
Chapter 11 

Distance matrix methods 

A major family of phylogenetic methods has been the distance matrix methods, intro­
duced by Cavalli-Sforza and Edwards (1967) and by Fitch and Margoliash (1967; 
see also Horne, 1967). They were influenced by the clustering algorithms of Sokal 
and Sneath (1963). The general idea seems as if it would not work very well: cal­
culate a measure of the distance between each pair of species, and then find a tree 
that predicts the observed set of distances as closely as possible. This leaves out 
all information from higher-order combinations of character states, reducing the 
data matrix to a simple table of pairwise distances. One would think that this 
must leave out so many of the subtleties of the data that it could not possibly do a 
reasonable job of making an estimate of the phylogeny. 

Computer simulation studies show that the amount of information about the 
phylogeny that is lost in doing this is remarkably small. The estimates of the phy­
logeny are quite accurate. Apparently, it is not common for evolutionary processes 
(at least not the simple models that we use for them) to leave a trace in high-order 
combinations of character states without also leaving almost the same information 
in the pairwise distances between the species. 

The best way of thinking about distance matrix methods is to consider dis­
tances as estimates of the branch length separating that pair of species. Each dis­
tance infers the best unrooted tree for that pair of species. In effect, we then have 
a large number of (estimated) two-species trees, and we are trying to find the n­

species tree that is implied by these. The difficulty in doing this is that the indi­
vidual distances are not exactly the path lengths in the full n-species tree between 
those two species. They depart from it, and we need to find the full tree that does 
the best job of approximating these individual two-species trees. 

Branch lengths and times 
In distance matrix methods, branch lengths are not simply a function of time. 
They reflect expected amounts of evolution in different branches of the tree. Two 
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branches may reflect the same elapsed time (as when they are sister lineages in a 
rooted phylogeny), but they can have different expected amounts of evolution. In 
effect, each branch has a length that is a multiple Ti of the elapsed time ti. The 
product Tit; is the branch length. This allows different branches to have different 
rates of evolution. 

The least squares methods 
We start by describing the least squares methods,which are some of the best-justified 
ones statistically. The distances themselves also need some discussion, as they 
must have particular mathematical and statistical properties to work with these 
methods. We also describe one variant, the minimum evolution methods, and two 
quicker but more approximate distance matrix methods: UPGMA clustering and 
the neighbor-joining method. 

The fundamental idea of distance matrix methods is that we have an observed 
table (matrix) of distances (Di)), and that any particular tree that has branch 
lengths leads to a predicted set of distances (which we will denote the di j ) . It 
does so by making the prediction of the distance between two species by adding 
up the branch lengths between the two species. Figure 11.1 shows a tree and the 
distance matrix that it predicts. We also have a measure of the discrepancy be­
tween the observed and the expected distances. The measure that is used in the 
least squares methods is 

n n

Q L L Wij (Di) - d·i j ) 2 (11.1) 
i=! J=! 

where the Wij are weights that differ between different least squares methods. 
Cavalli-Sforza and Edwards (1967) defined the unweighted least squares method 
in which Wij = 1. Fitch and Margoliash (1967) used Wij = 1/»; and Beyer et 
al. (1974) suggested Wij = 1/D i j . We are searching for the tree topology and the 
branch lengths that minimize Q. For any given tree topology it is possible to solve 
for the branch lengths that minimize Q by standard least squares methods. 

The summation in equation 11.1 is over all combinations of i and i. Note that 
when i = j, both the observed and the predicted distances are zero, so that no 
contribution is made to Q. One can alternatively sum over only those j for which 
j of. i. 

Least squares branch lengths 
To find the branch lengths on a tree of given topology using least squares we must 
minimize Q. The expression for Q in equation 11.1 is a quadratic in the branch 
lengths. One way that it can be minimized is to solve a set of linear equations. 
These are obtained by taking derivatives of Q with respect to the branch lengths, 
and equating those to zero. The solution of the resulting equations will minimize 
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B 

Figure 11.1: A tree and the distances it predicts, which are generated 
by adding up the lengths of branches between each pair of species. 

Q. In equation 11.1 the dij are sums of branch lengths. Figure 11.2 shows the 
same tree with variables for the branch lengths. If the species are numbered in 
alphabetic order, d I 4 will be the expected distance between species A and D, so 
that it is VI + V7 +V4. The expected distance between species Band E is V2,5 = 

V:" + V6 + V7 + V2· 

Suppose that we number all the branches of the tree and introduce an indicator 
variable Xij,", which is 1 if branch k lies in the path from species i to species j and 
ootherwise. The expected distance between i and j will then be 

a., = L Xij,k Vk'	 (11.2) 
k' 

Equation 11.1 then becomes 

Q =	 tL Wij (D'j - LXi,i,kVk) 2 (11.3) 
7= 1 ] :.1'1', k 
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Figure 11.2: The same tree as the previous figure, with the branch 
lengths as variables. 

Ifwe differentiate Q with respect to one of the v's such as Vb and equate the deriva­
tive to zero, we get the equation 

dQ 11 ( ) o (11.4)dVk = -28 j;; Wij D i ) - ~Xij.kVk 

The -2 may be discarded. 

One way to make a least squares estimate of branch lengths is to solve this set of 
linear equations. There are both exact and iterative methods for doing this. In the 
case of Cavalli-Sforza and Edwards's original unweighted least squares methods, 
where the weights Wi) are all I, the equations are particularly simple. This will 
lead us to a nice matrix form, and the more general case can then be put in that 
form. (The reader who is prone to panic attacks at the sight of matrices should 
skip the rest of this subsection and the one on generalized least squares as well.) 
For the unweighted case, for the tree in Figures 11.1 and 11.2, the equations are: 

DAB + D AC + DAD + DAE 4VI + V2 + V3 + V4 + v5 + 2V6 + 2V7 

DAB + D B C + D B D + D B E VI + 4V2 + V3 + V4 + v5 + 2V6 + 3V7 

DAC + D B C + D C D + D C E VI + V2 + 4V3 + V4 + vs + 3V6 + 2V7 

DAD + D B D + DCD + DDE VI + V2 + V3 + 4V4 + V5 + 2V6 + 3V7 

DAE + D B E + D C E + DDE VI + V2 + V3 + V4 + 41)5 + 3V6 + 21'7 

DAC + D A E + D B C 

+DB E + DCD + DDE 2VI + 2V2 + 3V3 + 2V4 + 3V5 + 6V6 + 4V7 

DAB + DAD + D B C 

+DC D + D B E + DDE 2VI + 3V2 + 2V3 + 3V4 + 2V5 + 4V6 + 6V7 

(11.5) 
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Now suppose that we stack up the Dip in alphabetical order, into a vector, 

DAE 

DAC 

DAD 

DAE 

DEC
d (11.6)

DE D 

DEE 

D C D 

D C E 

DDE 

The coefficients Xij,k can then be arranged in a matrix, each row corresponding to 
the D i j in that row of d and containing a 1 if branch k occurs on the path between 
species i and j. For the tree of Figures 11.1 and 11.2, 

1 1 0 0 0 0 1 

1 0 1 0 0 1 0 

1 0 0 1 0 0 1 

1 0 0 0 1 1 () 

X 
0 

0 

1 

1 

1 

0 

0 

1 

0 

0 

1 

0 

1 

0 
(11.7) 

0 1 0 0 1 1 1 

0 0 1 1 0 1 1 

0 0 1 0 1 0 0 
() 0 0 1 1 1 1 

Note that the size of this matrix is 10 (the number of distances) by 7 (the number 
ofbranches). If we stack up the Vi into a vector, in order of i, equations 11.5 can be 
expressed compactly in matrix notation as: 

(11.8) 

Multiplying on the left by the inverse of XTX, we can solve for the least squares 
branch lengths: 

(11.9) 
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This a standard method of expressing least squares problems in matrix notation 
and solving them. When we have weighted least squares, with a diagonal matrix 
of weights in the same order as the D i j : 

'WAB 0 0 0 0 0 0 0 0 0 

0 WAC 0 o [) 0 0 0 0 0 

0 0 '//lAD 0 0 0 0 0 0 0 

0 0 0 'WAE 0 0 0 0 0 0 

W I 
0 0 0 0 'WEC 0 0 0 0 0 

0 0 0 0 0 WED 0 0 0 o 
o 0 0 0 0 0 'WEE o 0 o 
o 0 0 0 0 0 0 WeD 0 o 
0 0 0 0 0 0 0 o WCE 0 

0 0 0 0 0 0 0 0 0 WDE -
(11.10) 

then the least squares equations can be written 

XTWD = (XTWX) v (11.11) 

and their solution 
v = (XTWXrl X7'WD (11.12) 

Again, this is a standard result in least squares theory, first used in least squares 
estimation of phylogenies by Cavalli-Sforza and Edwards (1967). 

One can imagine a least squares distance matrix method that, for each tree 
topology, formed the matrix 11.10 (or 11.7), inverted it, and obtained the estimates 
in 11.12 (or 11.9). This can be done, but it is computationally burdensome, even 
if not all possible topologies are examined. The inversion of the matrix XTWX 
takes on the order of n 3 operations for a tree of n tips. In principle, this would 
need to be done for every tree topology considered. Gascuel (1997) and Bryant 
and Waddell (1998) have presented faster methods of computation that compute 
the exact solutions of the least squares branch length equations, taking advantage 
of the structure of the tree. They cite earlier work by Vach (1989), Vach, and Degens 
(1991), and Rzhetsky and Nei (1993). For a tree with n tips these fast methods save 
at least a factor of n (and for the unweighted cases, n 2

) operations. 
I have presented (Felsenstein, 1997) an iterative method for improving branch 

lengths. It uses a "pruning" algorithm similar to the one which we will see in the 
next chapter for likelihood. It computes distances between interior nodes in the 
tree and tips, and between interior nodes. These distances depend on the current 
estimates of the branch lengths. Using these new distances, improved estimates 
of branch lengths can then be obtained. The method is of the "alternating least 
squares" type, in which least squares estimates of some variables are obtained, 

-
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given the values of the others, and this is done successively for different variables 
(branch lengths, in the present case). They converge fairly rapidly on the correct 
values. Although they are iterative, they do enable us to constrain the branch 
lengths to be nonnegative, which may be helpful as negative branch lengths have 
no biological interpretation. 

This algorithm uses, at each node in the tree, arrays of distances from there to 
each other node. These can play the role that the conditional score arrays play in 
the Fitch and Sankoff algorithms for computing the parsimony score of a tree. Like 
those, these arrays can be used to economize on computations when rearranging 
the tree. This is of less use in the least squares distance matrix methods than it is in 
the parsimony methods, because the branch lengths in a subtree typically do not 
remain completely unaltered when other regions of the tree are changed. We will 
see similar quantities when we discuss likelihood methods. 

Finding the least squares tree topology 
Being able to assign branch lengths to each tree topology, we need to search among 
tree topologies. This can be done by the same methods of heuristic search that 
were discussed in Chapter 4. We will not repeat that discussion here. No one 
has yet presented a branch-and-bound method for finding the least squares tree 
exactly. Day (1986) has shown that finding the least squares tree is an NP-complete 
problem, so that polynomial-time algorithms for it are unlikely to exist. 

Note that the search is not only among tree topologies, but also among branch 
lengths. When we make a small change of tree topology, the branch lengths of 
the resulting tree should change mostly in the regions that are altered, and rather 
little elsewhere. This means that the branch lengths from the previous tree provide 
us with good starting values for the branch lengths on the altered tree. My own 
iterative algorithm for estimating branch lengths (Pelsenstein, 1997) retains partial 
information at interior nodes of the tree. Thus we not only retain the previous 
branch lengths, but we do not need to recompute the partial information at the 
interior nodes, at least not the first time they are used. Another iterative algorithm 
for estimating branch lengths is described by Makarenkov and Leclerc (1999). 

We defer coverage of the highly original least squares method of De Soete 
(1983) until the next chapter, as it uses quartets of species. 

The statistical rationale 
The impetus behind using least squares methods is statistical. If the predicted dis­
tances are also expected distances, in that each distance has a statistical expectation 
equal to its prediction on the true tree (equal to the sum of the intervening branch 
lengths), then we can imagine a statistical model in which the distances vary inde­
pendently around their expectations and are normally distributed around them. 
If this were true, the proper least squares estimate would minimize the sum of 
squares of the standardized normal deviates corresponding to the different dis­
tances. The deviation of an individual distance from its expectation would be 
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D i j -IE (D i J ) , and the variance of this quantity would be Var (D i j ) . We can make 
a squared standardized normal variate by dividing the square of the deviation by 
the variance. The sum of squares would then be 

Q = t L [D i j,-IE(Di j )]2 (11.13) 
i=l """-J- Var (D)J.JT' I) 

The expectation iE (D i j ) is computed from the predicted distance, the result of 
summing branch lengths between the species. The variance in the denominator 
depends on the details of the process that produced these distances. In effect, 
Cavalli-Sforza and Edwards's least squares methods are assuming equal variances 
for all the distances, and Fitch and Margoliash are assuming that the error (and 
hence the standard deviation) is proportional to the distance. Fitch and Margo­
Hash approximate the variance (the square of that standard deviation) by using 
the square of the observed distance. 

The problem with this framework is the assumption that the observed dis­
tances vary independently around their expectations. If the distances are derived 
from molecular sequences, they will not vary independently, as random evolu­
tionary events on a given internal branch of the tree can simultaneously inflate 
or deflate many distances at the same time. The same is true for distances for re­
striction sites and gene frequencies. DNA hybridization techniques would seem 
to be likely to satisfy the assumption, however. Their errors have much more to 
do with experimental error than with random evolutionary events. But alas, DNA 
hybridization values are computed by standardizing them against hybridizations 
of a species against its own DNA, and those standards are shared by multiple hy­
bridization values. The result is a lack of independence even in this case. 

Fortunately, it can be shown that least squares methods that do not have cor­
rections for the correlations among data items will nevertheless at least make con­
sistent estimates, that they will converge to the true tree as the size of data sets 
becomes large, even if the covariances are wrongly assumed to be zero and the 
variances are wrongly estimated. All that is necessary is that the expectations be 
correct. 

I have discussed this approach to justifying distance matrix methods (Felsen­
stein, 1984), pointing out that it does not require that there be any paths through 
the data space to the observed data that exactly achieve the estimated branch 
lengths. For a contrary view see Farris's arguments (Farris, 1981,1985, 1986) and 
my reply (1986). 

Generalized least squares 
The least squares methods as formulated above ignore the correlations between 
different distances. It is possible to modify the methods, in straightforward fash­
ion, so that they take the correlations into account. This should be statistically 
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preferable. However, one pays a large computational cost for taking the corre­
lations into account. Chakraborty (1977) presented a least squares method for 
trees under a molecular clock. He assumed that the covariances of distances were 
proportional to the shared path length on the paths connecting the two pairs of 
species. This would be true if evolution were a Poisson process, in which there 
were random events occurring along the paths, with variances and covariances de­
termined by the number of events. This is approximately true for small amounts of 
divergence. However, he estimated the divergence times by ordinary unweighted 
least squares, using the covariances only in the computation of the standard errors 
of the divergence times. 

Hasegawa, Kishino, and Yano (1985) used an explicit model of DNA evolution 
to derive expressions for the variances and covariances of the distances, and they 
based a generalized least squares method on this. Bulmer (1991) used the Poisson 
process approximation, basing a generalized least squares analysis on it. 

These methods require more computation than ordinary least squares. The 
equations are similar to 11.12 and 11.9, but the diagonal array of weights, W, must 
be replaced by the inverse of the covariance matrix of the distances: 

(11.14) 

and their solution 
v = (XTy-1X) -1 XTy-1D (11.15) 

The inverse of the covariance matrix Y is inversion of an n(n + 1)/2 x n(n + 
1)/2 matrix. For 20 species, for example, this would be a 190 x 190 matrix. This 
must be done for each tree topology examined. Matrix inversion requires an effort 
proportional to the cube of the number of rows (or columns) of the matrix. Thus 
the naive cost of finding branch lengths for a least squares tree of given topology 
would be proportional to n 6

. However, Bryant and Waddell (1998) have described 
a more efficient algorithm that reduces the cost to n 4

. 

Distances 
In order for distances that are used in these analyses to have the proper expecta­
tions, it is essential that they are expected to be proportional to the total branch 
length between the species. Thus, if in one branch a distance X is expected to ac­
cumulate and on a subsequent branch a distance Y, then when the two branches 
are placed end-to-end the total distance that accumulates must be expected to be 
X + Y. It need not be X + Y in every individual case, but it must be in expec­
tation. It is not proper to use any old distance measure, for this property may be 
lacking. If the distances do not have this linearity property, then wrenching con­
flicts between fitting the long distances and fitting the short distances arise, and 
the tree is the worse for them. 

We will give an example of how distances may be computed to make them 
comply with this requirement, using DNA sequences as our example. 
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Figure 11.3: The Jukes-Cantor model of DNA change. The rate of 
change between all pairs of nucleotides isu/3 per unit time. 

The Jukes-Cantor model-an example 
The simplest possible model of DNA sequence evolution is the model of Jukes 
and Cantor (1969). In this model, each base in the sequence has an equal chance 
of changing. When one changes, it changes to one of the three other bases with 
equal probability. Figure 11.3 shows a diagram of this model. The result is, of 
course, that we expect an equal frequency of the four bases in the resulting DNA. 
The quantity 11 that is the rate of change shown on all the arrows is the rate of 
substitution between all pairs of bases. Note that although this is often miscalled a 
rate of "mutation," it is actually the rate of an event that substitutes one nucleotide 
for another throughout a population, or at any rate in enough of the population 
that it shows up in our sampled sequence. In certain cases of neutral mutation, the 
rates of substitution and of mutation will be the same. 

To calculate distances we need to compute the transition probabilities in this 
model. Note that this does not mean the probabilities of transition rather than 
transversion; it is much older mathematical terminology, meaning the probability 
of a transition from one state (say C) to another (say A). The easiest way to com­
pute this is to slightly fictionalize the model. Instead of having a rate lL of change 
to one of the three other bases, let us imagine that we instead have a rate 111 of 
change to a base randomly drawn from all four possibilities. This will be exactly 
the same process, as there then works out to be a probability 11/3 of change to each 
of the other three bases. We have also added a rate 11/3 of change from a base to 
itself, which does not matter. 

If we have a branch along which elapsed time is i, the probability in this fic­
tionalized model that there are no events at all at a site, when the number expected 
to occur is 111t, is the zero term of a Poisson distribution. We can use that distri­
bution because we take time to be continuous, and the branch of length t consists 
then of a vast number of tiny segments of length dt each, each having the small 
probability 111 dt of an event. The probability of no event is then 

e-11tt 
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Figure 11.4: The expected difference per site between two sequences 
in the Jukes-Cantor model, as a function of branch length (the prod­
uct of rate of change and time). The process of inferring the branch 
length from the fraction of sites that differ between two sequences is 
also shown. 

The probability of at least one event is the complement of this, 

If there is an event, no matter how many there are, the probability that the last one 
resulted in a particular nucleotide is then 1/4. So, for example, the probability of 
C at the end of a branch that started with A is 

(11.16) 

As there are three other nucleotides to which the A could have changed, the prob­
ability that this site is different at the two ends of the branch is the sum of three 
such quantities, being 

D s = 3 ( _" ut) ( )4" 1 - C 11.173 

Figure 11.4 shows this curve of difference against ut. Note that it plateaus at 3/4. 
This is what we expect; when a sequence changes by so much that it is unrelated 
to its initial sequence, there are still 1/4 of the sites at which it happens to end up 
in the same state as when it started. 

Note that if we try to use the difference per site, which is the vertical axis of 
Figure 11.4, it will certainly rise linearly with branch length. As it flattens out at 
3/4, it will accumulate less and less difference with successive branches traversed. 
If we have two branches that each would, individually, lead us to expect 0.20 dif­
ference from one end of the branch to the other, when combined they will in fact 
only lead to an expected distance of 0.34666. The differences will not be additive 
at all. 
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The easiest way to find an additive distance is simply to use the difference per 
site to estimate ui itself. The valueut is the product of the rate of change and the 
time. It is the expected number of changes along the branch, counting both those 
that end up being visible to us, and those that do not. We call the value of ui for 
a branch the branch length. The values of ui on each branch will, by definition, 
add perfectly. Figure 11.4 shows this estimation. Starting with a value 0.49 of 
the difference, the dashed arrows show the process of estimating ui, The resulting 
estimate, 0.7945, is in effect the difference corrected for all the events that are likely 
to have occurred, but could not be seen. They include changes that overlay others, 
or even reversed their effects. 

The formula for this estimation is easily derived from equation 11.17. It is: 

- 3 ( 4 )D = ui = - 4" In 1 - :3 D s (11.18) 

This is actually a maximum likelihood estimate of the distance, it turns out. 
Its one tiresome aspect is that it becomes infinite when the difference between 
sequences becomes greater than 3/4. That cannot occur in the data if infinitely 
long sequences follow the Jukes-Cantor model, but it can certainly happen for 
finite-length sequences, simply as a result of random sampling. 

Although the result of these calculations is called a distance, it does not neces­
sarily satisfy all the requirements that mathematicians make of a distance. One of 
the most important of these is the Triangle Inequality. This states that for any three 
points A, B, and C, 

DAC < DAB+DBC (11.19) 

A simple example of violation of the Triangle Inequality is three DNA sequences 
100 bases in length, with 10 differences between the A and B, and 10 differences 
between Band C, those being at different sites. Thus A and C differ at 20 sites. Us­
ing equation 11.18, DAB = DBc = 0.107326 and DAc = 0.232616, which violates 
the inequality. Thus we can call the number a distance in a biological sense, but 
not in a mathematical sense. Fortunately, most distance matrix methods do not 
absolutely require the Triangle Inequality to hold. 

Why correct for multiple changes? 
The Jukes-Cantor distance does not simply compute the fraction of sites that differ 
between two sequences. Like all the distances we will encounter, it attempts a cor­
rection for unobserved substitutions that are overlain or reversed by others. Why 
is this necessary? The first impulse of many biologists is to use the uncorrected 
differences as distances. This is dangerous. 

An example is given in Figure 11.5. The original tree is shown on the left. 
Under the Jukes-Cantor model, the uncorrected fractions of sequence difference 
predicted from this tree are shown in the table in the center. If these are used with 
the unweighted least squares method, the tree on the right is obtained. It has the 
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A B c D 
B C 

0.0 0.57698 0.59858 0.70439A 0.12363 0.12363 
0.11195

0.57698 0.0 0.24726 0.598581.0 L> 0.35220 0.35220L> B 
0.59858 0.24726 0.0 0.57698C A

D 0.70439 0.59858 0.57698 0.0 
A D 

Figure 11.5: An example of distortion of tree topology when uncor­
rected distances are used. The true tree is on the left, the expected un­
corrected sequence differences under a Jukes-Cantor model are shown 
in the table in the center. The least squares tree from those differences 
is shown on the right. It incorrectly separates Band C from A and D. 

wrong topology, most likely because the tips A and D are trying to get close to 
each other harder than either is to get close to B or C. There is a battle between the 
long and short distances, with the lack of correction making the long distances try 
harder to shorten the corresponding branches. 

The example is what we would see if we used infinitely long sequences, but 
without correction of the distances for multiple changes. Despite the infinitely 
long sequences, we get an incorrect topology. Of course, if the corrected Jukes­
Cantor distance were used, there would be a perfect recovery of the true tree, as 
the distances would be the sums of branch lengths along that tree. By contrast, if 
we use the Jukes-Cantor correction, we approach the true branch lengths as more 
and more DNA is sequenced, and the correct left-hand tree is found. 

One case in which correction is unnecessary is when the trees are clocklike. The 
deeper is the common ancestor of two species, the greater will be the expected dif­
ference between their sequences. Correction for multiple changes will not alter 
the ranking of the distances, and distance matrix methods that assume a clock will 
tend to find the same topology whether or not there is correction of the distances. 
Rzhetsky and Sitnikova (1996) show this in simulations, where failure to correct 
distances has serious consequences in nonclocklike cases, but does not cause seri­
ous problems when there is a molecular clock. 

Minimum evolution 
Having seen the computational methods and biological justification of the least 
squares methods, we now look at distance matrix methods that do not use the 
least squares criterion. Some use other criteria; others are defined by an algorithm 
for constructing the tree and do not use an explicit criterion. 

The minimum evolution method (ME) uses a criterion, the total branch length 
of the reconstructed tree. It is not to be confused with the "minimum evolu­
tion" method of Edwards and Cavalli-Sforza (1964) which was the first parsimony 
method. One might think that the minimum evolution tree should simply be a 
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tree all of whose branches are of length o. That would be the case if the tree were 
unconstrained by the data. In the minimum evolution method the tree is fit to the 
data, and the branch lengths are determined, using the unweighted least squares 
method. The least squares trees are determined for different topologies, and the 
choice is made among them by choosing the one of shortest total length. Thus this 
method makes partial use of the least squares criterion. In effect it uses two cri­
teria at the same time, one for choosing branch lengths, another for choosing the 
tree topology. 

This minimum evolution method was first used by Kidd and Sgaramella-Zonta 
(1971), who used the sum of absolute values of branch lengths. Its present-day use 
comes from its independent invention by Rzhetsky and Nei (1992, 1993, 1994). 
They used the sum of branch lengths. Trees with negative branches thus tend 
to attract the search, and heuristic tree rearrangement may spend considerable 
time among them. Kidd and Sgaramella-Zonta suggested that if there is any tree 
topology that has all positive estimated branch lengths, then the best solution by 
their method would also have no negative branch lengths. 

Rzhetsky and Nei showed that if the distances were unbiased estimates of the 
true distance (many distances are not unbiased) then the expected total length of 
the true tree was shorter than the expected total length of any other. However, this 
is not the same as showing that the total length is always shortest for the true tree, 
as the lengths vary around their expectation. It would be impossible for it to be 
true that the total length is always shorter for the true tree, as that would establish 
that this particular criterion always triumphs over statistical noise! Their result 
is meaningful if one reduces all the information in the data to one quantity, the 
estimated length of the tree. Even then, having its expectation be least for the true 
tree is not the same as showing that the use of the minimum evolution criterion 
makes a maximum likelihood estimate given the tree length. For that we would 
need to know tha t this quantity was normally distributed, and had equal variances 
for all tree topologies. It is not clear whether minimum evolution methods always 
have acceptable statistical behavior. Cascuel, Bryant, and Denis (2001) have found 
cases where minimum evolution is inconsistent when branch lengths are inferred 
by weighted least squares or by generalized least squares. 

Minimum evolution requires an amount of computation similar to least 
squares, since it uses least squares to evaluate branch lengths for each tree topol­
ogy. The methods of Bryant and Waddell (1998) for speeding up least squares cal­
culations will thus speed up minimum evolution methods as well. Kumar (1996) 
has described search methods that improve on Rzhetsky and Nei's. Rzhetskyand 
Nei (1994) describe the use of bootstrap support of branches (which I describe in 
Chapter 20) to guide the search for branches where the tree topology should be re­
considered. Desper and Gascuel (2002) have found that using a "greedy" search of 
tree topologies and a somewhat approximate version of minimum evolution led 
to great increases in speed with good accuracy of the resulting trees. 
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An early variant on Minimum Evolution that did not use least squares to infer 
the branch lengths was given by Beyer et al. (1974; Waterman et al., 1977). They 
instead required that the path lengths between all pairs of species remain longer 
than, or equal to, the observed distances. This makes the inference of branch 
lengths a linear programming problem. Their inequality is justified in the case 
of closely related molecular sequences, where the total branch length will approx­
imate a parsimony criterion. Like a parsimony criterion, their method may fit 
branch lengths that are substantially shorter than is plausible when the sequences 
are quite different. 

Clustering algorithms 
The methods mentioned so far optimize a criterion such as the sum of squares, 
searching among all trees for the tree with the best value. Another class of distance 
matrix methods does not have an explicit criterion, but instead applies a particu­
lar algorithm to a distance matrix to come up with a tree more directly. This can 
be quite a lot faster, but it has the disadvantage that we are not sure that the dis­
tance information is being used fully, and we are not sure what are the statistical 
properties of the method. 

These methods are derived from clustering algorithms popularized by Sokal 
and Sneath (1963). Chief among them is the UPGMA method, whose name is an 
acronym for its name in their classification of indexclusteringclustering methods. 
UPGMA can be used to infer phylogenies if one can assume that evolutionary 
rates are the same in all lineages. 

UPGMA and least squares 
Onecan constrain the branch lengths so tha t they sa tisfy a "molecular clock." Trees 
that are clocklike are rooted and have the total branch length from the root up 
to any tip equal. They are often referred to as being ulirametric. When a tree is 
ultrametric, it turns out to be extremely simple to find the least squares branch 
lengths. The total branch length from a tip down to any node is then the average of 
the distances between all the pairs of species whose most recent common ancestor 
is that node. Thus if a node leads to two branches, one of which leads on upwards 
to all mammals and the other on upwards to all birds, the estimate of the total 
branch length down to the node is the average of the distances between all (bird, 
mammal) pairs. The weights l1J;j are used to weight this average. 

The branch lengths are then the differences between these total branch lengths. 
If they give a negative branch length, it may be necessary to set that branch length 
tozero, which combines two nodes, and recompute the associated sums of branch 
lengths. Farris (1969a) was the first to note this relationship between averages and 
leastsquares branch lengths. 
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A clusteringalgorithm 
Done this way, finding ultrametric trees has the same search problems as other 
phylogeny methods. However, there is a simple algorithm that can be used to 
quickly construct a clocklike phylogeny-the UPGMA or average linkage method. 
It is not guaranteed to find the least squares ultrametric phylogeny, but it often 
does quite well. This algorithm was introduced by Sokal and Michener (1958)­
it belongs to the class of phenetic clustering methods that were predecessors of 
most modern phylogeny methods. It has been rather extensively criticized in the 
phylogeny literature, but if a clock is thought to be a reasonable assumption (and it 
often is if the species are closely related), then UPGMA is a well-behaved method. 

The algorithm works on a distance matrix and also keeps track, for each species 
or group, of the number, tu, of species in the group. These are initially all I. The 
steps in the algorithm are: 

1.	 Find the i and j that have the smallest distance, D i j . 

2.	 Create a new group, (ij), which has n(ij) = n.; + nj members. 

3.	 Connect i and j on the tree to a new node [which corresponds to the new 
group (ij)]. Give the two branches connecting i to (ij) and j to (ij) each 
length o; /2. 

4.	 Compute the distance between the new group and all the other groups (ex­
cept for i and j) by using: 

D(i]),k' = ( ~) ~k+ (~) Djk 
~+~ ~+~ 

5. Delete the columns and rows of the data matrix that correspond to groups i 
and j, and add a column and row for group (ij). 

6.	 If there is only one item in the data matrix, stop. Otherwise, return to step 1. 

This method is easy to program and takes about n 3 operations to infer a phy­
logeny with n species. Each time we look for the smallest element in the distance 
matrix, we need a number of operations proportional to n 2 , and we do this n - 1 
times. However, we can speed things up by a large factor by simply retaining a list 
of the size and location of the smallest elements in each row (or column). Finding 
the smallest element in the matrix then requires a number of operations propor­
tional to n rather than n2 

. With each clustering, this list of minima can be updated 
in a number of operations proportional to ti, so that the whole algorithm can be 
carried out in a number of operations proportional to n 2 • It can be shown never to 
give a negative branch length. 

An example 
Using immunological distances from the work of Sarich (1969) we can show the 
steps involved in inferring a tree by the UPGMA method. The amount of work 
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needed is so small that we can carry out the clustering by hand. Here is the original 
distance matrix, which has the distances corrected logarithmically to allow for a 
presumed exponential decay of immunological similarity with branch length. We 
start by looking for the smallest distance. In this table it is marked by a box, and 
the elements of those rows and columns are indicated in boldface and by asterisks 
at the borders of the table. 

* * 
dog bear raccoon weasel seal sea lion cat monkey 

dog 0 32 48 51 50 48 98 148 

bear 32 0 26 34 29 33 84 136 

raccoon 48 26 0 42 44 44 92 152 

weasel 51 34 42 0 44 38 86 142 

seal 50 29 44 44 0 @!J 89 142* 
sea lion 48 33 44 38 @!J 0 90 142* 
cat 98 84 92 86 89 90 0 148 

monkey 148 136 152 142 142 142 148 0 

Combining the rows for seal and sea lion, we average their distances to all 
other species. 

dog 

bear 

raccoon 

weasel 

seal* 
sea lion* 
cat 

monkey 

* * 
dog bear raccoon weasel seal sea lion cat monkey 

0 32 48 51 50 48 98 148 

32 0 26 34 29 33 84 136 

48 26 0 42 44 44 92 152 

51 34 42 0 44 38 86 142 

50 29 44 44 0 @!J 89 142 

48 33 44 38 @!J 0 90 142 

98 84 92 86 89 90 0 148 

148 136 152 142 142 142 148 0 

Afterwe do this, we infer the immediate ancestor of seal and sea lion to be 12 units 
of branch length from each, so that the distance between them is 24. The new 
combined row and column (marked 55) replaces the seal and sea lion rows and 
columns. This reduced table has its smallest element marked by a box. It involves 
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bear and raccoon, and those rows and columns are boldfaced and indicated by 
asterisks: 

* * 
dog bear raccoon weasel 88 cat monkey 

dog 0 32 48 51 49 98 148 

bear 32 0 34 31 84 136* ~ 
raccoon 48 0 42 44 92 152* ~ 
weasel 51 34 42 0 41 86 142 

88 49 31 44 41 0 89..5 142 
cat 98 84 92 86 89.5 0 148 
monkey 148 136 152 142 142 148 0 

Again, we average the distances from bear and from raccoon to all other 
species, and we infer their common ancestor to have been 13 units of branch length 
below each of them. We replace their rows and columns by a new one, BR: 

* * 
dog BR weasel SS cat monkey 

dog 0 40 .51 49 98 148 

BR 40 0 38 137.51 88 144* 
weasel 51 38 0 41 86 142 
SS 49 137.51 41 0 89.5 142* 
cat 98 88 86 89.5 0 148 
monkey 148 144 142 142 148 0 

The smallest element in this table was 37.5, between BR and 55. The ancestor 
of these two groups is inferred to be 18.75 units of branch length below these four 
species. It is thus 5.75 below the ancestor of bear and raccoon, and 6.75 below the 
ancestor of seal and sea lion. You should refer to Figure 11.6 to see the branches 
and branch lengths that are added to the tree by each step. Each of the groups BR 
and 55 is a group with two species, so the proper average is again a simple average 
of their distances to other species: 

* * 
dog BRSS weasel cat monkey 

dog 0 44.5 51 98 148 
BRSS 44.5 0 139.51 88.75 143* 
weasel 51 139.51 0 86 142* 
cat 98 88.75 86 0 148 
monkey 148 143 142 148 0 
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Now the smallest distance, 39.5, is between BRSS and weasel. One is a group 
of four species, the other a single species. In averaging their distances to all other 
species, we do not do a simple average, but weight the distance to BRSS four times 
as much as the distance to weasel. For example, the distance of the new group to 
dog is (4 x 44.5 + 51)/5 = 45.8. The new row and column are called BRSSW and 
replace BRSSand weasel. 

* * 
dog BRSSW cat monkey 

* dog 0 45.8 98 148 

* BRSSW 145.81 0 88.2 142.8 

cat 98 88.2 0 148 

monkey 148 142.8 148 0 

Now dog joins BRSSW, and the average of those rows and columns is again a 
weighted average, weighting BRSSW five times more heavily than dog. 

DBRWSS* 
cat* 
monkey 

* * 
DBRWSS cat monkey 

0 143.66 

189.8331 148 

143.66 0 

With only three groups left, cat joins up next. Finally, we have only two groups 
which must, of course, join one another. 

DBRWSSC monkey 

DBRWSSC [) 

monkey 1144.28571 

The final tree is shown in Figure 11.6. It is fairly close to biological plausibility. 

UPGMA on nonclocklike trees 
Themain disadvantage of UPGMA is that it can give seriously misleading results 
if the distances actually reflect a substantially nonclocklike tree. Figure 11.7 shows 
a small set of imaginary distances, which are derived from a nonclocklike tree 
by adding up branch lengths. Also shown is the resulting UPGMA tree. It first 
clusters species Band C, which creates a branch (the one separating them from A 
and D) that is not on the true tree. For this problem to arise, evolutionary rates 
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Figure 11.6: The tree inferred by UPGMA clustering of the Sarich (1969) 
immunological distance data set. 

on different branch lengths must differ by at least a factor of two. Note that this 
is not long branch attraction. In fact, it is short branch attraction: Band C are put 
together because they are similar in not having changed. 

Neighbor-joining 
The neighbor-joining (NJ) algorithm of Saitou and Nei (1987) is another algorithm 
that works by clustering. It does not assume a clock and instead approximates the 
minimum evolution method. (It may also be thought of as a rough approximation 
to least squares.) The approximation is in fact quite good, and the speed advantage 
of neighbor-joining is thus not purchased at much cost. It is practical well into the 
hundreds of species. 

Neighbor-joining, like the least squares methods, is guaranteed to recover the 
true tree if the distance matrix happens to be an exact reflection of a tree. Thus for 
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Figure 11.7: A four-species, nonclocklike tree and the expected data 
matrix it yields, when distances are the sums of branch lengths. The 
tree estimated by applying the UPGMA method to this distance matrix 
is shown-it does not have the correct tree topology. In both trees the 
branch lengths are proportional to the vertical length of the branches. 

the data matrix of Figure 11.7 it simply recovers the true tree. The algorithm is (as 
modified by Studier and Keppler, 1988): 

1. For each tip, compute u; = "L7#i Di)/(n - 2). Note that the denominator 
is (deliberately) not the number of items summed. 

2. Choose thei and j for which D i j - u, - ILj is smallest. 

3. Join items i and j. Compute the branch length from i to the new node (Vi) 
and from j to the new node (Vj) as 

v,' i n + 1('IL' - 'IL')2 ') 2' s 

v)· 1 D + 1 (·u· - 'IL)2 ') 2) I 

4. Compute the distance between the new node ('ij) and each of the remaining 
tips as 

5. Delete tips i and j from the tables and replace them by the new node, (ij), 
which is now treated as a tip. 

6. If more than two nodes remain, go back to step 1. Otherwise, connect the 
two remaining nodes (say, eand m) by a branch of length D£m. 
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Figure 11.8: The neighbor-joining tree for the data set of Sarich (1969) 
rooted at the midpoint of the longest path between species. It may be 
compared with Figure 11.6. 

We will not show the steps in detail for the Sarich data set but only the result 
of applying neighbor-joining to that data set, in Figure 11.8. The midpoint rooting 
method used is due to Farris (1972). Unlike the UPGMA algorithm, the neighbor­
joining algorithm is not carried out in a number of operations proportional to n2

. 

Current algorithms use a number of operations proportional to n:3, owing to the 
necessity of updating the u.; and subtracting them from the distances. 

Performance 
Computer simulation studies have shown that neighbor-joining performs quite 
well. Although it has sometimes been claimed to perform better than the Fitch­
Margoliash method, this seems not to be the case, although the difference is not 
great (Kuhner and Felsenstein, 1994). When the decision is made as to which pair 
of tips to cluster, ties are possible. Backeljau et al. (1996) have raised this issue 
and examined how well various implementations of neighbor-joining cope with 
ties. Farris et al. (1996) noted that when neighbor-joining is used together with 
bootstrap resampling, an arbitrary resolution of ties can produce the appearance 
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of strong support for a grouping when there is none. Takezaki (1998) finds that 
this problem is serious only for short sequences or closely related species and can 
be avoided if one randomly chooses among tied alternatives. This can be done by 
ensuring that each bootstrap replicate is analyzed with a different input order of 
species. 

Using neighbor-joining with other methods 
Neighbor-joining is also useful to rapidly search for a good tree that can then be 
improved by other criteria. Pearson, Robins, and Zhang (1999) use it while re­
taining nearly-tied trees, choosing among them by minimum evolution or least 
squares criteria. Ota and Li (2000,2001) use neighbor-joining and bootstrapping 
to find an initial tree and identify which regions of it are candidates for rearrange­
ment (as Rzhetsky and Nei, 1994, did for minimum evolution). They then use 
maximum likelihood (which is described in Chapter 16) for further search. This 
results in a substantial improvement in speed over pure likelihood methods. 

Relation of neighbor-joining to least squares 
There is a relationship between neighbor-joining and other methods, though this is 
not immediately obvious from the algorithm. It belongs to the class of clustering 
methods that are defined by the precise algorithm rather than by a criterion. If 
we made a change in the neighbor-joining algorithm that resulted in somewhat 
different trees, we could not argue that we were doing better at accomplishing the 
objectives of neighbor-joining. By definition, anything that results in a different 
tree is not neighbor-joining. In comparison, methods that minimize a criterion 
always allow us the possibility that we could find an algorithm that does a better 
job of searching for the tree that achieves the minimum value. 

The relation of neighbor-joining to other methods may not be clear from its pre­
sentation in the papers of Saitou and Nei (1987) and Studier and Keppler (1988). 
In their equations, observed distances are used as if they were equal to the sums 
of branch lengths, when in fact only their expectations are. There is acknowledg­
ment in these papers that observed distances do differ from these expectations, 
but little more than that. Nevertheless, Saitou and Nei (1987) do establish one 
connection. In an extensive appendix they show that, for a given pair of species 
that is to be indexclusteringclustered, the branch lengths inferred are those that 
would be assigned by unweighted least squares. At first sight this appears to es­
tablish neighbor-joining as a more approximate version of least squares. In Chap­
ter 4 I mentioned star-decomposition search, in which an unresolved starlike tree 
is gradually resolved by clustering pairs of species. We might think that neighbor­
joining is simply a star-decomposition search using the unweighted least squares 
criterion. 

It would be, if it used least squares to choose which pair of tips to join. But al­
though it computes their branch lengths by least squares, it does not use the sum 
of squares as the criterion for choosing which pair of species to join. Instead it 
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uses the total length of the resulting tree, choosing that pair that minimizes this 
length. This is a form of the minimum evolution criterion. But we also cannot 
identify neighbor-joining as a star-decomposition search for the minimum evolu­
tion tree. Neighbor-joining allows negative branch lengths, while minimum evo­
lution bans them. Thus neighbor-joining has some relation to unweighted least 
squares and some to minimum evolution, without being definable as an approx­
imate algorithm for either. It would be of interest for someone to see whether 
a star-decomposition algorithm for least squares, or one for minimum evolution, 
could be developed that was comparable in speed to neighbor-joining. 

Gascuel (1994) has pointed out a relationship between neighbor-joining and 
the quartets method of Sattath and Tversky (1977). 

Weighted versions of neighbor-joining 
Two modifications of neighbor-joining have been developed to allow for differ­
ential weighting in the algorithm to take into account differences in statistical 
noise. Gascuel (1997) has modified the neighbor-joining algorithm to allow for the 
variances and covariances of the distances, in a simple model of sequence evolu­
tion. This should correct for some of the statistical error. Gascuel's method, called 
BlON!, thus comes closer to what generalized least squares would give, though 
it is, of course, still an approximation. The weights are applied at step 3 of the 
neighbor-joining algorithm given above. 

Subsequently, Bruno, Socci, and Halpern (2000) developed weighted neighbor­
joining (the weighbor method) which uses weights in the formulas at somewhat 
different steps, and in a different way. They are used in steps 2 and 3. The weigh­
bor method is justified by appeal to a likelihood argument, but it is not the full 
likelihood of the data but a likelihood calculated separately for each of a series 
of overlapping quartets of species, and under the assumption that distances are 
drawn from a Gaussian (normal) distribution. 

I will not attempt a detailed justification of the terms in either BIONJ or weigh­
bor, both for lack of space and because I believe that both are approximate. It 
would be better to start with a likelihood or generalized least squares method, 
and then show that a weighted version of neighbor-joining is an approximation to 
it. This has not been done in either case. 

Nevertheless, both methods seem to improve on unweighted neighbor-joining. 
In Gascuel's BIONJ method, the variances and covariances of the distances are 
taken to be proportional to the branch lengths. The variance of D i j is taken as 
proportional to branch length between species i and j. The covariance of D i j and 
DkR is taken to be proportional (with the same constant) to the total shared branch 
length on the paths i-j and k-£. This is usually a good approximation provided 
the branch lengths are not too long. Gascuel (2000) presents evidence that BIONJ 
can outperform minimum evolution. 

Bruno, Socci, and Halpern's weighbor method uses the exact formula for the 
variance of a Jukes-Cantor distance instead. This is approximate for other models 



Distance matrix methods 171 

of DNA change, but more correctly copes with the very high variances of distances 
when tips are far apart on the tree. The cost paid for this greater accuracy is that 
some additional approximations are needed to keep calculation to order n3 . These 
authors argue that weighbor can find trees more accurately than BIONJ because it 
is less affected by noise from very large distances. BrONj should do well when no 
distances are large, and both should do better than neighbor-joining. 

There seems more left to do in developing weighted versions of neighbor­
joining that properly reflect the kinds of noise that occur in biological sequence 
data. 

Other approximate distance methods 
Before the neighbor-joining method, a number of other approximate distance 
methods were proposed. Like it, they were defined by their detailed algorithms, 
not by an explicit criterion. The earlier ones have since largely been superseded 
by neighbor-joining. 

Distance Wagner method 
The earliest is Farris's (1972) distance Wagner method. This is closely related to 
his earlier WISS (weighted invariant shared steps) method (Farris, Kluge, and 
Eckardt, 1970) and his "Wagner method" algorithm (Kluge and Farris, 1969; Far­
ris, 1970) for approximate construction of a most parsimonious tree. The distance 
Wagner method is intended as an approximation to construction of a most parsi­
monious tree. Species are added to a tree, each in the best possible place. This 
is judged by computation of the increase in the length of the tree caused by each 
possible placement of that species. 

The intention is thus similar to that of minimum evolution, but the details are 
different. Instead of using a least squares reconstruction of the branch lengths, the 
lengths are computed from distances between pairs of nodes. The distances be­
tween the tip species are given, but those between a tip and an interior node, or 
between two interior nodes, are also computed approximately. These approximate 
distances between interior nodes, and between interior nodes and tips, determine 
the branch lengths. The approximation used assumes the Triangle Inequality. Un­
like many other distance matrix methods, this restricts the use of the distance Wag­
ner method to distances that satisfy the Triangle Inequality, which many biological 
distance measures do not. 

An exposition of the details of the distance Wagner method will be found in 
the book by Nei (1987, pp. 305-309). Modifications of the distance Wagner method 
have also been proposed (Tateno, Nei, and Tajima, 1982; Faith, 1985). 

A related family 
Another family of approximate distance matrix methods (Farris, 1977b; Klotz et 
al., 1979; Li, 1981) uses a reference species to correct distances between species 




