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! Abstract Investigation into model selection has a long history in the statistical lit-
erature. As model-based approaches begin dominating systematic biology, increased
attention has focused on how models should be selected for distance-based, likeli-
hood, and Bayesian phylogenetics. Here, we review issues that render model-based
approaches necessary, briefly review nucleotide-based models that attempt to capture
relevant features of evolutionary processes, and review methods that have been applied
to model selection in phylogenetics: likelihood-ratio tests, AIC, BIC, and performance-
based approaches.

INTRODUCTION

In this review, we assume the well-known view first voiced by Box (1976) that
all models are wrong, but some are useful. After a brief introduction, we discuss
alternatives for evaluating the adequacy of the chosen model. Finally, we illus-
trate how each of the traditional approaches to model selection fit well within the
framework of decision theory (DT) and that DT facilitates an understanding of the
goals and assumptions of these approaches.

The Importance of Models

Phylogenetic analysis is entering the genomics era, and as tools for surveying
genomes (e.g., expressed sequence tags, single-nucleotide polymorphisms, genome
sequencing, etc.) become more widely available, phylogenetic studies at all lev-
els, from intraspecific phylogeography to the tree of life, will increasingly use
data from multiple-gene loci. Concurrent with the advent of phylogenomics is the
application of phylogenies to an ever-widening array of disciplines. For exam-
ple, statistical phylogenetics have been permitted as evidence in a criminal court
recently in which a Louisiana physician was convicted of infecting his former
girlfriend with HIV from one of his HIV-positive patients (Metzker et al. 2002),
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and phylogenetic testing has been used recently to refute the hypothesis that con-
taminated polio vaccine was the origin of the AIDS epidemic (Worobey et al.
2004).

Applying the emerging wealth of data to such an array of issues, however,
presents difficulties because multiple loci are likely to be evolving under very dif-
ferent constraints and, therefore, may be subject to diverse substitution processes.
One must, therefore, decide how best to account for the diversity of substitution
processes in model-based phylogeny estimation, even for potential partitions in a
single-gene data set. In our review of model choice in phylogenetics, we begin by
introducing first the importance of probabilistic models in science generally, and
then in the particular case of phylogenetics.

Models in Science

Statistical models allow scientists to exceed a mere description of their data and
extend to proposing and testing general principles that can explain the data. Thus,
statistical models add precision to the formulation of a scientific hypothesis and
provide a rigorous means by which to assess the evidence for or against a hypothesis
by providing a context for making predictions. Statistical models and methods are
therefore ubiquitous in science.

Interestingly, the founder of modern statistics, R.A. Fisher, discovered the like-
lihood principle and invented maximum likelihood (ML) (Fisher 1958) primarily
to answer questions related to evolutionary genetics. However, he did most of his
work before the discovery of DNA, and, thus, he focused on quantitative genetics.
Fisher’s paradigm has been the centerpiece of data analysis throughout much of
science in general, and much of biology in particular (e.g., Johnson & Omland
2004), but application of the ML principle and its explicit modeling approach
has been slow in coming to phylogenetics. This delay was caused partly by the
computational complexity of the problem and partly by an antithetical attitude
of some systematists toward statistical approaches (e.g., Siddall & Kluge 1997).
Computational difficulties have been ameliorated by a number of advances in the-
ory and implementation (e.g., Huelsenbeck & Ronquist 2001, Swofford 1998), and
philosophical objections have not proved sufficiently compelling to the broader
community of systematics to halt the advance of model-based approaches to phy-
logenetics. Thus, the fact that Fisher’s methodology is now dominating the field
of phylogenetic biology, particularly in the analysis of molecular data, seems par-
ticularly appropriate to us.

Models in Phylogenetics

The necessity of models in molecular phylogenetics and evolution was recognized
in the first comparative analyses of DNA sequence data (e.g., Brown et al. 1982,
Jukes & Cantor 1969). Sequence divergence is roughly linear with time only
shortly after a divergence event. The cause of this deviation from linearity is
multiple substitutions at the same site (i.e., multiple hits), and the earliest molecular
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evolutionary studies attempted to accommodate multiple hits in estimating the
number of substitutions that have occurred since two sequences diverged from a
common ancestor by use of explicit models (Jukes & Cantor 1969).

Furthermore, the consequence of ignoring multiple substitutions was also rec-
ognized early: underestimation of the number of substitutions that have occurred
since two sequences last shared a common ancestor. More importantly, how-
ever, this underestimation is not uniform. Long branches (and large genetic dis-
tances) will be underestimated disproportionately more than will short branches
and genetic distances (e.g., Gillespie 1986). Some of the implications of this
nonuniform underestimation are well studied [e.g., long-branch attraction (LBA)
(Felsenstein 1978)], but the effect of model choice on data exploration seems to
be less appreciated.

MODELS IN EXPLORING DATA VIA SATURATION PLOTS The recognition that mul-
tiple hits can occur led to the concept of substitutional saturation (e.g., Brown et al.
1982), which is still of concern to many molecular phylogeneticists. However, be-
cause most studies lack the fossil data that Brown et al. (1982) and others have
used to establish the x-axis in early saturation plots, most assessments of saturation
use some measure of pairwise genetic distance on the x-axis as a proxy for time.
Some other aspect of molecular evolution, say, the absolute number of transitions,
is then plotted on the y-axis to make inferences about the relationship between that
variable and genetic distance. Such plots are frequently used as exploratory tools
with which to understand the processes that have generated a data set of interest
(e.g., López-Fernández et al. 2005) and are frequently used to justify decisions
about data elimination (e.g., Han & Ro 2005).

However, for the x-axis to be at all meaningful, estimates of genetic distances
for use as the x-axis must be based on a model of evolution that estimates multiple
substitutions adequately. If an underparameterized model is used, genetic distances
will be undercorrected and will underestimate the actual number of substitutions
disproportionately more for large distances than for small distances (e.g., Golding
1983). The effect that this error will have on saturation plots is simple to predict;
the x-axis will be compressed nonuniformly and use of overly simple models in
saturation plots (or even worse, use of uncorrected p-distances) will obfuscate
understanding of the processes of molecular evolution.

This problem is common and is illustrated in Figure 1. These plots were gener-
ated from the COI data of Cicero & Johnson (2001), who used them (along with
data from Cyt b, ND2, and ND3) to estimate phylogenetic relationships among
Empidonax flycatchers. They illustrated a linear relationship apparent between
third-position transitions in the original saturation plots by use of p-distances (fig-
ure 3 in Cicero & Johnson 2001), and this apparent linearity was used to justify
inclusion of those sites in an equally weighted parsimony analysis, whereas other
data were eliminated (not shown). However, a plot based on the HKY + I + !

distances (Figure 1A), which the authors chose for ML analysis by application
of the hierarchical likelihood-ratio test (LRT, see below), leads to very different
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Figure 1 The effect of model choice on data exploration. Data are from Cicero &
Johnson (2001); the y-axis is absolute number of third-position transitions, and the
x-axis is genetic distance corrected by use of various models. Modeltest was used by
the orignal authors to select HKY + I + !.

conclusions regarding the pervasiveness of multiple transitions at third-codon po-
sitions in their COI data than does their plot based on p-distances (Figure 1B).
Their conclusions about the prevalence of multiple hits that involve third-position
transitions in this data set are spurious and the result of use of a poorly chosen
model in the saturation plots. Furthermore, many studies have used models such as
the Kimura two-parameter (K2P) model (Kimura 1980) or Tamura-Nei distances
(Tamura & Nei 1993) to calculate genetic distances for the x-axis in saturation
plots. However, as is shown in Figure 1C and 1D, use of neither of these simple
models as the x-axis in saturation plots results in detection of multiple substitutions
that involve third-position transitions in the Empidonax COI data. Clearly, model
choice has a dramatic effect on exploration of data.

THE EFFECT OF UNDERESTIMATION OF MULTIPLE SUBSTITUTIONS IN PHYLOGENY

Felsenstein (1978) was the first to point out that the underestimation of multiple
hits can result in inconsistent estimation of phylogeny if the (unknown) true tree
contains long branches separated by a short internal branch. This result is caused
by the well-studied phenomenon of LBA and is the result of precisely the same un-
derestimation of evolutionary change (number of substitutions) described above.
Huelsenbeck & Hillis (1993) examined the performance of many methods across

A
nn

u.
 R

ev
. E

co
l. 

Ev
ol

. S
ys

t. 
20

05
.3

6:
44

5-
46

6.
 D

ow
nl

oa
de

d 
fro

m
 a

rjo
ur

na
ls.

an
nu

al
re

vi
ew

s.o
rg

by
 W

as
hi

ng
to

n 
St

at
e 

U
ni

ve
rs

ity
 o

n 
11

/1
6/

05
. F

or
 p

er
so

na
l u

se
 o

nl
y.



13 Oct 2005 15:35 AR ANRV259-ES36-19.tex XMLPublishSM(2004/02/24) P1: OJO

MODEL SELECTION IN PHYLOGENETICS 449

a variety of tree shapes and demonstrated that accurate estimation of phylogenies
is difficult, regardless of method, under the conditions that Felsenstein (1978) had
described. This conclusion led them to dub that region of tree space (where two
long branches are separated by a short internal branch) the Felsenstein zone. In
subsequent studies, investigators have demonstrated via simulations that the un-
derestimation of nucleotide substitutions associated with overly simplified models
leads to LBA and inconsistent estimation in the Felsenstien zone, even when ML
is used (e.g., Gaut & Lewis 1995, Sullivan & Swofford 2001). Furthermore, a few
studies have demonstrated that use of inadequate likelihood models can lead to
LBA in real data sets (e.g., Anderson & Swofford 2004, Sullivan & Swofford 1997).

The large body of simulation studies show that the shape of the underlying
true tree has an enormous impact on the importance of model choice. In the ideal
case (Figure 2), the underlying tree shape is such that all existing methods estimate
phylogeny accurately; ML estimation is very robust to violations of model assump-
tions, and model choice is not critical (e.g., Sullivan & Swofford 2001). However,
model choice is critical in the Felsenstein zone (Figure 2), and that observation is
widely accepted.

Although perhaps not a widely appreciated, biases associated with violation of
model assumption may favor the true tree. Specifically, if long terminal branches
are adjacent to a short internal branch [termed the Farris zone by Siddall (1998)
and the inverse Felsenstein zone by Swofford et al. (2001)] (Figure 2), the un-
derestimation of long terminal branches will result in overestimation of the short
internal branch and cause the most biased methods (such as parsimony and ML
under an oversimplified model) to recover the true tree with high confidence and
with very little data (Bruno & Halpern 1999, Siddall 1998, Sullivan & Swofford
2001, Swofford et al. 2001, Yang 1997). In fact, the most overly simplified method
of phylogenetic estimation will be the most efficient (Sullivan & Swofford 2001).
Some have suggested that this bias might be a useful attribute of methods such as
parsimony and ML under simplistic models (Siddall 1998, Yang 1997). However,
others have suggested that this bias is caused by misinterpretation of convergent
substitutions as synapomorphies and should be avoided (Bruno & Halpern 1999,
Sullivan & Swofford 2001, Swofford et al. 2001). Model choice is therefore critical
here as well.

Figure 2 The effect of topology on robustness. At the center of the continuum,
phylogenetics signal is strong and model choice is not critical (i.e., maximum likelihood
is robust to violations of model assumptions). In the Felsenstein zone (left), model
selection is critical, as is also the case for the inverse Felsenstein zone (right).
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Although estimation of topology may not always be compromised by use of
overly simple models, estimation of nodal support certainly is. This outcome has
been demonstrated for nonparametric bootstrap values (Buckley & Cunningham
2002), parametric bootstrap tests of a priori hypotheses (Buckley 2002), and
Bayesian posterior probabilities (Erixon et al. 2003, Huelsenbeck & Rannala 2004,
Lemmon & Moriarty 2004). Furthermore, although most simulation studies have
focused on the four-taxon cases shown in Figure 2, any large phylogeny can rea-
sonably be expected to contain subtrees from across the continuum. That is, unless
one has some assurance that no terribly short and no terribly long branches exist
anywhere in the phylogeny that one is attempting to estimate, choice of an overly
simple model is likely to impinge negatively on phylogeny estimation.

Overparameterization

Given the potential problems associated with overly simplistic models, an obvi-
ous reaction would be to always use the most complex model available. Indeed,
use of the most complex model available has been advocated at times, at least
for Bayesian estimation (e.g., Huelsenbeck & Rannala 2004). However, in gen-
eral, this approach seems like a poor strategy. Although an increase in the number
of parameters will always increase the fit between model and data (i.e., increase
the likelihood), if that increase is simply the result of parameterizing stochastic
variation, nothing is gained. With increased use of mutlilocus data for phylogeny
estimation, the temptation will inevitably arise to partition data excessively. Such
overparameterization can result in nonidentifiability of parameters because of a
loss of degrees of freedom (Rannala 2002). Furthermore, Buckley et al. (2001)
examined the performance of several models with regard to branch-length estima-
tion from a data set containing 25 sequences of three mtDNA genes (COI, A6, and
tRNAAsp) from Maoricicada and two outgroups. They found that both GTR+ I+!

and GTR + ! models (applied to all sites) provided better estimates of branch
lengths than did a 10-class, site-specific rates (SSR) model (GTR + SSR10), de-
spite the fact that the SSR model is more parameter rich and has a better likelihood.
Models with the best likelihood score are not guaranteed to produce the best esti-
mates of branch lengths from finite data and, by extension, should not necessarily
be expected to perform best in phylogeny estimation.

This suggestion by Huelsenbeck & Rannala (2004) was generated by the fact
that, when they simulated data under a simple Jukes-Cantor (JC) model, they were
able to estimate nodal probabilities accurately by estimating with an overparame-
terized GTR +!, even with sequences as short as 100 nt. This result is encouraging,
but the recommendation based on that conclusion should be tempered somewhat
for two reasons. First, the simulation conditions are very artificial. When the true
model (JC) is a special case of the estimating model (GTR + !), the overparam-
eterized estimating model will converge on the special-case true model (i.e., base
frequencies will be estimated to be equal). This situation will never occur in real
data, for which all models are almost certainly wrong. Similarly, some nonnested
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models may be simpler than the most complex model available but may account
for some important feature not addressed by the more highly parameterized model.
In these cases, the simpler model may have better predictive ability.

Uniqueness of Phylogeny Estimation

The statistical nature of phylogeny estimation is very unusual. Standard statistical
software packages, even ones as powerful as SAS or R, are unlikely to be of
much use in phylogenetic analysis. The reason is that the fundamental parameter
in phylogenetics is usually the tree topology, which is inherently discrete, whereas
the wealth of statistical methodology and theory centers on continuously varying
parametric models. Therefore, standard χ2 goodness-of-fit tests are untrustworthy
in the phylogenetic context, and methods such as parametric bootstrap or Bayesian
posterior analysis (that do not rely on asymptotic theory) represent better statistical
procedures for phylogeny estimation.

REVIEW OF MODELS

Reviews of models of nucleotide substitution have been provided by Swofford et al.
(1996) and, more recently, by Felsenstein (2004). However, potentially important
models are not presented in either of those publications and a brief review of
models is therefore appropriate here.

GTR Family

Widely used models of nucleotide substitution are usually time reversible; an A→T
transversion is treated as equivalent to a T→A transversion [i.e., r(AT) = r(TA)].
Thus, six possible substitution types exist among the four nucleotides. Each of
these transformation types may be treated as equivalent (Jukes & Cantor 1969),
transitions may be treated separately from transversions (e.g., Hasegawa et al.
1985, Kimura 1980), all six may be treated as unique (Tavaré 1986, Yang 1994),
or any combination of the six types may be grouped. Thus, 203 transformation
matrices are possible, each of which represents a special case of the GTR model.
Furthermore, base frequencies may be assumed to be equal (i.e., Jukes & Cantor
1969, Kimura 1980) or allowed to vary.

Early models assumed that all sites in a collection of sequences evolve at a
uniform rate. However, several methods have been developed to account for the
observation that sites usually evolve at different rates (e.g., Uzzell & Corbin 1971).
One may assume that some portion of the sites are invariable (e.g., Hasegawa et al.
1985), that rates across sites conform to a !-distribution (e.g., Uzzell & Corbin
1971, Yang 1993), or that rate heterogeneity is better described by a mixture of
invariable sites and !-distributed rates, the I + ! model, in which some sites are
invariable (pinv) and rates at variable sites conform to a !-distribution (Gu et al.
1995, Waddell & Penny 1996).
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Swofford et al. (1996) reviewed the development and conceptual relationships
among some of the commonly used equal-rates models; these relationships can
be expanded to accommodate the heterogeneous-rates models mentioned above.
Under this framework, the most general and parameter-rich model (GTR + I + !)
has the following substitution parameters:

! Rate matrix parameters: r(AC), r(AG), r(AT), r(CG), and r(CT), with r(GT) = 1
! Base frequencies: πA, πC, πG, with πT = 1 – (πA + πC + πG)
! Rate heterogeneity parameters: gamma shape (α), proportion of sites that are

invariable (pinv)

All other submodels within this family are special cases of GTR + I + !, with
one or more of the parameters constrained.

Nonreversible Models

In many data sets, base frequencies change in different parts of the tree, and a few
models have been proposed that accommodate this change. Base frequencies may
be allowed to change on every branch, for 3(2n − 2) compositional parameters
(because trees must now be rooted), or only on terminal branches, for 3n compo-
sitional parameters (Yang & Roberts 1995). Alternatively, nucleotide frequencies
may be pooled, so that only GC content varies across a tree (Galtier & Guoy
1998). Foster (2004) has made important advances in modeling nonuniform base
frequencies. In particular, he has made the number of base-frequency vectors a
parameter that can be estimated and, for several real data sets, has demonstrated
that even a single change in base frequencies on the tree is sufficient to provide an
adequate improvement in model fit.

Other nonreversible models are based on the covarion hypothesis of Fitch &
Markowitz (1970), in which rates of sites can change across the tree. Tuffley
& Steele (1998) were the first to model this situation explicitly, and it has been
incorporated into corrections for evolutionary distances and likelihood frameworks
(Galtier 2001, Hueslenbeck 2002). These advances are likely to be important
in phylogeny estimation across the tree of life and will almost certainly require
application of Markov chain Monte Carlo approaches (Felsenstein 2001).

Nonindependence Across Sites

CODON-BASED MODELS Because of the nature of the genetic code, one can expect
nonindependence across sites within a codon. Codon-based models are particu-
larly appealing for protein-coding genes because they account for the genetic code
explicitly. Instead of a 4 × 4 rate matrix for transformations among nucleotides at
a site, these models approximate a 61 × 61 matrix (with 3660 implied relative rates
for the nonreversible version) to account for transformations among all possible
(non–stop) codons for each triplet. The rate matrix is filled by use of the relevant ge-
netic code, and rates of synonymous versus nonsynonymous codon substitution are
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optimized. Underlying nucleotide substitution models assume uniform rates [i.e.,
a single-nucleotide substitution type but with nonequal base frequencies (Muse
& Gaut 1994)], a difference between transitions and transversions [i.e., two nu-
cleotide substitution types (Goldman & Yang 1994)], or allow all six substitution
types (Halpern & Bruno 1998).

Another approach to deal with nonindependence of sites is use of hidden Markov
models (Felsenstein 2001) to permit the autocorrelation of rates regionally. For
some reason, the hidden Markov models have not been utilized extensively.

rRNA MODELS For ribosomal RNA (rRNA) genes, the primary transcript is the
functional product. These rRNAs fold into a secondary structure in which some re-
gions form pair-bonded stems and others form single-stranded loops. Substitutions
in stem regions are constrained by the complementary nucleotide and compen-
satory changes (substitutions that maintain pair bonding) are well known. Models
specific to rRNA have been developed (e.g., Smith et al. 2004, Tillier & Collins
1995) in which loop regions are treated as distinct from stem regions and the latter
treated as hydrogen-bonded pairs, although these models are yet to be imple-
mented in many phylogeny estimation packages [with the exception of MrBayes
(Huelsenbeck & Ronquist 2001)]. Kjer (2004) used this model, coupled with a
mixed-distribution model of among-site rate variation (the Doublet + I + ! model)
in analysis of 18S rRNA among insects. The parameters of the doublet model in-
clude 16 doublet frequencies (which sum to 1 for 15 free parameters), 3 free
base frequencies, 5 free transformation rates for loops (from the reversible 4 × 4
nucleotide matrix), 119 free transformation rates for stems (from the reversible
16 × 16 doublet matrix), a separate pinv for stems and loops (2 parameters), and a
gamma across all variable sites. Clearly, this model is extremely parameter-rich.

Partitioned Models

If one has natural partitions in ones data sets (e.g., codon positions, multiple
genes, etc.), an intuitively appealing option is to apply different models to the var-
ious partitions. The simplest of these approaches are the site-specific rate (SSR)
models (although they really should be called partition-specific rate models), and
these models apply a separate, equal-rates, GTR to each partition. Because par-
titions often have very different nucleotide frequencies, the simple SSR models
often improve the likelihood score considerably. However, this improvement in fit
may not equate to improved phylogeny estimates, because other simpler models
(nonnested) may better account for rate variation among sites (Buckley et al. 2001).

Alternatively, one may apply a full GTR + I + ! model to each partition (e.g.,
Castoe et al. 2004), and any of the parameters may be linked (apply across parti-
tions) or unlinked (be partition specific). If one had, for example a 10-gene data
set, from two genomes (nuclear and organellar), one could imagine an enormous
array of potential, plausible partitioning schemes. Some way of evaluating the
partitioned models is necessary to guide the choice.
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MODEL SELECTION CRITERIA IN PHYLOGENTICS

Given that model choice is critical in phylogeny estimation and the vast array of
potential models from which to choose, one is faced with the decision of how
to select from among these. Obviously, the requirement is to select a model or
models from the set available that account for processes that impinge on phylogeny
estimation sufficiently well to avoid the biases discussed above without sacrificing
the predictive power of the chosen model. Posada & Buckley (2004) recently
published an excellent overview of model choice in systematics and focus on a
justification for model averaging by use of AIC weights (see below).

Likelihood-Ratio Tests

By far, the most widely used method of choosing a model objectively is through use
of LRTs. This approach takes advantage of two issues. First, the likelihood score
can be interpreted as measuring the fit between model and data that is comparable
across models. Second, the commonly used models in phylogeny estimation from
DNA sequences are members of the GTR + I + ! family (i.e., are special cases or
submodels). Thus, one may evaluate the effect of including one or more parameters
by calculating the likelihood of a model in which the parameter of interest is
optimized versus a model in which it is fixed and comparing the likelihoods of the
two models by use of the classical test statistic

δ = 2(ln L1 − ln L0),

where ln L1 is the likelihood score of the more complex model. The test statistic is
then typically evaluated under the assumption of asymptotic convergence to a χ2

distribution; the degrees of freedom are the difference in number of free parameters
in the two models.

This approach was first used in a hierarchical fashion (the hLRT) by Frati et al.
(1997) and Sullivan et al. (1997), who selected a model for phylogeny estimation
from among a set of 16 models. It was suggested independently by Huelsenbeck
& Crandall (1997). Posada & Crandall (1998) hard-coded this approach in the
production of their program Modeltest and expanded the set of candidate models
examined to include 56 members of the family. The release of Modeltest had an
enormously important impact on phylogenetics because it permitted many sys-
tematists to select good models in a nonarbitrary fashion.

A potential weakness of LRTs (Sanderson & Kim 2000) is that an initial estimate
of topology, usually from either a parsimony search or a neighbor-joining tree,
is required to conduct hLRTs. However, although model parameters are not as
invariant across tree topologies as initially postulated, analyses of real data have
shown that extremely poor estimates of model parameters are typically only derived
from very poor trees (e.g., Sullivan et al. 1996). Similarly, Posada & Crandall
(2001) demonstrated that use of initial trees has little effect on the model chosen
by hLRTs.
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Nevertheless, serious weaknesses remain in the use of hLRTs for model se-
lection. One of these weaknesses is the requirement to traverse model space via
a series of pairwise comparisons without relevant theory to guide the traversal.
Model space can be represented by a decision tree (Posada & Crandall 1998), and
the first choice one must make in applying hLRTs is where to start on this tree. One
may start with the most general and parameter-rich model (typically GTR + I + !)
and simplify by fixing the values of certain parameters (e.g., setting the pro-
portion of invariable sites equal to zero). Conversely, one may start with the
simplest model (JC) and add parameters (e.g., base frequencies) that are then
optimized. Once the decision has been made as to which direction to follow (top
down or bottom up) in traversing model space, one must decide the order in
which to subtract or add parameters. This traversal may either be hard-coded, as
is the case with Modeltest, or be done interactively. Swofford & Sullivan (2003)
and Sullivan (2005) demonstrate the interactive approach to hLRTs, by starting
with the most general model and subtracting parameters that appear closest to
their fixed values in the simpler model. Not surprisingly, this approach often
leads to selection of models that would never be examined in current hard-coded
approaches.

Similarly, several authors have demonstrated that the manner in which the
model space is traversed influences model choice (Cunningham et al. 1998, Felsen-
stein 2004, Pol 2004). In the most extensive examination, Pol (2004) examined
32 different traversals for 18 data sets and found that mode of traversal influenced
model selection in 15 of the 18 data sets and that the selected models differed
by as many a 6 parameters (for one data set). He further demonstrated for two
data sets that the ML tree was different under models selected by use of different
traversal schemes (however, in both cases, trees only differed very slightly, by
one or two nearest-neighbor interchanges). These problems in how best to imple-
ment hLRTs arise because no relevant theory exists to guide traversal of model
space.

In addition to these issues of implementation (as well as others; for example,
multiple testing), several authors have pointed out that LRTs were not intended to
be used to select from a series of models (e.g., Posada & Buckley 2004). Similarly,
the hypothesis-testing approach inherent in hLRTs is poorly suited to model se-
lection, and LRTs typically favor the complex model (e.g., Burnham & Anderson
2002). Thus, despite the extremely widespread use of hLRTs to select models
for phylogenetics, and the enormous improvement that this approach has made to
model-based phylogenetics, time has probably come to move to other alternatives,
including some that have been developed recently.

Akaike Information Criterion

The Akaike information criterion (AIC) (Akaike 1973) is a simple measure with
a complex derivation. The AIC for model i (AICi) is calculated as follows:

AICi = −2 ln Li + 2ki ,
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where ln Li is the maximum log-likelihood of the model (i.e., with joint ML
estimates across parameters) and ki is the number of parameters in model i. In
addition, a modification to correct for small sample sizes (where small is defined
as n/ki ≤ 40, and n is typically the number of sites), the AICc (Burnham &
Anderson 2002, 2004) is given by the following:

AICCi = −2 ln Li + 2ki + 2ki (ki + 1)
n − ki − 1

.

The simple interpretation of the AIC is that it provides a measure of fit between
model and data (−2 ln Li) and includes a penalty for overparameterization. Its first
application to phylogenetics was by Hasegawa (1990), and the model favored is that
model with the lowest AIC (or AICc). Ideally, one would find the ML topology
and parameters for each model, but usually, some initial tree is used across all
models. In other words, as typically applied, the AIC shares the reliance on an
initial tree with hLRTs. However, Posada & Crandall (2001) demonstrated that
this reliance has virtually no effect on the model chosen by comparing the AIC
rankings based on the true tree (in simulated data) with the rankings based on
an initial (NJ) tree. A similar conclusion was reached by Abdo et al. (2005), who
compared the models selected by AIC calculated on an initial tree with those chosen
by optimizing the tree under each model examined (i.e., on the ML tree for each
model).

An obvious advantage of AIC over LRTs in model selection is that the AIC
is calculated for each model in isolation, which eliminates the need to traverse
model space by a series of pairwise comparisons. The AIC can, therefore, be used
to compare nonnested models. Another advantage of the AIC is that it can allow
for generation of a plausible set of models by computation of the &i for each model
as follows:

&i = AICi − AICmin,

where AICmin is the score of the preferred model. These &i values provide for
evaluating the support in the data for each of the models that is examined (i.e.,
quantifying uncertainty in model selection). Burnham & Anderson (2002, 2004)
provide the following benchmarks for discerning the relative support for alternative
models: &i ≤ 2 indicates substantial support, 4 ≤ &i ≤ 10 indicates weak
support, and &i ≥ 10 indicates no support. Furthermore, these &i values can be
used to erect AIC weights for multimodel inferences (see below).

Although the interpretation of the AIC given above is sufficient to understand
the properties of the AIC, the approach has a formal derivation from information
theory. Suppose we have a distribution that has been generated by some true
but unknown process. The AIC represents the Kullback-Leibler (K-L) distance
between that model and the model being examined. The K-L distance can be
thought of as quantifying the information lost by approximation to the true model.
More details are provided in the online Supplemental Material of this review;
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follow the Supplemental Material link from the Annual Reviews home page at
http://www.annualreviews.org.

Bayesian Model Selection

BAYES FACTORS In Bayesian comparison of two models, the Bayes factor permits
direct evaluation of the support in the data for one model versus another (Kass &
Raftery 1995). This support is calculated as by B12 = pr(D|M1)/pr(D|M2), and
it can be multiplied by the ratio of the prior probabilities of each model to give
the posterior odds that favor one model. Thus, if the priors are uniform (i.e., the
ratio of priors equals 1), the posterior odds take a similar form as the LRT, with
the important difference that pr(D|Mi ) is calculated by integrating across the pa-
rameters of Mi rather than by fixing parameter values at the ML point estimates.
Bayes factors, therefore, account for uncertainty in parameter estimation, unlike
hLRTs. As with the &i under the AIC, benchmarks are provided by Raftery (1996)
to interpret relative support on the basis of the magnitude of the Bayes factor.
When B12 > 20, support for M1 is strong; when 3 ≤ B12 ≤ 20, M1 is slightly
favored; and when 1 ≤ Bi j < 3, the two models are supported roughly equally by
the data. Suchard et al. (2002) used Bayes factors to examine a nested subset of
the GTR + I + ! family and rejected the K2P and HKY models in favor of the
Tamura-Nei model (Tamura & Nei 1993). However, unlike in the case of LRTs,
Bayes factors are not restricted to comparisons of nested models. For example,
Nylander et al. (2004) used Bayes factors to select from an array of partitioned
models that included nonnested variants. Interestingly, simpler models were pre-
ferred over more complex models only in comparisons of nonnested models. In
this example, because no penalty was imposed for overparameterization, Bayes
factors always favored the more general of two nested modes. They also noted
symptoms of nonidentifiability (diffuse and highly skewed marginal posterior dis-
tributions) of pinv and the !-shape parameter in the smallest partitions. Sullivan
et al. (1999) have demonstrated the correlation of error in these two parameters,
and this error impedes their estimation with limited data and likely explains the
issues of nonidentifiability seen by Nylander et al. (2004).

BAYESIAN INFORMATION CRITERION An approximation of full Bayesian model
evaluation was devised by Schwarz (1978): the Bayesian information criterion
(BIC). In calculation, this quantity is similar to the AIC,

BICi = −2 ln Li + ki ln n,

where ki is the number of parameters in model i, lnLi is the ML score (i.e., with
all parameters fixed to their ML point estimates), and n is the sample size. As
above, sample size is typically taken to be the number of nucleotide sites, but its
appropriate interpretation in phylogenetics is not entirely clear. Again, a superficial
characterization of the BIC is that it assesses fit via the ML score and penalizes
overparameterization (more heavily than is the case for the AIC, especially with
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large n). Moreover, the BIC resists the tendency for model selection to favor more
complex models as n increases.

Again, as typically employed, BICi values are calculated on an initial tree, rather
than the ML tree, under the model Mi. Just as for the AIC, Posada & Crandall
(2001) demonstrated by use of simulations that this approximation is quite good,
and Abdo et al. (2005) demonstrated the same by actually calculating the BICi on
the ML tree for all Mi.

Just as the AIC has a more rigorous statistical justification than simply assessing
fit plus a penalty for overparameterization (i.e., minimizing the K-L distance), the
model with the minimum BIC will be the same as the model with the highest
posterior probability, pr(Mi|D), at least if one assumes uniform priors across models
and certain approximations are valid. This derivation is discussed in more detail
in the Supplemental Material available online.

Performance-Based Model Selection

Minin et al. (2003) developed a model-selection approach that ranks models on
the basis of the weighted expected error in branch-length estimates, with the
weights are derived from the BIC. This method focuses on the fact that both
the tree topology and the branch lengths (the rate of evolution × the time between
each node or speciation event in the tree) are critical. If we assume momentar-
ily that topology is known, we can focus attention on accurate branch-length
estimates; rather than worry about whether a model is correct, the accuracy of
the branch lengths estimated under various models can be used to assess model
quality.

Because the method of Minin et al. (2003) (available in the program DT-
ModSel) relies on decision theory (DT), we defer explanation of the details of
the method to the Supplemental Material available online; that material focuses
on the decision-theoretic foundations of all the model-selection criteria. However,
a few points are worth noting here. First, accuracy in branch-length estimation is
justified as a performance measure by the observation that the reason ML estima-
tion can be inconsistent under some topological conditions under strongly violated
models is because of the underestimation of long branches discussed above. Thus,
models that are expected to estimate branch lengths similarly are expected to
perform similarly in phylogeny estimation. Abdo et al. (2005) validated the as-
sumption by using data simulated under very complex conditions. Second, because
the approach uses BIC weights, it typically selects simpler models than does either
hLRTs (Minin et al. 2003) or AIC (Abdo et al. 2005). Nevertheless, these simpler
models produce estimates of branch length with less error (both absolute error and
relative error) and produce phylogeny estimates at least as accurate as the complex
models selected by hLRTs, AIC, and BIC (Abdo et al. 2005). Third, inclusion of
several poor models in the set examined has no effect on model choice, because
the poor models receive extremely low BIC weights (Abdo et al. 2005). Fourth,
although the method uses an initial estimate of topology (as do the other meth-
ods), this approximation does not compromise model choice (Abdo et al. 2005).
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Finally, the loss function need not focus on branch-length estimates; any feature
of the analysis can be used to erect a loss function.

Tests of Model Adequacy

Given the increasing uses of both Bayesian and frequentist tests of evolutionary hy-
potheses on model-based phylogenies, the adequacy of models should be assessed
in an absolute sense. That is, all the methods described above permit us to choose
objectively one or more models from a preselected set, but, although we certainly
do not anticipate that the selected model or models will be true, any statistical
tests conducted by use of the selected model or models may be compromised if
the best available alternative is nevertheless insufficient. Thus, an absolute test of
model adequacy is critical (Sanderson & Kim 2000), and two have been used in
phylogenetics.

PARAMETRIC BOOTSTRAP The first test of the absolute goodness-of-fit between
model and data in phylogeoentics was proposed by Goldman (1993) and is de-
scribed in detail in Whelan et al. (2001). This test is a simulation-based test, and
it uses as a test statistic the difference between the multinomial likelihood, which
sets an upper bound on the likelihood for the data set under examination, and the
ML achievable under that model. This difference measures the deterioration in
fit associated with forcing all the data to conform to a single (albeit potentially
heterogeneous-rates) model and a single tree. Replicate data sets are then simu-
lated on the ML tree under the model being examined, with parameters fixed to
their ML estimates, and the difference between multinomial likelihood and ML
under the model is examined for each data set. This difference represents the ex-
pected difference under the null hypothesis of a perfect fit between model and data
(simply due to stochasticity) because the model was used to generate the data. The
distribution of this difference across replicates then becomes the null distribution
to which the observed difference is compared.

In the first application of this test, Goldman (1993) evaluated the absolute fit of
the simple equal-rates models available at the time and could reject them for real
data sets. Similarly, Whelan et al. (2001) rejected the GTR model (without rate
variation) for primate mtDNA by use of this test, and these results have led to the
perception that current modes are inadequate (e.g., Sanderson & Kim 2000). How-
ever, a number of studies have applied the multinomial test of model adequacy to
heterogeneous rates models, and in many of these studies (e.g., Carstens et al. 2004,
Demboski & Sullivan 2003, Sullivan et al. 2000), the model selected by one of the
selection methods could not be rejected in terms of absolute goodness-of-fit. Thus,
despite the early conclusions, many conditions exists in which models chosen from
among a pool of candidates appear to be adequate, at least as judged by these tests.

However, one limitation of this test is that it relies on point estimates of topology,
branch lengths, and model parameters to simulate null distributions. This limitation
has the effect of underrepresenting uncertainty in the simulations and may com-
promise the power of those tests. An analysis of error rates by use of this approach
is currently lacking, and the effect of its reliance on point estimates is not known.
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POSTERIOR PREDICTIVE SIMULATIONS Huelsenbeck et al. (2001) and Bollback
(2002) have circumvented the weakness of Goldman’s test by making use of pos-
terior predictive simulations. This approach uses Bayesian estimation under the
model being examined to provide posterior probability distributions of topologies,
branch lengths, and substitution-model parameters. Simulations are then conducted
under the model under examination, and each replicate samples the tree, branch
lengths, and parameter values from the marginal posterior distributions. The idea
is that future data should be predictable under a good model, but future data do
not exist. Therefore, future data are simulated under conditions selected from the
marginal posterior distributions derived from Bayesian analysis of real data, and
replicates, therefore, account for uncertainty in parameter estimation. The multino-
mial likelihood from the real data is used as the test statistic and it is compared with
the distributions of multinomial likelihoods derived from the posterior predictive
simulations.

Interestingly, Bollback (2002) examined one of the same data sets that Goldman
(1993) examined: the primate ψη-globin data set. Whereas Goldman (1993) re-
jected the JC model for this data set by use of the parametric bootstrap test of
absolute goodness-of-fit, Bollback could not (the P value was 0.123). Bollback at-
tributes this outcome to the uncertainty in model parameters, topology, and branch
lengths and the fact that the posterior predictive simulations account for this un-
certainty explicitly. Comparison of the two methods on a diversity of real data sets
would be extremely useful (e.g., Foster 2004). A second interesting result from
Bollback’s analysis of that data set is that the PPS test suggested that the HKY
model (four parameters) is a better fit than the more general GTR model (eight
parameters).

INCORPORATING UNCERTAINTY IN MODEL SELECTION

Classical parameter estimation involves choosing the appropriate statistical model
and then estimating the parameter in the context of that model. Typically one only
accounts for error in the estimate assuming the particular model chosen but does
not account for the error associated with the model choice. This approach produces
bias in the estimates, and the standard error of estimates calculated with a single
model underrepresents the true error in the estimates. Model averaging is a way to
overcome these problems (Burnham & Anderson 2002); this technique involves
assigning each model a certain weight, estimating the parameter of interest under
each model, and then producing an average estimate that is weighted across models.
In the phylogeny context, Posada & Buckley (2004) have advocated AIC weights
(wi). These weights are a function of &i as defined above (Burnham & Anderson
2002, 2004), and a few examples of model-averaged phylogenies that use AIC
weights are in the literature (e.g., Posada & Buckley 2004).

However, model averaging requires that one accepts that models can be viewed
as random variables, and one assigns a probability distribution to each of the
models given the data. From the perspective of statistical philosophy, this approach
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requires the Bayesian view of statistical inference. Under the Bayesian view, the
only logically coherent way to weight each model is to assign each model a weight
according to the posterior probability of the model given the data. Thus, one could
make the argument that if one is willing to use model averaging as a legitimate
statistical procedure, only Bayesian approaches make sense, although Burnham &
Anderson (2004) provide a Bayesian interpretation of AIC weights. In particular,
the posterior probability of a model is equivalent to the AIC weight [pr(Mi | D) =
wi], when the prior probabilities across models assume a particular form (for the
derivation, see Burnham & Anderson 2004). Therefore, model averaging by use
of AIC weights can be viewed as ad hoc; that is, to be consistent with Bayesian
statistics, one is required to assume particular priors across models.

An alternative approach to model averaging by use of AIC weights in phylo-
genetics is reversible-jump Markov chain Monte Carlo (Huelsenbeck et al. 2004,
Nylander et al. 2004, Suchard et al. 2002). This approach includes proposals to
change models randomly in the Markov chain Monte Carlo proposal mechanism.
Because this approach does not require any particular form of the priors across
models, it seems to us to be a theoretically more justifiable approach to model
averaging than is the use of AIC weights. Alternatively, many researchers seem
to take a pragmatic approach to statistics and use methods that can be shown to
work well under a variety of relevant conditions. AIC weights may prove to work
sufficiently well in model averaging in phylogenetics.

CONCLUSIONS

Phylogenetics is beginning to grapple with model-selection issues, just as have
other disciplines. Although what will ultimately be viewed as optimal model se-
lection may depend on whether one is willing to adopt a Bayesian statistical philos-
ophy, the fact that all current approaches to model selection can be formalized as a
loss function within a DT framework facilitates direct comparison of the various ap-
proaches (Table 1). Minimizing loss in the DT interpretation of LRTs is equivalent
to minimizing type II error (for a fixed type I error). The loss function for the AIC
is the K-L distance, that is, the information lost by use of an assumed model rather
than the true model. In Bayesian model selection, if we assume uniform priors
across models, a binary loss function is proportional to the inverse of the posterior
probability of a model, given the data. In performance-based methods, a nonbi-
nary loss function can be erected on the basis of any feature of an analysis that one
deems important to method performance (such as expected branch-length error).
The derivations of these methods in the decision-theory framework is provided in
the Supplementary Material available online at http://www.annualreviews.org/. Of
the methods examined here, all but LRTs can easily be incorporated into model
averaging, either manually (e.g., Posada & Buckley 2004) or through incorpo-
ration into reversible-jump Markov chain Monte Carlo (e.g., Huelsenbeck et al.
2004). Given the increasing numbers of taxa in phylogenetics data sets and the
advantages of using partitioned models (e.g., Castoe et al. 2004, Nylander et al.
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TABLE 1 Model-selection approaches interpretable from the perspective of decision theory

Approacha Loss Decision rule Philosophy Comments

hLRT Binary Minimize type II
error rate

Non-Bayesian Assume a fixed type I
error rate

AIC Nonbinary Miminize
Kullback-Leibler
distance

Non-Bayesian Assume candidate
models are close to
true model; Taylor
expansion
approximationb

BIC Binary Maximize
posterior
probability

Bayesian Assume uniform
priors across models;
Taylor expansion
approximationb

Performance
based

Nonbinary Minimize risk
based on any
feature of
analysis (e.g.,
branch-length
error)

Bayesian Performance-measure
dependence; Taylor
expansion
approximationb

aThe derivations for interpreting these approaches in this framework are presented in the Supplemental Material online at
http://www.annualreviews.org/.
bThe Taylor expansion approximation permits priors across model parameters to be ignored and evaluation of a model at its
joint maximum-likelihood estimates (Raftery 1995).

2004), simply choosing the most complex model available may result in loss of
predictive ability and nonidentifiability of model parameters, both a function
of too few degrees of freedom. Simulation studies with extremely complex models
of sequence evolution to generate data (e.g., Minin et al. 2003) are likely to be very
fruitful in evaluating alternative model-selection and model-averaging strategies.
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