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ABSTRACT 
Intelligence agencies are under increasing pressure to “connect 
the dots” between fragments of evidence from disparate sources 
to enable preemption of potential threats such as terrorist attacks.  
Most systems for threat detection in use today provide only data 
visualization tools for manual “link analysis,” leading to methods 
that do not scale to massive data sets.  The CADRE system 
(Continuous Analysis and Discovery from Relational Evidence) 
addresses this deficiency by automating the link analysis process.  
CADRE combines an expressive knowledge representation of 
threat patterns with efficient, constraint-based abductive 
reasoning algorithms to automatically infer links and construct 
coherent threat hypotheses from structured data.  A compact, 
factored representation of multiple hypotheses avoids redundant 
storage and enables scaling to large data sets.  CADRE efficiently 
manages the growth of the hypotheses using probabilistic 
evaluation models and a consistency checking algorithm to prune 
unlikely hypotheses.     

Categories and Subject Descriptors 
I.5.4 [Pattern Recognition]: Applications 

I.2.4 [Artificial Intelligence]: Knowledge Representation 
Formalisms and Methods 

General Terms 
Algorithms, Performance, Design, Experimentation. 

Keywords 
Data mining, link analysis, abductive reasoning, Hidden Markov 
Models, pattern representation. 

1. INTRODUCTION 
With the increasing threat of global terrorism, and an ever-
growing sea of computerized intelligence data, manual analysis 
techniques cannot provide enough coverage to reliably detect 
threatening activity.  To date, most systems used by intelligence 

and law enforcement agencies have been limited to link analysis 
tools, such as Analyst’s Notebook® [6], which enable rapid 
exploration of small- to medium-sized relational data sets.  These 
tools depict data as a graph, in which nodes are usually people, 
places, or events, and links are binary relations holding between 
them.  Analysts detect threats by manually “eyeballing” the data.   

While manual link analysis methods can be usefully applied to 
small data sets, they break down when  

• data sets become large or densely connected 
• relevant clues are so widely scattered that they cannot 

be conveniently localized on a single visual display 
• inference is required to understand the significance of 

disparate pieces of evidence in combination.   
These challenges become all the more difficult when the task is to 
detect a terrorist threat before an attack occurs, as opposed to 
investigating after the fact.  This suggests a need for new 
relational data mining methods to help automate link analysis.  
Such link discovery systems have been developed under 
DARPA’s Evidence Extraction and Link Discovery program 
(EELD), including our system, CADRE: Continuous Analysis and 
Discovery from Relational Evidence.   

CADRE implements a form of abductive inference to produce the 
best explanation of a set of observed facts.  Previous research on 
abductive inference includes script-based methods [2] [12]; logic-
based methods [4] [6] [8]; probabilistic methods [10], and hybrid 
systems [3] [11].  Our approach has its roots in Schank’s and 
Charniak’s script- and schema-based approaches to plan 
recognition for natural language understanding [2] [12].  Like this 
work, we represent threat patterns as hierarchically nested, 
templated event sequences. This approach has the advantage that 
it scales well since it enables top-down, pattern-directed 
refinement of hypotheses.  However,  CADRE’s domain—the 
detection and prediction of threat events—presents several new 
challenges, including massive amounts of data, a vast hypothesis 
space, and low observability of attributes and links.   

Unlike natural language understanding, threat detection involves 
correlating a relatively small number of clues scattered among 
very large datasets.  These datasets contain mainly noise and 
clutter, where noise consists of random events that may happen to 
fit a subpattern of the threat pattern, and clutter consists of events 
conforming to a nonthreat pattern having some similarity to the 
threat pattern.  Note that for this type of problem, we are not 
given a set of observations to explain, but rather must search for 
relevant observations, melding data mining with abductive 
inference.  We regard the key challenge for this sort of problem to 
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lie in the efficient generation of hypotheses, rather than in the 
evaluation of hypotheses already generated. The large size of the 
hypothesis space due to high noise and clutter renders De Kleer’s 
candidate generation and conflict recognition algorithm [4] 
unfeasible here since one cannot construct all hypothesis nodes at 
a given level in the hypothesis lattice.  Horn abduction faces a 
similar problem in that there is no way to focus the search for 
explanations so that in the presence of large amounts of noise and 
clutter, searching the hypothesis space is inefficient. A Bayesian 
network representation of the full hypothesis space [10] , even 
though it can compactly represent a very large state space through 
factorization, is not feasible  since there may be millions of values 
for some individual variables in a flat Bayes net representation  
(e.g. the number of a priori possible values of a variable 
representing the leader of a threat event could be huge). 

CADRE deals with the hypothesis generation problem for large 
hypothesis spaces by a carefully tailored combination of bottom-
up and top-down processing, which focuses the search for 
hypotheses in such a way that the number of hypotheses 
generated is manageable.  In addition, we have implemented a 
very compact encoding of large numbers of hypotheses that 
avoids the need to store full hypotheses explicitly.  To deal with 
the incompleteness and sparseness of relevant data, we employ a 
hierarchical, constraint-based representation of patterns that 
allows incremental filling in of a hypothesis at different levels and 
that permits constraint-based inferences about missing data.   

The following sections describe CADRE’s approach to handling 
the problem of hypothesis generation and evaluation for large, 
noisy datasets.  Section 2 describes the relevant features of the 
problem domain.  Section 3 gives a high-level view of the 
CADRE system, and the next two sections delve into the details 
of hypothesis generation and hypothesis evaluation. 

2. PROBLEM DOMAIN 
The EELD program (funded by DARPA) supported research on 
the problem of detecting threat activity in massive amounts of 
data.  For testing, evidence and ground truth were generated by a 
simulator in which parameters such as the observability of events, 
the amount of noise and clutter, and the degree to which evidence 
suffers corruption, were systematically varied.  The simulated 
data describes an artificial world in which there are threat and 
non-threats groups carrying out activities that on the surface may 
look very similar.  A collection of individuals from the same 
group may form a team to carry out an “exploitation” directed at 
some “target.” In the case of teams from non-threat groups, the 
exploitations are benign—they consist of the productive use of 
resources and capabilities applied to the target.  Teams from 
threat groups, however, although they may sometimes engage in 
benign exploitations, also engage in threat exploitations, in which 
harm is done to the target. 

Both threat and non-threat exploitations follow a common pattern: 
first an exploitation team is recruited through a series of 
communications, next needed resources for the exploitation are 
acquired, and finally the exploitation is consummated by applying 
the resources and capabilities of the team members to the target.  
Threat and non-threat exploitations differ only by probabilistic 
differences in the timing of events, by the particular combination 
of resources and capabilities employed (called threat vs. non-

threat modes), and, of course, by the fact that only threat groups 
carry out threat exploitations. 

In addition to the large dataset size, three particularly challenging 
aspects of the simulated data are noise, clutter, and partial 
observability.  The simulated datasets used in the EELD 2003 
evaluation featured up to 10,000 entities and 100,000 links, with 
clutter and noise events far outnumbering threat events.  Only half 
of resource acquisitions and communications in the ground truth 
are published in the evidence data, and only half of the members 
of threat groups are declared.  This means that link detection 
systems must provide effective mechanisms for partial matching.  
With the low signal-to-noise ratio, they must be able to efficiently 
represent and process large numbers of candidate hypothesis.  To 
avoid being misled by the clutter, they must also have hypothesis 
evaluation algorithms to prune least likely hypotheses without 
breaking down if certain key elements of the hypothesis are 
omitted. 

3. SYSTEM OVERVIEW 
CADRE’s hypothesis generation engine uses a declarative 
representation of a prototypical threat pattern to query evidence 
and automatically construct hypotheses.  To facilitate rapid 
definition of such patterns we provide a compact language and 
knowledge base (see Figure 1) for specifying events, entities and 
relations using multiple inheritance and contexts, which are 
similar to the Cyc  system’s microtheories for partitioning 
information.  This language also represents object and temporal 
constraints among pattern slots, where a slot is a binary relation 
between a pattern instance and another class instance or primitive 
type.  To focus initial search, we allow analysts to annotate 
specific slots and constraints deemed useful for triggering 
candidate threats.  As shown in Figure 1, during the trigger stage 
CADRE automatically compiles and executes queries for the 
annotated slots and constructs initial hypotheses from the results.  
It then refines these hypotheses by recursively querying for 
remaining unfilled slots based on constraints involving known 
slots.  The most elaborate refined hypotheses are found at the 
leaves of a context tree in which each subcontext in the context 
inheritance hierarchy adds a single contributing piece of evidence.  
These leaf hypotheses are considered local hypotheses, because 
each one describes a single candidate threat event of interest.  

 

 

 

 

 

 

 

Figure 1.  CADRE combines abductive reasoning and 
probabilistic models to support link discovery. 

Hypothesis evaluation in CADRE takes as input all local 
hypotheses, and produces a single global hypothesis consisting of 
the most likely compatible set of local hypotheses.  During the 
evaluate stage in Figure 1, a probability score for each local 
hypothesis is computed by mapping subevents and their 
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intervening time intervals to observations in Hidden Markov 
Models (HMMs).  We compute a global hypothesis by examining 
local hypotheses in order of descending score and pruning any 
hypotheses that conflict with surviving higher-scoring hypotheses.  
Conflicts are detected via a mutual exclusion algorithm that 
checks for differing slot values in a pair of hypotheses describing 
the same event.   

4. HYPOTHESIS GENERATION 
CADRE supports automatic link analysis through two main 
stages: bottom-up inference via triggering rules, and top-down 
inference via abductive hypothesis refinement.  Underlying both 
stages is an expressive framework for representing both patterns 
and hypotheses. 

4.1 Pattern Representation 
Threat and non-threat exploitations are represented in the 
language of the ALPHATECH Knowledge Server (AKS).  AKS 
is a frame-based knowledge representation system built in Prolog.  
It represents concepts as a class hierarchy with multiple 
inheritance, slots with type and cardinality constraints, and default 
inheritance of slot values.  In addition, it incorporates certain 
constructions from description logics, such as enumerations and 
class unions. Further details on AKS can be found in [5].  

To facilitate automatic hypothesis generation, AKS enables us to 
place constraints on classes and their slots.  A class is defined by 
a set of slots and constraints between slots.  Each slot has a type, 
for example the slot twoWayComm is of type communication which 
means that any filler of twoWayComm must be an instance of the 
communication class.  Constraints are expressed as relations 
between slot chains, which represent successive slots in the object 
hierarchy, each separated by a period.  For example, the following 
class chainedCommunication represents a sequence of 
communications in which the respondent of the twoWayComm is 
constrained to be equal to the initiator of the twoWayComm of the 
subsequentComms slot. 

 Class chainedCommunication 
  twoWayComm : communication 
  subsequentComms : chainedCommunication 
  twoWayComm.respondent =  
     subsequentComms.twoWayComm.initiator 
  subsequentComms.twoWayComm.timeStamp =  
     twoWayComm.timeStamp + [0, 12] hours 
 End 
 
AKS also represents temporal constraints among subevents.  In 
the above example, we have a temporal constraint restricting the 
initial communication of the embedded chained communication to 
occur from 0 to 12 hours after the initial communication of the 
parent chained communication.  Meiri’s path consistency 
algorithm [9] is used to check the consistency of temporal 
constraints in hypothesized threat exploitation instances.  
Temporal and equality constraints are used to generate triggering 
rules for hypotheses and to generate queries for the refinement of 
those hypotheses. Furthermore, CADRE can operate on recursive 
patterns that contain a subevent of the same type as the pattern 
itself, as illustrated in the above example. 

4.2 Hypothesis Representation 
 In the problem domain to which we have applied CADRE, there 
are typically many consistent ways of matching data to a pattern.  
Managing the large number of hypotheses that result was a central 
concern for the design of CADRE.  To address this issue, CADRE 
employs a representation analogous to the track-tree 
representation in multi-hypothesis tracking, a widely used 
technique in data fusion applications [1].  CADRE applies two 
main concepts from multi-hypothesis tracking to relational link 
discovery: 1) an algorithm for assembling a global hypothesis on-
the-fly from the best candidate local hypotheses (see Section 5), 
and 2) a packed tree representation of local hypotheses in which 
child nodes in the tree represent elaboration of additional links in 
the hypothesis.  Each node is a separate context corresponding to 
a partially filled-out hypothesis.  The root context corresponds to 
the raw evidence data.  The tree is extended by making queries 
within each current leaf context, based on the assumptions of that 
context, and creating new child contexts corresponding to the 
different data matches obtained.  The hypothesis tree structure 
compactly represents hypotheses via context inheritance; each 
context inherits the information present in the parent context and 
so only needs to store a single match to a query. 

 
Figure 2.  Hypotheses are elaborated in context trees. 

In  
Figure 2, CADRE has generated a query for the slot 
initialCommunication, and found three matching data items, comm01, 
comm02, and comm03.  Each context contains one hypothesis, an 
instance of the class vulnerabilityExploitation.  In the top context, the 
hypothesis has values for the slots directingAgent and actors as 
indicated by the equality statements.  In the next level of the 
context tree, only the values for the initialCommunication slot are 
stored. 

Since global hypotheses can be constructed by simply selecting 
one local hypothesis per context tree, it follows that a set of m 
context trees implicitly represents hm distinct global hypotheses, if 
h is the number of local hypotheses in each context tree.  
Therefore, given a branching factor b, and depth d, the overall 
compression factor achieved by our factored hypothesis 
representation is given as follows: 
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Context Hyp1

Instance VEX1 : vExploitation

directingAgent = person1

actors = [person1,person2,person3]

End

Context Hyp1a

Instance VEX1

initialComm = comm1

End

Context Hyp1b

Instance VEX1

initialComm = comm2

End

Context Hyp1c

Instance VEX1

initialComm = comm3

End



Empirical studies based on characteristics of EELD’s 2002 
datasets show a space savings of ~1042 for b=1.5 and d=m=10. 

4.3 Triggering Rules 
Identifying instances of patterns in evidence begins with a 
bottom-up search for specific data that trigger the possibility of a 
hypothesis.  We refer to these initial data queries as triggering 
rules.  Triggering rules focus on relatively rare events with a high 
probability of appearing in the pattern.  CADRE generates 
triggering rules based on annotated slots and constraints and 
automatically maps bound variables in the query to slot values in 
instantiated hypotheses.  A single pattern may have multiple such 
annotation files to denote disjunctive triggers.  Annotations 
include an anchor slot that identifies the first slot of the query, 
required trigger slots and constraints that must be filled by a 
match, and optional trigger constraints and slots whose filling will 
improve confidence in the match.  Figure 3 illustrates how an 
anchor slot, several required trigger slots, and one required 
constraint are compiled into an executable query.  The output of 
CADRE’s triggering stage is the union of triggered hypotheses 
resulting from each annotation file.  

 

 

 

 

 

 

 

 

 

Figure 3. CADRE generates triggering queries based on 
annotated pattern slots and constraints. 

Good triggering rules have the following features: 

1. They involve events that are not common 

2. They involve events that are strongly associated with 
the pattern of interest 

3. They have connections to other parts of the pattern 

Feature 1’s importance has to do with computational efficiency 
and feasibility.  For example, although it is part of the pattern for 
a threat exploitation that the team members communicate with 
one another, it is not computationally feasible to attempt to find 
threat exploitations by first sifting through all communications in 
search of clusters that satisfy the threat pattern.  Looking at 
communication patterns may only be feasible after a set of 
suspects has been identified through other means.  The second 
feature provides assurance that we are not likely to miss instances 
of the target pattern by focusing on features that, although perhaps 
sometimes found to occur in pattern instances, are frequently 
missing.  Finally, a good starting place for hypothesis generation 
should have the property that it allows us to “unravel” the rest of 
the pattern in the data by following links from the subevents and 

individuals detected in triggering to other subevents or individuals 
that may be involved in the pattern instance. 

4.4 Hypothesis Refinement 
Following triggering, CADRE extends the triggered hypotheses in 
a top-down process we call hypothesis refinement.  Hypothesis 
refinement takes as input the set of triggered hypotheses and 
emulates the manual link analysis process by incrementally 
expanding each partial match with new linked evidence that 
satisfies constraints involving known slots.  The output of 
hypothesis refinement is a set of local hypotheses that have been 
maximally associated with available evidence. 

We can view the evidence and pattern as graphs.  Triggering thus 
produces a match of a subgraph of the pattern to a subgraph of the 
evidence.  In this formulation, hypothesis refinement can be 
explained as the process of incrementally extending this match 
based on the pattern description.  For a given hypothesis, CADRE 
generates queries for an unfilled slot by examining constraints 
that relate the unfilled slot to filled slots.  For example, given the 
following hypothesis instance and class constraints, CADRE will 
query for fillers of the initialCommunication slot that meet the 
criteria that the initiator is person001 and the respondent  is 
person001, person002, or person003: 

 Class vulnerabilityExploitationCase 
  initialCommunication.initiator = directingAgent 
  initialCommunication.respondent subset actors 
 End 
 
 Instance hyp001: vulnerabilityExploitationCase 
  directingAgent = person001 
  actors = [person001, person002, person003] 
 End 

5. HYPOTHESIS EVALUATION 
The result of hypothesis generation is a set of local hypotheses, 
each concerning a potential threat exploitation.  The next stage, 
hypothesis evaluation, takes as input the most elaborate local 
hypotheses at the leaves of the context trees and produces a global 
hypothesis, which is the set of most likely mutually consistent 
hypotheses.  To generate a global hypothesis from a set of local 
hypotheses, we again borrow from hypothesis management 
methods used in the multi-hypothesis tracking domain [1] to 
evaluate and prune local hypotheses.  First, we generate a 
likelihood score for each hypothesis, using an HMM evaluator 
described below.  Then we apply a greedy algorithm, starting with 
the most likely hypothesis, eliminating all hypotheses with which 
it is inconsistent, and then iterating with the next most likely local 
hypothesis.   

To determine whether two local hypotheses are inconsistent, we 
use a mutual exclusion algorithm that compares values of 
corresponding functional and uniquely identifying properties.  A 
functional property, such as the directing agent of the 
exploitation, cannot have more than one value.  A uniquely 
identifying property is a property such that each possible value of 
the property can be held by at most one entity.  If two hypotheses 
have different values for a functional property but the same value 
for a uniquely identifying property, then they are inconsistent. 
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5.1 HMM Evaluator 
We have developed the algorithm HEVAL that evaluates a 
hypothesis H by computing three conditional probabilities: 
P(V|H), P(PT|H), and P(PNT|H).  These are the posterior 
probabilities that the hypothesis contains evidence from either a 
Vulnerability (V) exploitation case, a Productivity exploitation 
case by a Threat group (PT), or a Productivity case by a Non-
Threat group (PNT).  These three interpretations (case types) are 
mutually exclusive, and the probabilities sum to 1.  The 
hypothesis H may be either a complete exploitation event or a 
collection of one or more substages within the exploitation. 

A variety of optimal classifiers may be based on these 
probabilities.  The minimum-error classifier assigns H to a case 
type that has the highest probability.  If social costs are specified 
for classification errors, then the optimal Bayes classifier assigns 
H to a case type that has the smallest expected social cost. 

The conditional probabilities are computed by using Bayes’s rule, 
P(x|E) = P(E|x)P(x)/P(E), where x is the case type and E is the 
evidence in the hypothesis.  The likelihoods, P(E|x) for x in 
{V,PT,PNT}, are computed using probabilistic models for the 
different types of evidence.  Sequences of time-tagged evidence 
E(time) (about communications, acquisitions, target visits, and 
asset applications) are modeled as random processes using Hidden 
Markov Models (HMMs).  Non-temporal pieces of evidence 
E(mode) (about exploitation modes), E(group) (about group 
memberships of actors), and E(assets) (about the number of assets 
that are confirmed by acquisitions or application events) are 
modeled separately.  The complete set of models form a two-level 
Bayes net in which the exploitation case type is dependent on the 
outputs of temporal evidence, mode evidence, group evidence, 
and asset evidence. 

The different types of evidence are modeled as conditionally 
independent, given the case type, so that P(E|x) may be computed 
as the product: 

 
P(E(time)|x)P(E(mode)|x)P(E(group)|x)P(E(assets)|x) 

 
Partial observability, corruption, and noise in the evidence are 
easily modeled using HMMs, as depicted in Figure 4.  Other types 
of errors may also occur in the hypothesis generation process.  
For example, if a resource application is unobserved, then the 
subsequent two-way communication, which always follows it, 
will also be missing from the hypothesis.  Such temporally 
dependent errors are modeled by expanding the state space of the 
HMM as necessary. 

 
 
 
 
 
 

Figure 4.  Modeling evidence that is degraded by partial 
observability, corruption, and noise. 

Three sets of HMMs were specified, one for each of the case 
types.  Each HMM was built by interconnecting a set of 
submodels.  The specification of these submodels and their 
interconnections were facilitated by a modeling technology [14] 
originally developed for modeling and analyzing amino-acid 
sequences of proteins.  This technology is based on a gluing 
theorem that makes it practical for a human expert to specify any 
number of nested submodels, interconnect them, and thereby 
implement complex HMMs involving thousands of states.  The 
submodels represent such processes as chain communications (the 
receiver of one communication acts as the sender of the next), 
full-team communications (a related set of communications 
involving all team members), target visits (an optional activity in 
which a threat team visits the target before the threat event), and 
resource acquisitions with associated confirming two-way 
communications (after acquiring a resource the buyer 
immediately contacts the directing agent). 

An example of the model structure for a Full-team 
Communication Event is depicted in Figure 5.  Each branch is 
labeled with the probability that the process will follow it. The 
probability distributions for the delays (uniform over a finite 
interval) and the branching probabilities depend on the 
exploitation case type. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.  Structure of Full-Team Communication Event. 

 
To facilitate the independent evaluation of evidence in arbitrary 
substages of a hypothesis, only relative timing information within 
each stage was modeled.  That is, the durations separating events 
were modeled but not individual event occurrence times. The 
probability durations separating events are different for the 
different case types and so relative timing provides a basis for 
distinguishing between the three different case types.  The case 
types also differ in their modes and the group memberships of the 
actors.  

The likelihoods of the HMMs were computed using the optimal 
filtering algorithm for categorical sequences in [14].  This 
algorithm computes the conditional probability distribution of the 
evidence that is about to occur at time t+1, given all past and 
present evidence at time t.  The evidence in the hypothesis being 
evaluated is encoded as a set of categorical time series.  For scalar 
communication processes that occur during the recruitment phase 
and during full-team communications, a single time series is 
sufficient.  For resource acquisition and asset application during 
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the consummation substage, multiple simultaneous time series are 
used to model independent processes occurring simultaneously.  
The probability distributions over the event-time differences for 
these simultaneous processes were precomputed and stored in 
multidimensional arrays.  HEVAL uses these distributions and the 
HMMs: it applies optimal filtering and Bayes’ rule to compute the 
conditional probabilities of the case types, given the evidence in 
the hypothesis being evaluated and a distribution of prior 
probabilities over the case types. 

5.2 HMM and HEVAL Validation 
The HMMs and HEVAL were validated by using simulated 
hypotheses constructed from ground truth before applying them to 
actual CADRE output.  The test file contained 86 V exploitation 
cases, 8 PT cases, and 96 PNT cases.  HEVAL was used to 
implement a minimum-error classifier with uniform prior 
probabilities over the three case types. The performance of the 
classifier for detecting V cases is summarized in Table 1.  Here 
the false-positive rate is the conditional probability that the 
detector declares the evidence in the hypothesis to be a V case, 
given that the evidence is not from a V case. The false-negative 
rate is the conditional probability that the detector declares the 
evidence to be a PT or PNT case, given that the evidence is 
actually from a V case. Recall is the complement of the false-
negative rate, and precision is the conditional probability that the 
evidence is from a V case, given that the detector assigned the 
evidence to a V case. 

Table 1.  Validation of HMMs and HEVAL. 
Observa-

bility 
Corrup-

tion 
False 

pos. rate 
False 

neg. rate Recall Precision 
0.990 0.010 0.078 0.000 1.000 0.865 
0.750 0.200 0.090 0.035 0.965 0.837 

 
The observability (probability of observing events) is very high 
and the corruption (probability of mis-labeling or mis-assigning 
an event) is very low in these simulated hypotheses. Telling 
HEVAL that these parameters are 0.99 and 0.01, respectively, 
yields high recall (1.000) and reasonably high precision (0.865) as 
expected. When observability and corruption are mis-specified as 
0.75 and 0.2 respectively, the recall and precision drop only 
slightly, which indicates that the evaluation of the simulated 
hypotheses is not overly sensitive to these parameters.  These 
results validate that, given sufficient detail in refined hypotheses, 
HEVAL can accurately classify the hypothesis as a threat or non-
threat exploitation. 

6. EXPERIMENTAL RESULTS 
The 2003 EELD end-year evaluation involved thirteen simulated 
datasets with varying levels of observability, clutter, and 
corruption.  Variants with high connectivity or high rates of threat 
cycle completion were also included as individual specialized 
datasets.  The evaluation contractor, IET Inc., provided only 
evidence filtered according to the above parameters, while 
retaining full ground truth for scoring purposes.  IET developed 
automated scoring software taking as input a set of LD-output 
hypotheses and a corresponding “answer key” containing ground 
truth threat events only.  Full details of the scoring algorithm are 
provided in [13].  Essentially, the software first searches for best 

matches of LD hypotheses to answer key threats using a greedy 
algorithm that compares a limited set of attributes.  Then, a graph 
edit distance algorithm examining all attributes is used to 
determine a match score for each case pair.  This score is 
weighted to reflect varying importance of attributes, then 
normalized.  Variations of information retrieval’s traditional 
recall and precision metrics were defined as follows: 

• Weighted recall = sum of normalized match quality of 
paired cases divided by actual # of LD-output cases. 

• Weighted precision = sum of normalized match quality of 
paired cases divided by actual # of ground truth cases. 

6.1 Overall Results 
Figure 6 shows CADRE’s weighted precision vs. weighted recall 
for the first eleven datasets, as compared to scores resulting from 
another EELD link detection system and scores resulting from 
raw, unprocessed evidence.  CADRE’s results reflect tuning and 
debugging performed after the original experiment, due to 
problems with CADRE’s database interface at the time of the 
evaluation.  Results from the other link detection system are from 
the original evaluation.  In all cases, CADRE’s weighted recall 
scores were significantly higher than the evidence basis.  For low 
observability datasets 1, 3, 5, and 7, CADRE’s weighted recall 
and its relative improvement over raw evidence were significantly 
lower than for the other datasets.  For these datasets, only half of 
the communications and resource acquisition events were 
reported in the raw evidence, leading to missed detections during 
triggering. 

Note that weighted precision of the raw evidence basis is typically 
high because this metric only scores the evidence assertions 
corresponding to ground truth threats, that is, no false alarm threat 
events are included.  Thus, any lack of precision in the evidence 
basis scores is due to corruption.   
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Figure 6.  CADRE’s weighted recall and precision as 

compared to raw evidence and another link detection system. 
A particularly interesting result is CADRE’s high precision on the 
uncorrupted low observability cases 3 and 7.  By relaxing the 
triggering conditions, CADRE’s low recall for these cases would 
have likely increased at the expense of precision.  Also note that 
CADRE was able to find over 50% of the data for “curtailed” 
threat events in 12, meaning that CADRE was able to predict a 
threat event would occur using only evidence available prior to 
the actual attack.  Because of the relatively scant evidence for 
these events, precision suffered, at 35%, but given the high social 



cost of real threat events, this may be an acceptable false alarm 
rate for law enforcement.    

6.2 Impact of Hypothesis Evaluation 
During follow-on experiments, we assessed the impact of 
HEVAL’s probabilistic hypothesis evaluation as compared to an 
alternate ad-hoc evaluation method, which computes the 
percentage of slots which were assigned values for each local 
hypothesis and uses that percentage as the hypothesis' score.  The 
alternate method emphasizes weighted recall over precision, since 
hypotheses with more information will always score higher than 
those with less, even if they are less accurate.  Thus, we would 
expect that HEVAL would yield better weighted precision scores 
than the alternate method.     

Dataset Slot Prec. Slot Rec. Heval Prec. HMM Rec.
6 Corrupt 0.64 0.69 0.7 0.62
8 Default 0.88 0.72 0.95 0.69
19 Fair connectivity 0.35 0.71 0.39 0.71
22 Easy target duty 0.91 0.71 0.94 0.63  

Table 2.  HEVAL yields slight improvements in  weighted 
precision. 

Using training datasets for which ground truth was provided, we 
manually derived the minimum acceptable threshold posterior 
probability for HEVAL leading to peak precision performance.  
Table 2 shows the weighted precision and recall results from 
selected datasets comparing HEVAL to the recall-based method.  
As expected, HEVAL led to small precision improvements.  
However, these improvements were balanced by slight losses in 
recall.  One possible explanation for the loss of recall this is the 
use of the cutoff probability, since any hypotheses containing 
elements of ground truth threats falling below the cutoff would 
not be considered.  The slot percentage evaluation method did not 
use a cutoff, rather, it accepted all hypotheses that were not in 
conflict with a higher-scoring hypothesis. 
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Figure 7.  HEVAL produces a smoother performance curve 

than ad hoc metrics. 
Despite the relatively small improvement in precision, HEVAL 
has a second advantage over the slot-percentage metric, namely 
that it exhibits a much smoother performance curve that is more 
amenable to choosing an optimal cutoff for low probability 
hypotheses.  Figure 7 shows the performance plot for a single 
dataset, in which the local hypotheses have been sorted by 
descending score for both HEVAL and slot-percentage metrics.  

Because of the limited number of slots included in the 
computation, the slot-percentage metric exhibits only a few 
“quantum states,” making it difficult to pick an optimal cutoff.  In 
fact, attempts to find an optimal cutoff by hand always led to 
rejected hypotheses that corresponded to ground truth threats.  
With HEVAL, we found experimentally that a threshold of 0.2 
maximized the precision benefit while minimizing the recall loss. 

7. CONCLUSIONS 
These results suggest that CADRE has significant advantages 
over other systems for abductive inference when the hypothesis 
space is so large that exhaustive enumeration of hypotheses is out 
of the question.  In contrast to systems such as those described in 
[3] and [11], CADRE constructs hypotheses incrementally, 
starting from data known to be strongly relevant and using 
constraint-based reasoning to guide the search for additional 
pattern matches.  This approach allows CADRE to be usefully 
applied to realistic problems involving massive amounts of data in 
which instances of the target pattern are sparse and incomplete. 
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