
Multi-Hypothesis Abductive Reasoning for Link Discovery
Nicholas J. Pioch, Daniel Hunter, James V. White, Amy Kao, Daniel Bostwick, Eric K. Jones

ALPHATECH, Inc.
6 New England Executive Park

Burlington, MA 01803
781-273-3388

{npioch, dhunter, jwhite, akao, bostwick, ejones}@alphatech.com

ABSTRACT
Intelligence agencies are under increasing pressure to “connect
the dots” between fragments of evidence from disparate sources
to enable preemption of potential threats such as terrorist attacks.
Most systems for threat detection in use today provide only data
visualization tools for manual “link analysis,” leading to methods
that do not scale to massive data sets. The CADRE system
(Continuous Analysis and Discovery from Relational Evidence)
addresses this deficiency by automating the link analysis process.
CADRE combines an expressive knowledge representation of
threat patterns with efficient, constraint-based abductive
reasoning algorithms to automatically infer links and construct
coherent threat hypotheses from structured data. A compact,
factored representation of multiple hypotheses avoids redundant
storage and enables scaling to large data sets. CADRE efficiently
manages the growth of the hypotheses using probabilistic
evaluation models and a consistency checking algorithm to prune
unlikely hypotheses.

Categories and Subject Descriptors
I.5.4 [Pattern Recognition]: Applications

I.2.4 [Artificial Intelligence]: Knowledge Representation
Formalisms and Methods

General Terms
Algorithms, Performance, Design, Experimentation.

Keywords
Data mining, link analysis, abductive reasoning, Hidden Markov
Models, pattern representation.

1. INTRODUCTION
With the increasing threat of global terrorism, and an ever-
growing sea of computerized intelligence data, manual analysis
techniques cannot provide enough coverage to reliably detect
threatening activity. To date, most systems used by intelligence

and law enforcement agencies have been limited to link analysis
tools, such as Analyst’s Notebook® [6], which enable rapid
exploration of small- to medium-sized relational data sets. These
tools depict data as a graph, in which nodes are usually people,
places, or events, and links are binary relations holding between
them. Analysts detect threats by manually “eyeballing” the data.

While manual link analysis methods can be usefully applied to
small data sets, they break down when

• data sets become large or densely connected
• relevant clues are so widely scattered that they cannot

be conveniently localized on a single visual display
• inference is required to understand the significance of

disparate pieces of evidence in combination.
These challenges become all the more difficult when the task is to
detect a terrorist threat before an attack occurs, as opposed to
investigating after the fact. This suggests a need for new
relational data mining methods to help automate link analysis.
Such link discovery systems have been developed under
DARPA’s Evidence Extraction and Link Discovery program
(EELD), including our system, CADRE: Continuous Analysis and
Discovery from Relational Evidence.

CADRE implements a form of abductive inference to produce the
best explanation of a set of observed facts. Previous research on
abductive inference includes script-based methods [2] [12]; logic-
based methods [4] [6] [8]; probabilistic methods [10], and hybrid
systems [3] [11]. Our approach has its roots in Schank’s and
Charniak’s script- and schema-based approaches to plan
recognition for natural language understanding [2] [12]. Like this
work, we represent threat patterns as hierarchically nested,
templated event sequences. This approach has the advantage that
it scales well since it enables top-down, pattern-directed
refinement of hypotheses. However, CADRE’s domain—the
detection and prediction of threat events—presents several new
challenges, including massive amounts of data, a vast hypothesis
space, and low observability of attributes and links.

Unlike natural language understanding, threat detection involves
correlating a relatively small number of clues scattered among
very large datasets. These datasets contain mainly noise and
clutter, where noise consists of random events that may happen to
fit a subpattern of the threat pattern, and clutter consists of events
conforming to a nonthreat pattern having some similarity to the
threat pattern. Note that for this type of problem, we are not
given a set of observations to explain, but rather must search for
relevant observations, melding data mining with abductive
inference. We regard the key challenge for this sort of problem to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference’04, Month 1–2, 2004, City, State, Country.
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

lie in the efficient generation of hypotheses, rather than in the
evaluation of hypotheses already generated. The large size of the
hypothesis space due to high noise and clutter renders De Kleer’s
candidate generation and conflict recognition algorithm [4]
unfeasible here since one cannot construct all hypothesis nodes at
a given level in the hypothesis lattice. Horn abduction faces a
similar problem in that there is no way to focus the search for
explanations so that in the presence of large amounts of noise and
clutter, searching the hypothesis space is inefficient. A Bayesian
network representation of the full hypothesis space [10] , even
though it can compactly represent a very large state space through
factorization, is not feasible since there may be millions of values
for some individual variables in a flat Bayes net representation
(e.g. the number of a priori possible values of a variable
representing the leader of a threat event could be huge).

CADRE deals with the hypothesis generation problem for large
hypothesis spaces by a carefully tailored combination of bottom-
up and top-down processing, which focuses the search for
hypotheses in such a way that the number of hypotheses
generated is manageable. In addition, we have implemented a
very compact encoding of large numbers of hypotheses that
avoids the need to store full hypotheses explicitly. To deal with
the incompleteness and sparseness of relevant data, we employ a
hierarchical, constraint-based representation of patterns that
allows incremental filling in of a hypothesis at different levels and
that permits constraint-based inferences about missing data.

The following sections describe CADRE’s approach to handling
the problem of hypothesis generation and evaluation for large,
noisy datasets. Section 2 describes the relevant features of the
problem domain. Section 3 gives a high-level view of the
CADRE system, and the next two sections delve into the details
of hypothesis generation and hypothesis evaluation.

2. PROBLEM DOMAIN
The EELD program (funded by DARPA) supported research on
the problem of detecting threat activity in massive amounts of
data. For testing, evidence and ground truth were generated by a
simulator in which parameters such as the observability of events,
the amount of noise and clutter, and the degree to which evidence
suffers corruption, were systematically varied. The simulated
data describes an artificial world in which there are threat and
non-threats groups carrying out activities that on the surface may
look very similar. A collection of individuals from the same
group may form a team to carry out an “exploitation” directed at
some “target.” In the case of teams from non-threat groups, the
exploitations are benign—they consist of the productive use of
resources and capabilities applied to the target. Teams from
threat groups, however, although they may sometimes engage in
benign exploitations, also engage in threat exploitations, in which
harm is done to the target.

Both threat and non-threat exploitations follow a common pattern:
first an exploitation team is recruited through a series of
communications, next needed resources for the exploitation are
acquired, and finally the exploitation is consummated by applying
the resources and capabilities of the team members to the target.
Threat and non-threat exploitations differ only by probabilistic
differences in the timing of events, by the particular combination
of resources and capabilities employed (called threat vs. non-

threat modes), and, of course, by the fact that only threat groups
carry out threat exploitations.

In addition to the large dataset size, three particularly challenging
aspects of the simulated data are noise, clutter, and partial
observability. The simulated datasets used in the EELD 2003
evaluation featured up to 10,000 entities and 100,000 links, with
clutter and noise events far outnumbering threat events. Only half
of resource acquisitions and communications in the ground truth
are published in the evidence data, and only half of the members
of threat groups are declared. This means that link detection
systems must provide effective mechanisms for partial matching.
With the low signal-to-noise ratio, they must be able to efficiently
represent and process large numbers of candidate hypothesis. To
avoid being misled by the clutter, they must also have hypothesis
evaluation algorithms to prune least likely hypotheses without
breaking down if certain key elements of the hypothesis are
omitted.

3. SYSTEM OVERVIEW
CADRE’s hypothesis generation engine uses a declarative
representation of a prototypical threat pattern to query evidence
and automatically construct hypotheses. To facilitate rapid
definition of such patterns we provide a compact language and
knowledge base (see Figure 1) for specifying events, entities and
relations using multiple inheritance and contexts, which are
similar to the Cyc system’s microtheories for partitioning
information. This language also represents object and temporal
constraints among pattern slots, where a slot is a binary relation
between a pattern instance and another class instance or primitive
type. To focus initial search, we allow analysts to annotate
specific slots and constraints deemed useful for triggering
candidate threats. As shown in Figure 1, during the trigger stage
CADRE automatically compiles and executes queries for the
annotated slots and constructs initial hypotheses from the results.
It then refines these hypotheses by recursively querying for
remaining unfilled slots based on constraints involving known
slots. The most elaborate refined hypotheses are found at the
leaves of a context tree in which each subcontext in the context
inheritance hierarchy adds a single contributing piece of evidence.
These leaf hypotheses are considered local hypotheses, because
each one describes a single candidate threat event of interest.

Figure 1. CADRE combines abductive reasoning and
probabilistic models to support link discovery.

Hypothesis evaluation in CADRE takes as input all local
hypotheses, and produces a single global hypothesis consisting of
the most likely compatible set of local hypotheses. During the
evaluate stage in Figure 1, a probability score for each local
hypothesis is computed by mapping subevents and their

Knowledge Base: Patterns and other Models

Refine

Evaluate Scores Prune

Global
hypothesis

New local
hypothesesTrigger

Evidence, Local Hypotheses

HMM Hypothesis Evaluation

Hypothesis Generation

intervening time intervals to observations in Hidden Markov
Models (HMMs). We compute a global hypothesis by examining
local hypotheses in order of descending score and pruning any
hypotheses that conflict with surviving higher-scoring hypotheses.
Conflicts are detected via a mutual exclusion algorithm that
checks for differing slot values in a pair of hypotheses describing
the same event.

4. HYPOTHESIS GENERATION
CADRE supports automatic link analysis through two main
stages: bottom-up inference via triggering rules, and top-down
inference via abductive hypothesis refinement. Underlying both
stages is an expressive framework for representing both patterns
and hypotheses.

4.1 Pattern Representation
Threat and non-threat exploitations are represented in the
language of the ALPHATECH Knowledge Server (AKS). AKS
is a frame-based knowledge representation system built in Prolog.
It represents concepts as a class hierarchy with multiple
inheritance, slots with type and cardinality constraints, and default
inheritance of slot values. In addition, it incorporates certain
constructions from description logics, such as enumerations and
class unions. Further details on AKS can be found in [5].

To facilitate automatic hypothesis generation, AKS enables us to
place constraints on classes and their slots. A class is defined by
a set of slots and constraints between slots. Each slot has a type,
for example the slot twoWayComm is of type communication which
means that any filler of twoWayComm must be an instance of the
communication class. Constraints are expressed as relations
between slot chains, which represent successive slots in the object
hierarchy, each separated by a period. For example, the following
class chainedCommunication represents a sequence of
communications in which the respondent of the twoWayComm is
constrained to be equal to the initiator of the twoWayComm of the
subsequentComms slot.

 Class chainedCommunication
 twoWayComm : communication
 subsequentComms : chainedCommunication
 twoWayComm.respondent =
 subsequentComms.twoWayComm.initiator
 subsequentComms.twoWayComm.timeStamp =
 twoWayComm.timeStamp + [0, 12] hours
 End

AKS also represents temporal constraints among subevents. In
the above example, we have a temporal constraint restricting the
initial communication of the embedded chained communication to
occur from 0 to 12 hours after the initial communication of the
parent chained communication. Meiri’s path consistency
algorithm [9] is used to check the consistency of temporal
constraints in hypothesized threat exploitation instances.
Temporal and equality constraints are used to generate triggering
rules for hypotheses and to generate queries for the refinement of
those hypotheses. Furthermore, CADRE can operate on recursive
patterns that contain a subevent of the same type as the pattern
itself, as illustrated in the above example.

4.2 Hypothesis Representation
 In the problem domain to which we have applied CADRE, there
are typically many consistent ways of matching data to a pattern.
Managing the large number of hypotheses that result was a central
concern for the design of CADRE. To address this issue, CADRE
employs a representation analogous to the track-tree
representation in multi-hypothesis tracking, a widely used
technique in data fusion applications [1]. CADRE applies two
main concepts from multi-hypothesis tracking to relational link
discovery: 1) an algorithm for assembling a global hypothesis on-
the-fly from the best candidate local hypotheses (see Section 5),
and 2) a packed tree representation of local hypotheses in which
child nodes in the tree represent elaboration of additional links in
the hypothesis. Each node is a separate context corresponding to
a partially filled-out hypothesis. The root context corresponds to
the raw evidence data. The tree is extended by making queries
within each current leaf context, based on the assumptions of that
context, and creating new child contexts corresponding to the
different data matches obtained. The hypothesis tree structure
compactly represents hypotheses via context inheritance; each
context inherits the information present in the parent context and
so only needs to store a single match to a query.

Figure 2. Hypotheses are elaborated in context trees.

In
Figure 2, CADRE has generated a query for the slot
initialCommunication, and found three matching data items, comm01,
comm02, and comm03. Each context contains one hypothesis, an
instance of the class vulnerabilityExploitation. In the top context, the
hypothesis has values for the slots directingAgent and actors as
indicated by the equality statements. In the next level of the
context tree, only the values for the initialCommunication slot are
stored.

Since global hypotheses can be constructed by simply selecting
one local hypothesis per context tree, it follows that a set of m
context trees implicitly represents hm distinct global hypotheses, if
h is the number of local hypotheses in each context tree.
Therefore, given a branching factor b, and depth d, the overall
compression factor achieved by our factored hypothesis
representation is given as follows:

m
bbb

mbmb
h mdmdmd

i

i
dd

m)1()1(1

0

2)2(11 −−−

=

≥









+= ∑

Context Hyp1

Instance VEX1 : vExploitation

directingAgent = person1

actors = [person1,person2,person3]

End

Context Hyp1a

Instance VEX1

initialComm = comm1

End

Context Hyp1b

Instance VEX1

initialComm = comm2

End

Context Hyp1c

Instance VEX1

initialComm = comm3

End

Empirical studies based on characteristics of EELD’s 2002
datasets show a space savings of ~1042 for b=1.5 and d=m=10.

4.3 Triggering Rules
Identifying instances of patterns in evidence begins with a
bottom-up search for specific data that trigger the possibility of a
hypothesis. We refer to these initial data queries as triggering
rules. Triggering rules focus on relatively rare events with a high
probability of appearing in the pattern. CADRE generates
triggering rules based on annotated slots and constraints and
automatically maps bound variables in the query to slot values in
instantiated hypotheses. A single pattern may have multiple such
annotation files to denote disjunctive triggers. Annotations
include an anchor slot that identifies the first slot of the query,
required trigger slots and constraints that must be filled by a
match, and optional trigger constraints and slots whose filling will
improve confidence in the match. Figure 3 illustrates how an
anchor slot, several required trigger slots, and one required
constraint are compiled into an executable query. The output of
CADRE’s triggering stage is the union of triggered hypotheses
resulting from each annotation file.

Figure 3. CADRE generates triggering queries based on
annotated pattern slots and constraints.

Good triggering rules have the following features:

1. They involve events that are not common

2. They involve events that are strongly associated with
the pattern of interest

3. They have connections to other parts of the pattern

Feature 1’s importance has to do with computational efficiency
and feasibility. For example, although it is part of the pattern for
a threat exploitation that the team members communicate with
one another, it is not computationally feasible to attempt to find
threat exploitations by first sifting through all communications in
search of clusters that satisfy the threat pattern. Looking at
communication patterns may only be feasible after a set of
suspects has been identified through other means. The second
feature provides assurance that we are not likely to miss instances
of the target pattern by focusing on features that, although perhaps
sometimes found to occur in pattern instances, are frequently
missing. Finally, a good starting place for hypothesis generation
should have the property that it allows us to “unravel” the rest of
the pattern in the data by following links from the subevents and

individuals detected in triggering to other subevents or individuals
that may be involved in the pattern instance.

4.4 Hypothesis Refinement
Following triggering, CADRE extends the triggered hypotheses in
a top-down process we call hypothesis refinement. Hypothesis
refinement takes as input the set of triggered hypotheses and
emulates the manual link analysis process by incrementally
expanding each partial match with new linked evidence that
satisfies constraints involving known slots. The output of
hypothesis refinement is a set of local hypotheses that have been
maximally associated with available evidence.

We can view the evidence and pattern as graphs. Triggering thus
produces a match of a subgraph of the pattern to a subgraph of the
evidence. In this formulation, hypothesis refinement can be
explained as the process of incrementally extending this match
based on the pattern description. For a given hypothesis, CADRE
generates queries for an unfilled slot by examining constraints
that relate the unfilled slot to filled slots. For example, given the
following hypothesis instance and class constraints, CADRE will
query for fillers of the initialCommunication slot that meet the
criteria that the initiator is person001 and the respondent is
person001, person002, or person003:

 Class vulnerabilityExploitationCase
 initialCommunication.initiator = directingAgent
 initialCommunication.respondent subset actors
 End

 Instance hyp001: vulnerabilityExploitationCase
 directingAgent = person001
 actors = [person001, person002, person003]
 End

5. HYPOTHESIS EVALUATION
The result of hypothesis generation is a set of local hypotheses,
each concerning a potential threat exploitation. The next stage,
hypothesis evaluation, takes as input the most elaborate local
hypotheses at the leaves of the context trees and produces a global
hypothesis, which is the set of most likely mutually consistent
hypotheses. To generate a global hypothesis from a set of local
hypotheses, we again borrow from hypothesis management
methods used in the multi-hypothesis tracking domain [1] to
evaluate and prune local hypotheses. First, we generate a
likelihood score for each hypothesis, using an HMM evaluator
described below. Then we apply a greedy algorithm, starting with
the most likely hypothesis, eliminating all hypotheses with which
it is inconsistent, and then iterating with the next most likely local
hypothesis.

To determine whether two local hypotheses are inconsistent, we
use a mutual exclusion algorithm that compares values of
corresponding functional and uniquely identifying properties. A
functional property, such as the directing agent of the
exploitation, cannot have more than one value. A uniquely
identifying property is a property such that each possible value of
the property can be held by at most one entity. If two hypotheses
have different values for a functional property but the same value
for a uniquely identifying property, then they are inconsistent.

Vulnerability
Exploitation

Vulnerability
Mode

Acquiring
Resource

Resource

m
od

eIn
Ex

pl
oi

ta
tio

n

resources

Resource

resourceAcquisitions

resAcquired

resourceAcquisitions.resAcquired subset modeInExploitation.resources

isa(AR, acquiringResource),
value(AR, resAquired, R),
isa(VM, vulnerabilityMode),
value(VM, resources, R)

Code GeneratedAnnotation Fragment

Constraints:

Anchor slot: resourceAcquisitions
Trigger slots: modeInExploitation, modeInExploitation.resources,

resourceAcquisitions.resAcquired

5.1 HMM Evaluator
We have developed the algorithm HEVAL that evaluates a
hypothesis H by computing three conditional probabilities:
P(V|H), P(PT|H), and P(PNT|H). These are the posterior
probabilities that the hypothesis contains evidence from either a
Vulnerability (V) exploitation case, a Productivity exploitation
case by a Threat group (PT), or a Productivity case by a Non-
Threat group (PNT). These three interpretations (case types) are
mutually exclusive, and the probabilities sum to 1. The
hypothesis H may be either a complete exploitation event or a
collection of one or more substages within the exploitation.

A variety of optimal classifiers may be based on these
probabilities. The minimum-error classifier assigns H to a case
type that has the highest probability. If social costs are specified
for classification errors, then the optimal Bayes classifier assigns
H to a case type that has the smallest expected social cost.

The conditional probabilities are computed by using Bayes’s rule,
P(x|E) = P(E|x)P(x)/P(E), where x is the case type and E is the
evidence in the hypothesis. The likelihoods, P(E|x) for x in
{V,PT,PNT}, are computed using probabilistic models for the
different types of evidence. Sequences of time-tagged evidence
E(time) (about communications, acquisitions, target visits, and
asset applications) are modeled as random processes using Hidden
Markov Models (HMMs). Non-temporal pieces of evidence
E(mode) (about exploitation modes), E(group) (about group
memberships of actors), and E(assets) (about the number of assets
that are confirmed by acquisitions or application events) are
modeled separately. The complete set of models form a two-level
Bayes net in which the exploitation case type is dependent on the
outputs of temporal evidence, mode evidence, group evidence,
and asset evidence.

The different types of evidence are modeled as conditionally
independent, given the case type, so that P(E|x) may be computed
as the product:

P(E(time)|x)P(E(mode)|x)P(E(group)|x)P(E(assets)|x)

Partial observability, corruption, and noise in the evidence are
easily modeled using HMMs, as depicted in Figure 4. Other types
of errors may also occur in the hypothesis generation process.
For example, if a resource application is unobserved, then the
subsequent two-way communication, which always follows it,
will also be missing from the hypothesis. Such temporally
dependent errors are modeled by expanding the state space of the
HMM as necessary.

Figure 4. Modeling evidence that is degraded by partial
observability, corruption, and noise.

Three sets of HMMs were specified, one for each of the case
types. Each HMM was built by interconnecting a set of
submodels. The specification of these submodels and their
interconnections were facilitated by a modeling technology [14]
originally developed for modeling and analyzing amino-acid
sequences of proteins. This technology is based on a gluing
theorem that makes it practical for a human expert to specify any
number of nested submodels, interconnect them, and thereby
implement complex HMMs involving thousands of states. The
submodels represent such processes as chain communications (the
receiver of one communication acts as the sender of the next),
full-team communications (a related set of communications
involving all team members), target visits (an optional activity in
which a threat team visits the target before the threat event), and
resource acquisitions with associated confirming two-way
communications (after acquiring a resource the buyer
immediately contacts the directing agent).

An example of the model structure for a Full-team
Communication Event is depicted in Figure 5. Each branch is
labeled with the probability that the process will follow it. The
probability distributions for the delays (uniform over a finite
interval) and the branching probabilities depend on the
exploitation case type.

Figure 5. Structure of Full-Team Communication Event.

To facilitate the independent evaluation of evidence in arbitrary
substages of a hypothesis, only relative timing information within
each stage was modeled. That is, the durations separating events
were modeled but not individual event occurrence times. The
probability durations separating events are different for the
different case types and so relative timing provides a basis for
distinguishing between the three different case types. The case
types also differ in their modes and the group memberships of the
actors.

The likelihoods of the HMMs were computed using the optimal
filtering algorithm for categorical sequences in [14]. This
algorithm computes the conditional probability distribution of the
evidence that is about to occur at time t+1, given all past and
present evidence at time t. The evidence in the hypothesis being
evaluated is encoded as a set of categorical time series. For scalar
communication processes that occur during the recruitment phase
and during full-team communications, a single time series is
sufficient. For resource acquisition and asset application during

2 - Way
Communication

“To Directing Agent”
Actual

Event Types
(states of Markov

Chain in HMM)

Possible
Observations

(Evidence Types)

Nil 2-Way Communication
“To Directing Agent”

2-Way Communication
“No Directing Agent”

Observability 0.5 True 0.4

Corruption 0.1

Nil

Nil

2-Way Communication
“No Directing Agent”

Noise 0.3
True 0.7

Delay
Dmin, Dmax

Delay
Dmin, Dmax

P0

1 – P0

P1

P2

P3

P4

1 – P4

0.09
0.11
0.56

P3

0.2
0.1
0.4

P4

0.27
0.33
0.33

P2P1P0Exploitation
Type

0.64
0.56
0.11

0.2
0.1
0.4

V
PT
PNT

DmaxDminExploitation
Type

15
7
10

3
3
2

V
PT
PNT

Start

End

Chain
Communication
Delay [min, max]

Hub & Spoke
Communication
Delay [min, max]

N-Way
Communication

the consummation substage, multiple simultaneous time series are
used to model independent processes occurring simultaneously.
The probability distributions over the event-time differences for
these simultaneous processes were precomputed and stored in
multidimensional arrays. HEVAL uses these distributions and the
HMMs: it applies optimal filtering and Bayes’ rule to compute the
conditional probabilities of the case types, given the evidence in
the hypothesis being evaluated and a distribution of prior
probabilities over the case types.

5.2 HMM and HEVAL Validation
The HMMs and HEVAL were validated by using simulated
hypotheses constructed from ground truth before applying them to
actual CADRE output. The test file contained 86 V exploitation
cases, 8 PT cases, and 96 PNT cases. HEVAL was used to
implement a minimum-error classifier with uniform prior
probabilities over the three case types. The performance of the
classifier for detecting V cases is summarized in Table 1. Here
the false-positive rate is the conditional probability that the
detector declares the evidence in the hypothesis to be a V case,
given that the evidence is not from a V case. The false-negative
rate is the conditional probability that the detector declares the
evidence to be a PT or PNT case, given that the evidence is
actually from a V case. Recall is the complement of the false-
negative rate, and precision is the conditional probability that the
evidence is from a V case, given that the detector assigned the
evidence to a V case.

Table 1. Validation of HMMs and HEVAL.
Observa-

bility
Corrup-

tion
False

pos. rate
False

neg. rate Recall Precision
0.990 0.010 0.078 0.000 1.000 0.865
0.750 0.200 0.090 0.035 0.965 0.837

The observability (probability of observing events) is very high
and the corruption (probability of mis-labeling or mis-assigning
an event) is very low in these simulated hypotheses. Telling
HEVAL that these parameters are 0.99 and 0.01, respectively,
yields high recall (1.000) and reasonably high precision (0.865) as
expected. When observability and corruption are mis-specified as
0.75 and 0.2 respectively, the recall and precision drop only
slightly, which indicates that the evaluation of the simulated
hypotheses is not overly sensitive to these parameters. These
results validate that, given sufficient detail in refined hypotheses,
HEVAL can accurately classify the hypothesis as a threat or non-
threat exploitation.

6. EXPERIMENTAL RESULTS
The 2003 EELD end-year evaluation involved thirteen simulated
datasets with varying levels of observability, clutter, and
corruption. Variants with high connectivity or high rates of threat
cycle completion were also included as individual specialized
datasets. The evaluation contractor, IET Inc., provided only
evidence filtered according to the above parameters, while
retaining full ground truth for scoring purposes. IET developed
automated scoring software taking as input a set of LD-output
hypotheses and a corresponding “answer key” containing ground
truth threat events only. Full details of the scoring algorithm are
provided in [13]. Essentially, the software first searches for best

matches of LD hypotheses to answer key threats using a greedy
algorithm that compares a limited set of attributes. Then, a graph
edit distance algorithm examining all attributes is used to
determine a match score for each case pair. This score is
weighted to reflect varying importance of attributes, then
normalized. Variations of information retrieval’s traditional
recall and precision metrics were defined as follows:

• Weighted recall = sum of normalized match quality of
paired cases divided by actual # of LD-output cases.

• Weighted precision = sum of normalized match quality of
paired cases divided by actual # of ground truth cases.

6.1 Overall Results
Figure 6 shows CADRE’s weighted precision vs. weighted recall
for the first eleven datasets, as compared to scores resulting from
another EELD link detection system and scores resulting from
raw, unprocessed evidence. CADRE’s results reflect tuning and
debugging performed after the original experiment, due to
problems with CADRE’s database interface at the time of the
evaluation. Results from the other link detection system are from
the original evaluation. In all cases, CADRE’s weighted recall
scores were significantly higher than the evidence basis. For low
observability datasets 1, 3, 5, and 7, CADRE’s weighted recall
and its relative improvement over raw evidence were significantly
lower than for the other datasets. For these datasets, only half of
the communications and resource acquisition events were
reported in the raw evidence, leading to missed detections during
triggering.

Note that weighted precision of the raw evidence basis is typically
high because this metric only scores the evidence assertions
corresponding to ground truth threats, that is, no false alarm threat
events are included. Thus, any lack of precision in the evidence
basis scores is due to corruption.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

Precision (Weighted)

Re
ca

ll
(W

ei
gh

te
d)

Primary Evidence Basis
CADRE
Other LD System

Dataset Parameters:
Low Observability: 1, 3, 5, 7
Corruption: 1, 2, 5, 6
High Clutter: 5-11
High Connectivity: 9
High Threat Cycle Rate: 10
High Confusability: 11
Curtailed: 12
Unknown Probabilities : 13

1

1

12

2

2

3

13

3

4

4

4

5

5

5

6

6

6

7

10

7

8,11 8

8,11

9

9

910

 7

10 11

1212

12
13

13

3

Figure 6. CADRE’s weighted recall and precision as

compared to raw evidence and another link detection system.
A particularly interesting result is CADRE’s high precision on the
uncorrupted low observability cases 3 and 7. By relaxing the
triggering conditions, CADRE’s low recall for these cases would
have likely increased at the expense of precision. Also note that
CADRE was able to find over 50% of the data for “curtailed”
threat events in 12, meaning that CADRE was able to predict a
threat event would occur using only evidence available prior to
the actual attack. Because of the relatively scant evidence for
these events, precision suffered, at 35%, but given the high social

cost of real threat events, this may be an acceptable false alarm
rate for law enforcement.

6.2 Impact of Hypothesis Evaluation
During follow-on experiments, we assessed the impact of
HEVAL’s probabilistic hypothesis evaluation as compared to an
alternate ad-hoc evaluation method, which computes the
percentage of slots which were assigned values for each local
hypothesis and uses that percentage as the hypothesis' score. The
alternate method emphasizes weighted recall over precision, since
hypotheses with more information will always score higher than
those with less, even if they are less accurate. Thus, we would
expect that HEVAL would yield better weighted precision scores
than the alternate method.

Dataset Slot Prec. Slot Rec. Heval Prec. HMM Rec.
6 Corrupt 0.64 0.69 0.7 0.62
8 Default 0.88 0.72 0.95 0.69
19 Fair connectivity 0.35 0.71 0.39 0.71
22 Easy target duty 0.91 0.71 0.94 0.63

Table 2. HEVAL yields slight improvements in weighted
precision.

Using training datasets for which ground truth was provided, we
manually derived the minimum acceptable threshold posterior
probability for HEVAL leading to peak precision performance.
Table 2 shows the weighted precision and recall results from
selected datasets comparing HEVAL to the recall-based method.
As expected, HEVAL led to small precision improvements.
However, these improvements were balanced by slight losses in
recall. One possible explanation for the loss of recall this is the
use of the cutoff probability, since any hypotheses containing
elements of ground truth threats falling below the cutoff would
not be considered. The slot percentage evaluation method did not
use a cutoff, rather, it accepted all hypotheses that were not in
conflict with a higher-scoring hypothesis.

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40

Local Hypothesis Rank

Lo
ca

l H
yp

ot
he

si
s

S
co

re

Heval Scores
Slot % Scores

cutoff

Figure 7. HEVAL produces a smoother performance curve

than ad hoc metrics.
Despite the relatively small improvement in precision, HEVAL
has a second advantage over the slot-percentage metric, namely
that it exhibits a much smoother performance curve that is more
amenable to choosing an optimal cutoff for low probability
hypotheses. Figure 7 shows the performance plot for a single
dataset, in which the local hypotheses have been sorted by
descending score for both HEVAL and slot-percentage metrics.

Because of the limited number of slots included in the
computation, the slot-percentage metric exhibits only a few
“quantum states,” making it difficult to pick an optimal cutoff. In
fact, attempts to find an optimal cutoff by hand always led to
rejected hypotheses that corresponded to ground truth threats.
With HEVAL, we found experimentally that a threshold of 0.2
maximized the precision benefit while minimizing the recall loss.

7. CONCLUSIONS
These results suggest that CADRE has significant advantages
over other systems for abductive inference when the hypothesis
space is so large that exhaustive enumeration of hypotheses is out
of the question. In contrast to systems such as those described in
[3] and [11], CADRE constructs hypotheses incrementally,
starting from data known to be strongly relevant and using
constraint-based reasoning to guide the search for additional
pattern matches. This approach allows CADRE to be usefully
applied to realistic problems involving massive amounts of data in
which instances of the target pattern are sparse and incomplete.

8. ACKNOWLEDGMENTS
This research is sponsored by the Defense Advanced Research
Projects Agency and managed by Rome Laboratory under
contract F30602-01-C-0195. The views and conclusions
contained in this document are those of the authors and should not
be interpreted as necessarily representing the official policies,
either expressed or implied of the Defense Advanced Research
Projects Agency, AFRL/IF, or the United States Government.

9. REFERENCES
[1] Blackman, S. and Popoli, R. Design and Analysis of Modern

Tracking Systems, Artech House, Norwood, MA, 1999.
[2] Charniak, E. Motivation, Analysis, Abductive Unification,

and Nonmonotonic Equality. Artificial Intelligence, 34, 3
(April 1988), 275-295.

[3] Charniak, E., and Goldman, R.P. A Bayesian model of plan
recognition. Artificial Intelligence, 64, 1 (Nov. 1993), 53-
79.

[4] de Kleer, J. and Williams, B.C. Diagnosing Multiple Faults.
Artificial Intelligence, 32, 1 (April, 1987), 97-130.

[5] Everett, J., Bostwick D, and Jones, E. Rapid Knowledge
Base Design via Extension of Mid-level Knowledge
Components. In International Conference on Integration of
Knowledge-Intensive Multi-Agent Systems (KIMAS ’03)
(Cambridge, MA, Sep. 30-Oct. 4, 2003). IEEE Press,
Cambridge, MA, 2003, 535-541.

[6] Hobbs, J.R., Stickel, M., Appelt, D., and Martin, P.
Interpretation as abduction. Technical Note 499, SRI
International, Menlo Park, CA, 1990.

[7] I2 Inc. 2004. http://www.i2inc.com/Products/Analysts
_Notebook/default.asp.

[8] Josephson, J.R. and Josephson, S.G. eds. Abductive
Inference: Computation, Philosophy, Technology.
Cambridge University Press, Cambridge, UK, 1994.

[9] Meiri, I. Combining Qualitative and Quantitative Constraints
in Temporal Reasoning. Artificial Intelligence, 87, 1-2
(Nov. 1996), 295-342.

[10] Pearl, J. Probabilistic Reasoning in Intelligent Systems:
Networks of Plausible Inference. Morgan Kaufmann, San
Mateo, CA, 1988.

[11] Poole, D. Probabilistic Horn Abduction and Bayesian
Networks. Artificial Intelligence, 64, 1 (Nov. 1993), 81-129.

[12] Schank, R.C. and Abelson, R.P. Scripts, Plans, Goals, and
Understanding. Lawrence Eribaum Associates, Potomac,
Maryland, 1977.

[13] Schrag, R. EELD Y2 LD-PL Performance Evaluation.
Unpublished EELD Technical Report, 2003.

[14] White, J., Stultz, C., and Smith, T. 1994. Protein
Classification by Stochastic Modeling and Optimal Filtering
of Amino-Acid Sequences. Mathematical Biosciences, 119,
1 (Jan. 1994), 35-75.

