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Algorithm: Barton-Sternberg multiple alignment

(i) Find the two sequences with the highest pairwise similarity and align
them using standard pairwise dynamic programming alignment.

(ii) Find the sequence that is most similar to a profile of the alignment of
the first two, and align it to the first two by profile-sequence alignment.
Repeat until all sequences have been included in the multiple alignment.

(iii) Remove sequence x! and realign it to a profile of the other aligned se-
quences x2,...,x" by profile-sequence alignment. Repeat for sequences
x2,....xN,

(iv) Repeat the previous realignment step a fixed number of times, or until the

alignment score converges. =

The ideas of profile alignment and iterative refinement come quite close to the
formulation of probabilistic hidden Markov model approaches for the multiple
alignment problem. We turn to HMM methods now.

6.5 Multiple alignment by profile HMM training

In Chapter 5 it was shown that sequence profiles could be recast in probabilistic
form as profile HMMs. Thus, profile HMMs could simply be used in place of
standard profiles in progressive or iterative alignment methods. The use of profile
HMM formalisms may have certain advantages. In particular, the essentially
ad hoc SP scoring scheme can be replaced by the more explicit profile HMM
assumption that the sequences are generated independently from a single ‘root’
Probability distribution.

Profile HMMs can also be trained from initially unaligned sequences using the
Baum-Welch expectation maximisation algorithm from Chapter 3. These sorts
of approaches, drawn from the HMM literature, were in fact the first HMM-based
multiple alignment approaches to be applied. If the trained model is used for a
final step of Viterbi alignment of each individual sequence, training generates

multiple alignment in addition to a model [Krogh e al. 1994].

Multiple alignment with a known profile HMM

Before tackling the problem of estimating a model and 2 multiple alignment si-
Multaneously from initially unaligned training sequences, We consider t.he sim-
Pler problem of obtaining a multiple alignment from a known model. ThlS PfOb'
lem often arises in sequence analysis, for instance when we have a mul.nple align-
ment and a model of a small representative set of sequences in a family, and we
Wish to use that model to align a large number of other family members together.
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Figure 64 A model (top) estimated from an alignment (bottom). The
residues in the shaded area of the alignment were treated as inserts. Se€
Figure 5.4 for a descr iption of the model drawing.

We have seen how to align a sequence to a profile HMM: the most Pmbabl:
path through the model is found by the Viterbi algorithm. Constructing 2 f““al
tiple alignment just requires calculating a Viterbi alignment for each infhvxdu'

"eduence. Residues aligned to the same profile HMM match state are ahg“ef';g
CCflumns. This implies an important difference between profile HMM m“m]ie
*Hements and raditonal maltiple alignments which will be clearer by f:xamlz1 :
| Figure 6.4 shows a small profile HMM and the multiple alignment it was t:e
fived from. The shaded residues were arbitrarily defined to be insertions i file
P 1Poses of this example, and the other ten columns correspond to ten Pro :

H'N.IM match states. The same seven sequences were realigned to the; 1 thc:
8ving the optimg] Viterbi paths shown in Figure 6.5. These paths result 10

. . ; ' re as-
multiple alignmen¢ shown in Figure 6.6, left, where lower-case residues W€

si : state.
Ened o an insert state and upper-case residues were assigned to a match

i : and
= The lm1?0rlant observation here is tha the original alignment (F1gure 6.4)docs
© e alignment (Figyre 6.6, left) are the same alignment. A profile il

Not attempt to align the lower-

- - i c
of h case residues assigned to insert states- i H
OW 0 put the insert residu e

: } es in the alignment is arbitrary; some profil 7
ﬁl;l;?g:emm?s simply left-justify insert regions, as shown in fig‘“e 2g.picalv
Unconsey, residues usually represent parts of the sequences which ar: this is 8
biologiCaHEd’ f Meaningfully alignable. As we discussed earlic  100ps©
homo, 4 reahSt.lc View of multiple alignment. For instance, we €XPeC Alignable

P1080US protein structures often to be structurally different and uf &
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Figure 6.5 The most probable paths of the seven sequences through the
model. If the path goes through a match state in position i of the model,
the corresponding residue is placed in the column labelled i. If it goes
through a delete state, a -’ is placed in the table instead, and when it goes
through the insert state in position 6 the corresponding residue is placed in
the column labelled ‘insert’.

FS-FLKngvdptaai--NPK

FPHF - D iSEnaass HGSAQ FPHF-DIg. oo HGSAQ
FESFGD1stpdavMGNPK FESFGDlstpdav. .MGNPK
FDRFKHlkteaemKASED FDRFKH1kteaem. .KASED
FTQFAGkdlesi.KGTAP FTQFAGkdlesi...KGTAP
FPKFKGlttadgqlKKSAD FPKFKGlttadql. .KKSAD
FS-FLKgtsevp.ONNPE FS-FLKgtsevp. . .ONNPE
FG-FSCaaE --DPG FG-F SGaE it ==DEG

Figure 6.6 Left: the alignment of the seven sequences is shown with lower-
case letters meaning inserts. The dots are Jjust space-filling characters to
make the matches line up correctly. Right: the alignment is shown after a
new sequence was added to the set. The new sequence is shown at the top,
and because it has more inserts more space-filling dots were added.

In contragy, Many other multiple alignment algorithms align the whole sequences,
TCgardless of what parts of the sequence are meaningfully alignable or not.

The alignment on the right in Figure 6.6 shows a new sequence aligned to the
*4Me model. Thjs sequence has more inserted residues than any of the other
S€Ven sequences in the shaded area assigned to insert state 6, so the alignment
of the other Seven sequences must be adjusted to allow space for' these two nc‘;
residues. In an implementation, we typically look at all the Viterbi paths and fin
the maximum number of inserted residues for each insert state before building
the Multiple alignment, so we know up front how much room we need to leave to
Accommodate insertions.
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Overview of profile HMM training from unaligned sequences

Now we turn to the harder problem of estimating both a model and a multiple

alignment from initially unaligned sequences. The method is summarised as fol-
lows:

Algorithm: Multiple alignment using profile HMMs

Initialisation: Choose the length of the profile HMM and initialise parameters.

Training: Estimate the model using the Baum-Welch algorithm (p. 64) or the
Viterbi alternative (p. 65). It is usually necessary to use a heuristic
method for avoiding local optima (see below).

Multiple alignment: Align all sequences to the final model using the Viterbi algo-

rithm (p. 55) and build a multiple alignment as described in the previous
section. <

We now consider the problems of initialisation and training in detail.

Initial model

Aproﬁle HMM is a repeating linear structure of three states (match, delete, and
tnsert). The only decision that must be made in choosing an initial architectur®
for Baum-Welch estimation is the length of the model M. Here M is the Illlmt_"‘:r
.Of match states in the profile HMM rather than the total number of states, which
s 3+ fo the profile HMM architccture of Chapter 5. A commonly used ™

18 to §et M to be the average length of the training sequences (or t0 set it based
on prior knowledge)

.

Smcf Baum-Welch estimation finds local optima, not global, it is irl‘lP‘i’rta_nt t(?
:rhoo.se.' initial models carefully. The model should be encouraged to use ‘sensible
t:g::mns; f(.)r, instance, '_I‘ansitions into match states should be large comp a;zh
fir * 'Iénsmo,n probabilities. At the same time, we want to start Baum-We e
OIirir:nIlrlmluple different points to see if all converge to approximately the Sf;ls.

On M. S0 We want some randomness in the choice of initial model e the
model's e aPProach is to sample the model’s initial parameters g

irichlet prior over parameters (Chapter 11). Alternatively, We €2

tialj ' -
s¢ the mode] with frequencies derived from the prior, use this model t0 8%

€rate g ‘ ’to
small number of random sequences, and then use these counts 5 data
A al model by

estimate an initja] initi
model. A further possibility i imate the inmtl
possibility is to estim of some OF

model construction frg
e, : _ g
all of the sequences, M an existing guess at the multiple alignmen
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Baum-Welch expectation maximisation

The basic parameter estimation is done by a straightforward application of the
Baum-Welch algorithm from Chapter 3. Below we give the algorithms in the
notation of Chapter 5 for reference.

Algorithm: Forward algorithm for profile HMMs

Initialisation: fy,(0) = 1.

Recursion: fiv, (i) = en, () fm,_, (0 — Dam_yw + fiey (0 = Da e
+ ka ](! SR l)aDk_le]'

f[k(l) = eIk (l)[ka(l =N l)aMtlk T flk alklk
+ka(l l)aDka]

ka (') = ka—l (i)aMk_le F flk_l(i)alk_ng T+ ka—l(i)aDk—ID*'

Termination: fiy,,, (L +1)= fm, (L)amymyer T Jise (L)0Muc

o fDM(L)aDMMMH' &
Algorithm: Backward algorithm for profile HMMs
Initialisation; bm,,.,(L+1)=1;
bm,, (L) = ampyMyprs
b]M(L) = A1y Mpe1s
bDu(L) = ApyMps4 -
ReCUI'SI()n ka (l) = ka_H(l o l)aMkMk+leMt+l(x'+l)
+blk(’ ar l)aMtIkEIk(x1+l)+ng+1([)aMkDi+l’
by, (i) = bm,,, (i + 1)ﬂlkMk+,€Mk+|(xr+1) . .
+ by, (i + Dayer, (%i1) + 0D (10515
ka(l) — ka+l(l -+ l)aDkMt+]eMk+1(xl+l) q
+ by, G+ l)apkltelk(xl-i-l) + bp,., (1)ap; D1
estimate emis-

. The forward and backward variables can then be combined tore-
*10n and transition probability parameters as follows:

Algorithm: Baum-Welch re-estimation equations for profile HMMs

Ex h
Pected emission counts from sequence X:

Z ka (I )le (‘ )

ilxj=a

E f1,()br, ()

ilxi=a

EMk(a) P( )

@ = 3o
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Expected transition counts from sequence x:

L
P(x)

AXka =

fok(i)anMH,]eMk+1(xi+l)ka+| (l 1= 1)’
1 ; :
Axk!k = .ITI) lZka(l)axklkelk(xi-!—l)b]k(l - 1);

1 . :
AX'CDHI = mexk(l)axwmem(l)-

As usual the Baum-Welch re-estimation procedure can be replaced by -the
Viterbi alternative described on p. 65 (see below also). Other types of estimation

have also been used for estimation of profile HMMs, such as gradient descent
[Baldi er al. 1994].

Avoiding local maxima

The Baum-Welch algorithm is guaranteed to find a local maximum on the proba-
bility ‘surface’ but there is no guarantee that this local optimum is anywhere near
the global optimum nor a biologically reasonable solution. Much the same is U
for any practical score optimising multiple alignment method (multidimerlsmnal
dynamic programming finds global optima but is not practical). Part of the reasor
15 that these models are usually quite long, and thus there are many opportunitis
{0 get stuck in a wrong solution, For instance, two variations of the same ¢0”
serYed motif may end up being modelled as two different motifs or a conserved
Tegion is squeezed in between two other regions and ends up as being modelled
45 an insert. One way to search the parameter space is simply to start again many
Hmes from different (random) inifial models and keep the best scoring final 01
A more involved approach is to use some form of stochastic search algorith™
that ‘t.aumPS’ Baum-Welch off from local maxima. (The two approaches caf be
combined, and usually are,) The most common stochastic algorithm is simulare
mealing (Kirkpatrick, Gelat & Vecchi 1983], We describe what simulated 2%

nealing does, and thep discu Sl : - 1spired DY
: ? sS rithm 1nSP
simulateq i a profile HMM training algo

Theoretical pagis of simulated annealing

S - ra-
Ome compounds op]y crystallise if they are slowly annealed from high teInEe
ture to low tem

Up in a loca] fr e If.&?e temperature is lowered too fast th&.? Stl-ucm:;tizlﬂ

we have = °ﬂ§rgy Minimum and is disordered. In an optimisation P e

M :Otl:le function fO minimise, which we can call the ‘energy’ E ({C ),. vilng ;

functig 'n- " th © Variables in which it has to be minimised. (Maximis red
N 1$ identica] o minimising the negative value of the function.) Insp.
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e imation of
Gibbs sampler are stochastic sampling variants of the? Viterbi ??:sr’:f;ztfﬁgn_
EM. At each iteration of Gibbs sampling, a sequence is removeth e et
ment; an HMM is built of the remaining aligned seq-u.en.ces; and_ e o
ment of the sequence to the rest is sampled pl’ObablllStlcally. ;li;I;gmodel .
sampling algorithm at T = 1. This iteration is repeated ur-llt(I -
a region of high probability. The Gibbs sampler is thus li eh alignments are
simulated annealing Viterbi algorithm at a constant 7' = 1, ‘:f e:f(:) f a temperature
sampled from a probability distribution unmodiﬁed by any efiec -

factor. For a general description of Gibbs sampling, see Chapter 11.

Adaptively modifying model architecture; model surgery

- it produces
After (or even during) training a model, we can look at the allgnrge;:;;lle be ab-
and decide that: (a) some of the match states are reduncllant an < sheotie
sorbed in an insert state; or (b) it seems like one or more insert stamtt;wh ol
much sequence, in which case they should be expanded (i.e. more th because the
can be inserted before or after the insert state). This can happen bo and because
initial choice of model length was not as good as it could have tfeenf,jmdse oo
of local optima encountered during training. It is advallltageofls_w and just after
dures to adaptively modify the model’s architecture during training
training has been completed. ribed. From the
InKrogh et al. [1994] a method called model surgery was deSC. bi analogue)
‘counts’ estimated by the forward-backward procedure (or th_e Vite -nces il
We can see how much a certain transition is used by the training Sequ[f a certail
isage of a match state is the sum of counts for all letters in the Sta}:e;‘ predeﬁned
match state is used by less than half the sequences (or Sc_)me ot ethan half (of
fraction) the corresponding module is deleted. Similarly if ‘n?ore into a certail
some other predefined fraction) of the sequences use the transitions 1

ber of
i : The num
Insert state, this is expanded to some number of new modules.

. .S
. tions. Though it
fiew modules is determined by the average length of the insertions
ad hoc, it works well.

del pa-

Another approach is to re-estimate both a model architecture E:'n(;jnflogoritmn
Tameters using the maximum g posteriori (MAP) model construc lec ted counts
given in Chapter 5. As this procedure requires an alignment, no.t expmaXimiSaﬁon
it cannot be applied during the usual Baum-Welch expectation '

bi approX”
procedure. 1t can be applieq correctly during training by the Viter paramet’
mation to Baum-Welch, '

re-estimation process, le
that simultaneously op
It can also pe applied
full Baum-Wejch e

model constry

and in fact can completely replace the us}l::l algorl
ading to a (locally) convergent optimisatl f the HMM
timises both the architecture and par amc.ters olied) during
periodically (much like model surgery is -asll;g"m
timation by inserting an iteration of VitCrbleed to im
ction. In this use, it is not necessarily guarant



