simultaneously.

Acknowledgment

D.D. was supported by NIH grant 1 K22 HG 02451-01 and a David and Lucille
Packard Foundation fellowship. R.H. was supported in part by a Barbara Lazarus
Women@IT Fellowship, funded in part by the Alfred P. Sloan Foundation. We
thank B. Vernot and N. Raghupathy for comments on the manuscript, and David
Sankoff for helpful discussion and for suggesting the title of the paper.

References

1. Murphy, W.J., Pevzner, P.A., O’Brien, S.J.: Mammalian phylogenomics comes of
age. Trends Genet 20 (2004) 631-9

2. O’Brien, S.J., Menotti-Raymond, M., Murphy, W.J., Nash, W.G., Wienberg, J.,
Stanyon, R., Copeland, N.G., Jenkins, N.A., Womack, J.E., Graves, J.A.M.: The
promise of comparative genomics in mammals. Science 286 (1999) 458-81

3. Sankoff, D.: Rearrangements and chromosomal evolution. Curr Opin Genet Dev
13 (2003) 583-7

4. Sankoff, D., Nadeau, J.H.: Chromosome rearrangements in evolution: From gene
order to genome sequence and back. PNAS 100 (2003) 11188-9

5. Simillion, C., Vandepoele, K., de Peer, Y.V.: Recent developments in computa-
tional approaches for uncovering genomic homology. Bioessays 26 (2004) 1225-35



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Blanc, G., Hokamp, K., Wolfe, K.H.: A recent polyploidy superimposed on older
large-scale duplications in the Arabidopsis genome. Genome Res 13 (2003) 137-144
Chen, X., Su, Z., Dam, P., Palenik, B., Xu, Y., Jiang, T.: Operon prediction by
comparative genomics: an application to the Synechococcus sp. WH8102 genome.
Nucleic Acids Res 32 (2004) 2147-2157

Lawrence, J., Roth, J.R.: Selfish operons: horizontal transfer may drive the evolu-
tion of gene clusters. Genetics 143 (1996) 1843-60

Overbeek, R., Fonstein, M., D’Souza, M., Pusch, G.D., Maltsev, N.: The use of
gene clusters to infer functional coupling. Proc Natl Acad Sci U S A 96 (1999)
2896-2901

Tamames, J.: Evolution of gene order conservation in prokaryotes. Genome Biol
6 (2001) 0020.1-11

Wolf, Y.I., Rogozin, I.B., Kondrashov, A.S., Koonin, E.V.: Genome alignment,
evolution of prokaryotic genome organization, and prediction of gene function using
genomic context. Genome Res 11 (2001) 35672

Endo, T., Imanishi, T., Gojobori, T., Inoko, H.: Evolutionary significance of intra-
genome duplications on human chromosomes. Gene 205 (1997) 19-27

Smith, N.G.C., Knight, R., Hurst, L.D.: Vertebrate genome evolution: a slow shuffle
or a big bang. BioEssays 21 (1999) 697-703

Trachtulec, Z., Forejt, J.: Synteny of orthologous genes conserved in mammals,
snake, fly, nematode, and fission yeast. Mamm Genome 3 (2001) 227-231
Friedman, R., Hughes, A.L.: Gene duplication and the structure of eukaryotic
genomes. Genome Res 11 (2001) 373-81

Luc, N, Risler, J., Bergeron, A., Raffinot, M.: Gene teams: a new formalization of
gene clusters for comparative genomics. Comput Biol Chem 27 (2003) 59-67
McLysaght, A., Hokamp, K., Wolfe, K.H.: Extensive genomic duplication during
early chordate evolution. Nat Genet 31 (2002) 200-204

Cavalcanti, A.R.O., Ferreira, R., Gu, Z., Li, W.H.: Patterns of gene duplication in
Saccharomyces cerevisiae and Caenorhabditis elegans. J Mol Evol 56 (2003) 28-37
Durand, D., Sankoff, D.: Tests for gene clustering. Journal of Computational
Biology (2003) 453-482

Bergeron, A., Corteel, S., Raffinot, M.: The algorithmic of gene teams. In Gusfield,
D., Guigo, R., eds.: WABI. Volume 2452 of Lecture Notes in Computer Science.
(2002) 464-476

Hoberman, R., Sankoff, D., Durand, D.: The statistical significance of max-gap
clusters. In Lagergren, J., ed.: Proceedings of the RECOMB Satellite Workshop
on Comparative Genomics, Bertinoro, Lecture Notes in Bioinformatics, Springer
Verlag (2004)

Didier, G.: Common intervals of two sequences. In: WABI. Volume 2812., Lecture
Notes in Computer Science (2003) 17-24

Heber, S., Stoye, J.: Algorithms for finding gene clusters. In: WABI. Volume 2149
of Lecture Notes in Computer Science. (2001) 254-265

Uno, T., Yagiura, M.: Fast algorithms to enumerate all common intervals of two
permutations. Algorithmica 26 (2000) 290-309

Calabrese, P.P., Chakravarty, S., Vision, T.J.: Fast identification and statistical
evaluation of segmental homologies in comparative maps. ISMB (Supplement of
Bioinformatics) (2003) 74-80

Sankoff, D., Ferretti, V., Nadeau, J.H.: Conserved segment identification. Journal
of Computational Biology 4 (1997) 559-565

Pevzner, P., Tesler, G.: Genome rearrangements in mammalian evolution: lessons
from human and mouse genomes. Genome Res 13 (2003) 37-45



28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

Haas, B.J., Delcher, A.L., Wortman, J.R., Salzberg, S.L... DAGchainer: a tool
for mining segmental genome duplications and synteny. Bioinformatics 20 (2004)
36436

Vision, T.J., Brown, D.G., Tanksley, S.D.: The origins of genomic duplications in
Arabidopsis. Science 290 (2000) 2114-2117

Bansal, A.K.: An automated comparative analysis of 17 com-
plete  microbial = genomes. Bioinformatics 15  (1999)  900-908
http://www.cs.kent.edu/~arvind /orthos.html.

Cannon, S.B., Kozik, A., Chan, B., Michelmore, R., Young, N.D.: DiagHunter and
GenoPix2D: programs for genomic comparisons, large-scale homology discovery
and visualization. Genome Biol 4 (2003) R68

Hampson, S., McLysaght, A., Gaut, B., Baldi, P.: LineUp: statistical detection of
chromosomal homology with application to plant comparative genomics. Genome
Res 13 (2003) 999-1010

Hampson, S.E., Gaut, B.S., Baldi, P.: Statistical detection of chromosomal homol-
ogy using shared-gene density alone. Bioinformatics 21 (2005) 1339-48
Vandepoele, K., Saeys, Y., Simillion, C., Raes, J., Peer, Y.V.D.: The automatic
detection of homologous regions (ADHoRe) and its application to microcolinearity
between Arabidopsis and rice. Genome Res 12 (2002) 1792-801

Raes, J., Vandepoele, K., Simillion, C., Saeys, Y., de Peer, Y.V.: Investigating
ancient duplication events in the Arabidopsis genome. J Struct Funct Genomics 3
(2003) 11729

Graur, D., Martin, W.: Reading the entrails of chickens: molecular timescales of
evolution and the illusion of precision. Trends Genet 20 (2004) 80-6

Nei, M., Kumar, S.: Molecular Evolution and Phylogenetics. Oxford University
Press (2000)

Zhang, L., Vision, T.J., Gaut, B.S.: Patterns of nucleotide substitution among
simultaneously duplicated gene pairs in Arabidopsis thaliana. Mol Biol Evol 19
(2002) 1464-73

Hokamp, K.: A Bioinformatics Approach to (Intra-)Genome Comparisons. PhD
thesis, University of Dublin, Trinity College (2001)

Bourque, G., Zdobnov, E., Bork, P., Pevzner, P., Telser, G.: Genome rearrange-
ments in human, mouse, rat and chicken. Genome Research (2004)

Simillion, C., Vandepoele, K., Montagu, M.V., Zabeau, M., de Peer, Y.V.: The
hidden duplication past of Arabidopsis thaliana. PNAS 99 (2002) 13627-32
O’Brien, K.P., Remm, M., Sonnhammer, E.L.L.: Inparanoid: a comprehensive
database of eukaryotic orthologs. Nucleic Acids Res 33 (2005) D476-80 Version
4.0, downloaded May 2005.

Lynch, M., Conery, J.S.: The evolutionary fate and consequences of duplicate
genes. Science 290 (2000) 11511155

Trinh, P., McLysaght, A., Sankoff, D.: Genomic features in the breakpoint regions
between syntenic blocks. Bioinformatics 20 Suppl 1 (2004) 1318-1325



