
Midterm Study guide

December 7, 2021

This study guide is intended to help you to review for the midterm exam. This is not an
exhaustive list of the topics covered in the class and there is no guarantee that these questions are
representative of the questions on the exam. You should also review the notes you took in class,
the notes and readings on the syllabus, and your homework assignments.

Pairwise sequence alignment

• Terminology: Alphabet, sequence, string, subsequence, substring.

• Dynamic programming algorithms for local and global alignment.

– Be familiar with the basic components of these algorithms: initialization, recursion,
optimal score, traceback.

– What is the computational complexity of alignment with dynamic programing?

– How do the basic algorithmic components differ for local and global alignment?

∗ What types of scoring functions are (un)suitable for each of these?

∗ Do any of the three types of alignment impose more restrictive criteria on the scoring
function used? If so, what is the rationale for these criteria?

• Scoring functions

– Similarity scoring. What are the required properties of simple similarity functions for
sequence alignment?

– You should be able to explain how changing a scoring function will influence the nature
of optimal alignments obtained with respect to that scoring function.

• Applications: Given a particular sequence analysis scenario (e.g., sequence assembly, identi-
fying introns, etc.), you should be able to state which type of alignment is most appropriate
and why.

1



03-511/711 Computational Genomics and Molecular Biology, Fall 2021 2

Markov chains

• Definitions and terminology

– States

– The state probability distribution at time t

– The initial state probability distribution.

– The transition probability matrix. What requirements must a matrix satisfy to be a
valid transition probability matrix?

– What is the Markov property?

– Absorbing states, reflecting states, periodic states.

• We discussed finite-state, discrete-time, time-homogeneous Markov chains. You should un-
derstand each of these terms.

• n-step transitions in Markov chains: Given a transition matrix for 1 time step, you should
understand how to construct a transition matrix for n time steps.

• Stationary state distributions.

– What is the formal definition of a stationary distribution?

– How can you calculate the stationary distribution of a Markov chain?

– How can you verify that a given distribution is the stationary distribution?

– What properties are required for a Markov chain to have a unique stationary distribu-
tion?

• Simple random walk models. What are they?
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Markov models of nucleotide substitution

• What kinds of questions can be answered with sequence evolution models?

• What are transitions and transversions?

• What is the basic structure of a DNA substitution model?

• The Jukes Cantor (JC) model

– What are the underlying assumptions?

– How are transitions modeled?

– What is the stationary distribution?

– How is the rate parameter of the JC model related to the overall substitution rate?

– The Jukes Cantor transition matrix gives the probability of a substitution occurring in
a single time step. From this, we derived

∗ the probability that the nucleotide at a given site has changed to a different nu-
cleotide after elapsed time, t, as well as the probability of observing the same nu-
cleotide at a given site after elapsed time, t;

∗ the probability of a mismatch at a given site in sequences that have been diverging
independently from a common ancestor for time t;

∗ the expected number of substitutions that occurred since the divergence of a pair of
present-day sequences, given the number of mismatches observed in their alignment.

You should understand each of these quantities and know how to apply them in simple
scenarios. For the exam, you do not need to know how to derive these quantities.

• The Kimura 2 parameter (K2P) model

– What are the underlying assumptions?

– How are transitions modeled?

– What is the stationary distribution?

• The Felsenstein (F81) model

– What are the underlying assumptions?

– How are transitions modeled?

– What is the stationary distribution?

• The Hasegawa, Kishino, Yano (HKY) model

– What are the underlying assumptions?

– How are transitions modeled?
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– What is the stationary distribution?

• The General Time Reversible (GTR) model.

– What are the underlying assumptions?

– How are transitions modeled?

– What is the stationary distribution?

• How are the different models related?

– Non-uniform transition probabilities

∗ The K2P, HKY, and GTR models all allow for different rates. The K2P and HKY
models distinguish between transitions and transversions. The GTR model allows
for a different substitution rate for each of the six possible pairs of nucleotides (rates
are the same in both directions, i.e., A to G and G to A proceed at the same rate).

∗ Both the JC and F81 models assume all substitutions proceed at the same rate.

– Non-uniform stationary distributions?

∗ Both the JC and the K2P models have uniform stationary distributions. This dis-
tribution is an implicit consequence of the symmetric structure of the transition
matrices of these models.

∗ The F81, HKY, and GTR models allow for different underlying base frequencies.

– Transforming one model into another.

∗ In contrast to the JC model, the Felsenstein model assumes all substitutions proceed
at the same rate, but allows for different underlying base frequencies. How is the
transition matrix in the Felsenstein model modified to achieve this?

∗ The HKY model combines the innovations of the K2P and Felsenstein models to
give a matrix that has different rates for transitions and transversions and allows
for non-uniform base frequencies.

∗ More complex models allow three or more rates. The most complex of the models
within this framework is the GTR model. The GTR allows for a different substitu-
tion rate for each of the six possible pairs of nucleotides and an arbitrary stationary
distribution.

∗ Given an instance of the JC model and a set of non-uniform base frequencies, could
you turn it into an instance of the Felsenstein model?

∗ More generally, given a set of non-uniform base frequencies and a transition matrix
that implies uniform base frequencies, can you construct a new model that has the
same rate structure as the original transition matrix, but with the specified set of
non-uniform base frequencies?

• Limitations:
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– Properties of sequence evolution that are not captured by the models we learned in class
include

∗ interactions between different sites in the same sequence,

∗ insertions and deletions,

∗ site-dependent rate variation (different rates at different sites), and

∗ time-dependent rate variation (changes in rate over time).

– Pitfalls of using more and less complex models.
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Amino acid substitution models and matrices

• Log-odds formulation.

– A likelihood ratio compares the probability that an observation is the outcome of a
process described by hypothesis HA, and the probability that the observation is due
to chance, described by the null hypothesis, H0. Understand the interpretation of a
likelihood ratio in the context of a pairwise alignment. What are the alternate and null
hypotheses, HA and H0, in this context?

– Why are the advantages of using log likelihood ratio, instead of simply the likelihood
ratio?

– How is the log likelihood ratio used to constructing a scoring function for an alignment?

– What does it mean if the likelihood ratio is less than one? Greater than one?

– What does it mean if the log-likelihood ratio is less than zero? Greater than zero?

• Deriving amino acid substitution matrices: overview

– Desired properties for a substitution matrix

∗ Substitution matrices should reflect biophysical properties. Pairs of residues with
similar properties represent conservative replacements and should have higher sim-
ilarity scores than pairs of residues with different properties, which represent non-
conservative replacements.

∗ Substitution matrices should be parameterized by evolutionary divergence.

– Given the greater number and variety of amino acids, compared with nucleotides, amino
acid substitution models rely more heavily on learning parameters from data than nu-
cleotide models.

– Two families of amino acid substitution matrices: the PAM matrices and the BLO-
SUM matrices. Both families were derived according to the following general approach,
although the details of each step differ between the two methods.

1. Use a set of “trusted” multiple sequence alignments (ungapped) to infer model
parameters.

2. Count observed amino acid pairs in the trusted alignments, correcting for various
types of sample bias.

3. Estimate substitution frequencies from amino acid pair counts.

4. Construct a log odds scoring matrix from substitution frequencies.

• The PAM model: The Dayhoff Markov model of amino acid replacement.

– The unit of divergence used is the PAM or “percent accepted mutation”. How is the
PAM defined?

– Dayhoff’s PAM matrices are derived from a Markov model of amino acid replacement.
What is the basic structure of this model?
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– What are the properties of the data that Dayhoff used to obtain amino acid pair counts
for her model? How are those properties related to the underlying assumptions of the
modeling strategy that she used?

– How did Dayhoff derive counts from that data set?

– How did Dayhoff account for potential sample bias in her data?

– How did Dayhoff use the amino acid counts to derive the PAM transition matrix? How
does this derivation account for differences in amino acid frequency and amino acid
mutability?

– How did Dayhoff ensure that her basic model corresponds to exactly 1 PAM of diver-
gence?

– How is the PAM-N model derived from the PAM-1 model?

– How are multiple substitutions accounted for in the PAM framework?

– How are the PAM log odds substitution matrices derived from the Dayhoff Markov model
transition matrices?

– The transition matrices are not symmetric. The substitution matrices are symmetric.
What is the biological intuition associated with this observation?

• BLOSUM matrices

– What are the properties of the data that the Henikoffs used to obtain amino acid pair
counts for the BLOSUM matrices?

– Partitioning sequences into clusters based on percent identity is a key aspect of the
BLOSUM method.

∗ How are the clusters used in the process of counting amino acid pairs?

∗ How does the use of clusters account for sample bias?

∗ How does the use of clusters lead to a family of matrices parameterized by diver-
gence?

• Log odds substitution matrices: Both the PAM and BLOSUM substitution matrices are log-
odds matrices. You should understand and be able to work with the log odds substitution
matrix framework.

– When a log odds substitution matrix is used to score an alignment, the score of the
alignment also corresponds to a log likelihood ratio; what does this mean?

– How should a positive element in a substitution matrix be interpreted in this context?

– How should a negative element in a substitution matrix be interpreted in this context?

– When comparing the main diagonal elements of matrices representing different amounts
of divergence, what trends would you expect to see?

– When comparing the off-diagonal elements of matrices representing different amounts of
divergence, what trends would you expect to see?



03-511/711 Computational Genomics and Molecular Biology, Fall 2021 8

• What are the similarities and differences between the PAM and BLOSUM models/matrices?

– What are the major differences between the data used for the BLOSUM matrices and
the data used for the PAM matrices?

– What are the major differences in how sequence divergence is represented in the BLO-
SUM matrices compared to the PAM matrices?

– Be able to rank levels of sequence divergence in the two models.

• What are the similarities and differences between DNA and amino acid substitutions matrices?
models/matrices?

– between the Jukes Cantor, Kimura 2 Parameter, and Felsenstein models?

– between the Jukes Cantor and PAM models?

– between the PAM and BLOSUM models/matrices?
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Modeling Motifs and Patterns

• Three major problems to solve

– Discovery: Given unlabeled sequences that share a conserved pattern or motif, discover
the motif using unsupervised learning.

– Modeling: Given labeled sequences that share a conserved pattern or motif, construct
an abstract model that represents the frequencies of residues observed in the pattern.

– Recognition: Given an abstract model of a motif and an unlabeled sequence, use the
model to determine whether the unlabeled sequence contains the motif and/or predict
the of the motif in that sequence.

• Two major approaches: Position specific scoring matrices (PSSMs) and Hidden Markov mod-
els (HMMs).

– PSSMs

∗ Appropriate for ungapped, conserved motifs of fixed length, such as transcription
factor binding sites.

∗ Cannot model indels, variable length patterns, or positional dependences.

– HMMs

∗ Appropriate for modeling conserved motifs, as well as patterns in sequence compo-
sition, such as hydrophobic transmembrane regions.

∗ Can model variable length patterns and positional dependences.

Position Specific Scoring Matrices and the Gibbs sampler

• Position specific scoring matrices (PSSMs)

– A formalism for modeling ungapped multiple alignments

– You should be familiar with each step in the calculation of a PSSM from an alignment:

1. Frequency matrix

2. Propensity matrix

3. Log odds scoring matrix

– Pseudocounts

∗ What are they?

∗ What is the rationale for using pseudocounts?

∗ Understand how to construct a PSSM using pseudocounts.

– Recognition with PSSMs: You should know how to use a PSSM to score each position
in an unlabeled sequence to find new instances of the motif.
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– The score of a sequence segment is analogous to a log likelihood ratio. You should
understand why this is true. What are the alternate and null hypotheses represented by
this likelihood ratio?

– How are PSSMs similar to amino acid substitution matrices? How do they differ from
amino acid substitution matrices?

• The Gibbs sampler

– In the context of biomolecular sequence analysis, the Gibbs sampler is a motif discovery
method based on the PSSM formalism.

– The Gibbs sampler simulates the stationary distribution of a Markov chain.

∗ You should have a basic understanding of this Markov chain

∗ What are the states?

∗ How are states connected?

– You should understand the basic structure of the Gibbs sampler algorithm.

– The Gibbs sampler is guaranteed to find a globally optimal solution. What feature of
the algorithm keeps it from getting trapped in local optima?

– Even though the Gibbs sampler algorithm is guaranteed to converge to a global op-
timum, running the algorithm several times with different starting configurations is
recommended. What is the rationale for this?

– What is a probability density function (pdf)? What is a cumulative density function
(cdf)? You should be able to calculate a cdf from a pdf.

– You should know how to generate random numbers according to an arbitrary probability
distribution, given the cdf of that distribution.

– What are the underlying assumptions of the Gibbs sampler for biomolecular motif dis-
covery? In what ways are they unrealistic?

– What implementation decisions must the user make in order to apply the Gibbs sampler
to a particular motif discovery problem?

• Limitations of PSSMs

– PSSMs are designed to model fixed length conserved motifs, such as transcription factor
binding sites. You should understand the following limitations of PSSMs and be able to
explain how these limitations result from the way in which PSSMs are defined.

∗ PSSMs cannot model positional dependencies.

∗ PSSMs are not well suited to modeling variable length patterns.

∗ PSSMs cannot recognize pattern instances containing insertions or deletions.

∗ Boundary detection: PSSMs are not well suited to determining the precise location
of transitions between distinct biological regions. Examples of such boundaries
include the first membrane-bound amino acid in a transmembrane region, the first
nucleotide in a binding site, the beginning of a gene, etc.
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Hidden Markov models

• Definitions and terminology

– The formal definition of an HMM has the following components:

1. N states E1 . . . EN

2. An alphabet, Σ = {σ1, σ2 . . . σM}
3. Parameters, λ:

(a) Initial distribution vector π = (πi)

(b) Transition probability matrix aij

(c) Emission probabilities: ei(σ) is the probability that state Ei emits σ ∈
∑

– An HMM is a generative model that emits a sequence O = O1, O2, . . . OT while passing
through a sequence of states Q = q1, q2, . . . qT . We refer to the sequence of states that
emitted O as the “state path”.

– If multiple sequences are under consideration we use superscripts to distinguish them:
O1, O2, . . . Ok, where Od = Od1 , O

d
2 , . . . O

d
Td

. Similarly, multiple state paths are denoted

Q1, Q2, . . ., where Qd = qd1 , q
d
2 , . . . q

d
Td

.

– Given a sequence O = O1, O2, . . . OT and a state path Q = q1, q2, . . . qT , the joint prob-
ability of visiting the states in Q and emitting O is

P (O,Q|λ) = πq1 · eq1(O1) · aq1q2eq2(O2) · aq1q2 · eq3(O3) . . . aqT−1qT eqT (OT ).

– The total probability that O was emitted by a given HMM, with parameters λ, is

P (O) =
∑
b

P (O|Qb, λ) · P (Qb|λ) =
∑
b

P (O,Qb|λ).

– The sum of P (O,Q|λ), over all sequences in Σ∗ and all state paths is one:∑
d

∑
b

P (Od, Qb) = 1.

– What is meant by the “parameters” of an HMM?

– What does λ usually refer to in HMM terminology?

– What is “hidden” in a Hidden Markov model?

– What is “decoding” and where does this term come from?

• Hidden Markov models (HMMs) are an extension of Markov chains.

– What properties do HMMs have in common with Markov chains?

– What features are unique to HMMs?

– What are the advantages of using an HMM, compared to a Markov chain?
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• Motif recognition using HMMs

– HMMs can be used to answer various questions about patterns in biomolecular sequences.
Given a pattern recognition problem in a new biological context, you should be able to
determine which of the methods that you have learned in class can be applied to answer
the question. In many cases, there may be more than one approach to answering the
question. The correct approach may depend on how the HMM is designed.

– Examples of recognition questions:

∗ What is the probability that a given sequence, O, was generated by the HMM?
Example: Is the sequence a transmembrane protein?

∗ What is the state path that emitted a given sequence O? Otherwise stated, the goal
is to assign a state to every symbol in an unlabeled sequence, O.
Example: Identify the cytosolic, transmembrane, and extracellular regions in the
sequence. In this case, we wish to assign the labels E, M, or C to each amino acid
residue in the sequence.

∗ What is the probability of being in state Si when Ot is emitted?
Example: Is a given residue localized to the membrane?

– Calculating the total probability of a sequence, O.

∗ The Forward algorithm is a dynamic program that recursively calculates α(t, i) =
P (O1, O2, O3, ...Ot, qt = Ei).

· What are the initiation, recursion and termination steps of this algorithm?

· What is the complexity of the Forward algorithm in terms of the the number of
states and length of O?

· Given an HMM and a sequence, O, you should know how to apply the algorithm
to calculate P (O|λ).

∗ The Backward algorithm is a dynamic program that recursively calculates β(t +
1, i) = P (Ot+1, Ot+2, ...OT |qt = Ei).

· What are the initiation, recursion and termination steps of this algorithm?

· What is the complexity of the Backward algorithm in terms of the the number
of states and length of O?

· Given an HMM and a sequence, O, you should know how to apply the algorithm
to calculate P (O|λ).

· Since the Forward algorithm can be used to calculate P (O|λ), why is the Back-
ward algorithm needed?
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∗ A common use of the Forward algorithm is to classify a sequence by calculating the
probability that it was emitted by a particular model. Typically, we compare the
likelihood of the sequence under two competing hypotheses using a log-likelihood
ratio:

log
P (O|H1)

P (O|H2)
.

· Often, H2 is a null hypothesis.

· Why is it useful to consider the ratio of two likelihoods instead of merely calcu-
lating P (O|H1)?

· What is the benefit of using a log likelihood ratio, instead of just a likelihood
ratio?

– Decoding

∗ Given an unlabeled sequence, the goal of decoding is to classify (i.e., label) each
symbol in the sequence with its associated state. In the HMM formalism, we do this
by inferring the state path that generated the sequence.

∗ Viterbi decoding

· Viterbi decoding assumes that the most probable path, Q∗ = argmaxQ P (Q|O, λ)
is the best estimate of the state path that emitted the sequence.

· The Viterbi algorithm actually calculates argmaxQ P (Q,O|λ), rather than
argmaxQ P (Q|O, λ). What is the meaning of this distinction? Why is this
acceptable?

· The Viterbi algorithm is a dynamic program that recursively calculates δ(t, i),
the probability of emitting O1 . . . Ot via the most probable path that ends in Ei.

· What are the initiation, recursion and termination steps of this algorithm?

· How does the traceback work?

· What is the complexity of the Viterbi algorithm in terms of the the number of
states and length of O?

· Given an HMM and a sequence, O, you should know how to apply the algorithm
to obtain Q∗.

∗ Posterior decoding

· Posterior decoding assumes that the sequence of most probable states, Q̂ =
q̂1 . . . q̂T is the best estimate of the state path that emitted the sequence.

· The most probable state at time t is the state that has the highest probability
of emitting Ot when all possible state paths are considered:

q̂t = argmax
i

P (qt = Ei, Ot)

= argmax
i

α(t, i) · β(t+ 1, i).

· The most probable state, q̂, can be estimated by using the Forward algorithm
to calculate α(t, i) and the Backward algorithm to calculate β(t+ 1, i).
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· The sequence of most probable states may not be a valid state path; that is, it
is possible that P (O, Q̂|λ) = 0. How can that be?

∗ Comparing Viterbi and Posterior decoding

· Under what circumstances might posterior decoding provide a better estimate
than Viterbi decoding?

· Under what circumstances might Viterbi and posterior decoding provide the
same estimate?

• Modeling and discovery with HMMs

– Overview

∗ HMM design involves two major tasks:

1. designing the model topology and

2. estimating the parameters.

∗ If the pattern of interest is unknown, then parameter estimation also involves motif
discovery.

∗ HMM design involves a trade-off between model complexity, on the one hand, and
overfitting and multiple local optima, on the other. More expressive models with
more parameters can capture more complex biological phenomena, but require larger
training sets to obtain accurate estimates of the parameters without overfitting.

– HMM topology

∗ The HMM topology is specified by the states, E1, . . . , EN , the state connectivity,
and the alphabet, Σ.

∗ The state connectivity is specified by defining certain transitions to have zero proba-
bility, typically to reflect boundary conditions in the biological system that the model
is intended to represent. For example, in the transmembrane model, aCE ≡ 0, be-
cause a protein cannot jump from the cytosol to the extracellular matrix without
passing through the membrane.

∗ One could define the model to be fully connected and allow the parameter estimation
process to discover which transitions have zero probability, but this is not done in
practice. What are the disadvantages of this approach?

∗ Alphabet of emitted symbols: For biomolecular sequences, the alphabet will typi-
cally be {A,C,G, T} or the twenty amino acids. However, sometimes it is convenient
to use a reduced alphabet. Nucleic acid sequences can be encoded in a two letter al-
phabet, {R, Y }, representing each base as a purine (R) or a pyrimidine (Y ). Amino
acids can be recoded by a six letter alphabet (e.g., one symbol for each of the so-
called Dayhoff classes: AGPST, C, FWY, HRK, MILV, and NDEQ) or a two letter
alphabet, {H,L}. A smaller alphabet reduces the number of emission probabilities
to be inferred.
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– Parameter estimation

∗ Once the alphabet, states, and state connectivity have been chosen, the parameters
of an HMM are estimated from training sequences, O1, O2, ..., Ok.

∗ If the sequences are labeled, the transition and emission probabilities can be esti-
mated from the observed transition and emission frequencies. If the sequences are
unlabeled, we must first discover the conserved pattern using unsupervised learning.

∗ Labeled sequences

· If the sequences are labeled, the parameters are estimated by counting, for each
state, the number of emissions and transitions observed in the data.

· This is a form of maximum likelihood estimation (MLE).

· You should understand the equations for estimating the initial, emission, and
transition probabilities from labeled data and be able to apply them.

· Pseudocounts can be used to account for emissions or transitions that are not
observed in the training sequences. You should know how to incorporate pseu-
docounts in the estimation of both emission probabilities and transition proba-
bilities.

∗ Unlabeled sequences

· If the sequences are unlabeled, then it is necessary to both discover the motif
using unsupervised learning and estimate the model parameters.

· The parameters of the model are typically learned from unlabeled data using
the Baum Welch algorithm, a form of Expectation Maximization (EM).

· Baum Welch uses an iterative, hill-climbing procedure to estimate the parame-
ters of the model by maximizing L(O1, O2 . . . Ok|λ), the likelihood of the data
given the parameters:

λ = argmax
λl

L(O1, O2 . . . Ok|λl)

= argmax
λl

k∑
d=1

∑
Q

P (Od|λl, Q).

· Baum Welch alternates between re-labeling the data from the current estimate
of the parameters and re-estimating the parameters from the current labeling
of the data. Posterior decoding, which uses with the Forward and Backward
algorithms, is used to label the data.

· Baum Welch is guaranteed to converge to a local, but not a global, optimum.
Executing the algorithm several times with different starting configurations can
improve the chances of finding a global optimum.

· Baum Welch estimates the parameters of the model, but does not output an
explicit representation of the motif. To obtain an explicit representation of the
motif, Viterbi or posterior decoding must be used to label the training sequences,
once the parameters have been determined using Baum Welch.
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• Profile HMMs and global multiple sequence alignment

– A Profile HMM is a specific HMM topology for modeling conserved sequence motifs
like the WEIRD motif. Unlike PSSM’s, a profile HMM allows for indels. (Note that
although positional dependencies can be modeled using HMM’s, the canonical Profile
HMM topology does not capture positional dependencies.)

– A Profile HMM of length L has L + 2 Match states (including silent Start and End
states), L Deletion states, and L+ 1 Insertion states.

– You should be familiar with the Profile HMM topology and know how to apply it and
interpret it. This includes how to build a Profile HMM, given labeled data (i.e., a multiple
alignment) and how to use a Profile HMM to find a global alignment of unaligned (i.e.,
unlabeled) sequences.

– The advantage of using a Profile HMM, rather than “custom design”, is that once L is
chosen, the topology of your model is completely determined. It is only necessary to
estimate the parameters.

– Labeled sequences:

∗ Given labeled sequences, the average length of the pattern can be used as an initial
estimate of the length of the model.

∗ For a Profile HMM, labeled data is typically a multiple alignment. The labels are
implicitly specified by the columns in the alignment. A label (either a Match or an
Insertion state) is assigned to each column of the alignment based on the number
of indels in the column. You should understand the guidelines for deciding which
label to use for each column.

∗ The parameters are estimated from the resulting labeled sequences by counting the
symbols and transitions associated with each state.

– Unlabeled sequences:

∗ Given unlabeled sequences, use biological knowledge to obtain an initial estimate of
L. Once L is chosen, the topology of the model is completely determined. It is only
necessary to estimate the parameters.

∗ If your initial estimate of L turns out to be a bad fit for the pattern under considera-
tion, you can adjust the length using “model surgery”. How can you assess whether
the initial length estimate is appropriate for the pattern under consideration? What
is model surgery and how would you apply it in a specific situation?
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Blast and Searching Sequence Databases

• You should understand and be able to explain the following terminology:

– Query

– Database

– Segment pair

– Maximal segment pair (MSP)

– High-scoring segment pair (HSP)

– Word or w-mer

– Score T

– A “hit”

– Distance between hits A

– Raw score

– Bit score

– Scoring threshold ST . (In class this year, I used SΘ to refer tothis threshold.)

– E-value and E-value (Expect) threshold

– Relative entropy

• The BLAST heuristic

– You should understand the role of each of the BLAST parameters and how the param-
eters influence the performance of the heuristic.

– What is a “hit”? How were hits found in the 1990 BLAST heuristic?

– How would increasing or decreasing w, T , A, or the reporting threshold influence each
of the following?

∗ the speed of the heuristic

∗ the number of false negatives

∗ the number of false positives

• Karlin Altschul statistics

– What is a raw score?

– What is the normalized bit score?

– How are raw scores and normalized bit scores related?

– E-values

∗ What is an E value? How does it differ from a p-value?
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∗ You should understand the equation

E = Km′n′e−λS (1)

and be able to explain each of the variables in the equation.

∗ How does E vary if one of the independent variables increases (or decreases)?

∗ You should understand the equation

E(Sb) = m′n′2−Sb

and be able to explain each of the variables in the equation.

∗ How is the equation for E(Sb) related to equation for E(S) (Equation 1 above)?

– Karlin Altschul statistics provide an estimate of the number of MSPs that will be ob-
served under a null hypothesis.

∗ What is this null hypothesis?

∗ What is the alternate hypothesis?

– Karlin Altschul statistics were derived based on the assumption that the scoring matrix
satisfies certain criteria. What are those criteria?

– What is meant by the “effective length” of the query sequence and the database? Why
must the length be adjusted in the derivation of Karlin Altschulstatistics?

– Information theoretic aspects of BLAST

∗ For a given query sequence, which factors influence which matrix will give the best
discrimination between true and false positives? What is meant by true and false
positives in this context?

∗ What is the relative entropy of a matrix?

∗ How is the relative entropy of a matrix related to the log-odds formalism?

∗ How does the information content of a matrix vary with evolutionary divergence?

∗ What is the relationship between the length of the query sequence and the scoring
matrix used?

∗ How do the following factors influence the difficulty of retrieving related sequences,
while excluding unrelated sequences: query length, database size, minimal alignment
(MSP) length, and sequence divergence

∗ How much information is there in an alignment? You should be able to calculate
the minimum information needed to retrieve meaningful matches.


