Homework 2
Due: 1:30 pm Friday, September 21

Collaboration is allowed on this homework. You must hand in homework assignments individually. You may not use an alignment program to calculate the alignments on this problem set.

Your name:

List the names of the people you worked with.

Homework must be submitted by 1:30 pm in MI646.
1. Profile alignment: The goal in this problem is to derive the recurrence relations required for
$s \in \Sigma_2$ and $t \in \Sigma_2$, profiles of two sequences each, where $\Sigma_2 = \Sigma' \times \Sigma' \setminus \{ (_ , _) \}$. Assume similarity scoring.

In each sub-problem, you are asked to write down the recurrence relation for a specific assignment of symbols and gaps to $s[i]$ and $t[j]$, assuming similarity scoring. In addition, show the last column of the alignment of $s[1 \ldots i]$ and $t[1 \ldots j]$ corresponding to each of the three entries in the recurrence.

The solution to the first problem is shown as an example.

(a) Given $x \in \Sigma$ and

\[s[i] = \frac{x}{x}, \quad t[j] = \frac{x}{x} \]

i. complete the recurrence relation for profile-profile alignment in terms of M, m, and g:

\[A[i, j] = \max \begin{cases}
A[i-1, j] + 4g \\
A[i-1, j-1] + 4M \\
A[i, j-1] + 4g
\end{cases} \]

ii. for each of the entries in the recursion relation in part (i), show the last column of multiple alignment of $s[1..i]$ and $t[1..j]$ that would result if the corresponding entry in the recursion gave the maximum score.

$A[i-1, j]$:

\[\begin{array}{c}
_ \\
x \\
x \\
_ \\
\end{array} \]

$A[i-1, j-1]$:

\[\begin{array}{c}
_ \\
x \\
x \\
_ \\
\end{array} \]

$A[i, j-1]$:

\[\begin{array}{c}
_ \\
_ \\
x \\
_ \\
\end{array} \]
(b) Given \(x, y \in \Sigma \) and

\[
s[i] = \begin{cases}
 x & \text{if } i = 0 \\
 y & \text{if } i = 1
\end{cases} \\
t[j] = \begin{cases}
 x & \text{if } j = 0 \\
 y & \text{if } j = 1
\end{cases}
\]

i. complete the recurrence relation for profile-profile alignment in terms of \(M, m, \) and \(g; \)

ii. for each of the entries in the recursion relation in part (i), show the last column in the alignment of \(s[1\ldots i] \) and \(t[1\ldots j] \) in terms of \(x, y, \) and \(_{.} \) for each entry in the recurrence.
(c) Given $x, z \in \Sigma$ and

\[
\begin{align*}
 s[i] &= \frac{x}{x} \\
 t[j] &= \frac{z}{z}
\end{align*}
\]

i. Complete the recurrence relation for profile-profile alignment in terms of M, m, and g;

ii. For each of the entries in the recursion relation in part (i), show the last column in the alignment of $s[1 \ldots i]$ and $t[1 \ldots j]$ in terms of x, z, and _ for each entry in the recurrence.
(d) Given $x, y \in \Sigma$ and

$$s[i] = x \quad t[j] = y$$

i. complete the recurrence relation for profile-profile alignment in terms of M, m, and g:

ii. for each of the entries in the recursion relation in part (i), show the last column in the alignment of $s[1 \ldots i]$ and $t[1 \ldots j]$ in terms of x, y, and $_ _ _ _ _$ for each entry in the recurrence.
(e) Given $x, y \in \Sigma$ and
\[s[i] = x \quad t[j] = y \]

i. complete the recurrence relation for profile-profile alignment in terms of M, m, and g:

ii. for each of the entries in the recursion relation in part (i), show the last column in the alignment of $s[1 \ldots i]$ and $t[1 \ldots j]$ in terms of x, y, and _ for each entry in the recurrence.
(f) Given $x, y \in \Sigma$ and

$$s[i] = \begin{cases} x & \text{if } i \text{ is even} \\ - & \text{otherwise} \end{cases} \quad t[j] = \begin{cases} x & \text{if } j \text{ is even} \\ y & \text{otherwise} \end{cases}$$

i. complete the recurrence relation for profile-profile alignment in terms of M, m, and g:

ii. for each of the entries in the recursion relation in part (i), show the last column in the alignment of $s[1 \ldots i]$ and $t[1 \ldots j]$ in terms of x, y, and $_ _ _ _ _$ for each entry in the recurrence.
2. Multiple sequence alignment: Progressive alignment is a multiple alignment strategy in which
the pairwise alignments between all pairs of sequences in the data set are calculated in a pre-
processing step. The resulting pairwise alignment scores are used to construct a "guide tree". The
multiple alignment is then obtained by repeatedly merging partial multiple alignments
in an order that is determined by the guide tree. As this problem demonstrates, the final
result can be quite sensitive to the order in which the profiles are merged.

In this problem you are given three sequences:

X: CORD
Y: CARED
Z: BOARD

Given a scoring function where $M = 3$, $m = -3$, and $g = -2$, the optimal alignments for the
three possible word pairs are

- COR-D
- CARED

- C0-RD
 - BOARD

- C-ARED
 - BOAR-D

(a) Give the number of matches, mismatches, and gaps associated with each of the three
pairwise alignments. What is the total alignment score for each alignment?
(b) These three sequences were aligned with the scoring function $M = 3$, $m = -3$, and $g = -2$, using progressive alignment according to this guide tree:

```
Z
  
Y
  
X
```

The resulting sequence-profile alignment is shown in the alignment matrix below. Highlight or circle the cells in the matrix that correspond to the traceback from the optimal solution to the start of the alignment.

```
<table>
<thead>
<tr>
<th></th>
<th>Y</th>
<th>C</th>
<th>A</th>
<th>R</th>
<th>E</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td></td>
<td>C</td>
<td>O</td>
<td>R</td>
<td></td>
<td>D</td>
</tr>
<tr>
<td>Z</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td>←</td>
<td>-4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>←</td>
<td>-8</td>
<td>←</td>
<td>-12</td>
<td>←</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>←</td>
<td>←</td>
<td>←</td>
<td>←</td>
</tr>
<tr>
<td>B</td>
<td>-4</td>
<td>-6</td>
<td>←</td>
<td>-10</td>
<td>←</td>
<td>-14</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>←</td>
<td>←</td>
<td>←</td>
<td>←</td>
</tr>
<tr>
<td>O</td>
<td>-8</td>
<td>-10</td>
<td>-6</td>
<td>←</td>
<td>-10</td>
<td>←</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>←</td>
<td>←</td>
<td>←</td>
<td>←</td>
</tr>
<tr>
<td>A</td>
<td>-12</td>
<td>-14</td>
<td>-10</td>
<td>←</td>
<td>-12</td>
<td>←</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>←</td>
<td>←</td>
<td>←</td>
<td>←</td>
</tr>
<tr>
<td>R</td>
<td>-16</td>
<td>-18</td>
<td>-14</td>
<td>-4</td>
<td>←</td>
<td>-6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>←</td>
<td>←</td>
<td>←</td>
<td>←</td>
</tr>
<tr>
<td>D</td>
<td>-20</td>
<td>-22</td>
<td>-18</td>
<td>-8</td>
<td>←</td>
<td>-9</td>
</tr>
</tbody>
</table>
```

(c) How many optimal multiple alignments are there?
(d) Write down the resulting optimal multiple alignment(s) of the three sequences.

(e) Compute the sum-of-pairs score of the optimal multiple sequence alignment. (If there is more than one optimal multiple alignment, just calculate the sum-of-pairs score for one of them.) Show the number of matches (M), mismatches (m) and gaps (g) in each column. Give the total number of matches, mismatches and gaps and the total numerical score.
(f) Does this give you the same score as the entry in the lower right hand corner of your alignment matrix? If not, why not?
These three sequences were aligned with the scoring function $M = 3$, $m = -3$, and $g = -2$, using progressive alignment according to this guide tree:

The sequence-profile alignment is shown in the alignment matrix below. Highlight or circle the cells in the matrix that correspond to the traceback from the optimal solution to the start of the alignment.

(h) How many optimal multiple alignments are there?
(i) Write down the resulting optimal multiple alignment(s) of the three sequences.

(j) What is the pairwise alignment of CORD and CARED induced by this multiple sequence alignment? What is the score of the induced alignment? How does it compare to the score of the optimal pairwise alignment of CORD and CARED?