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ABSTRACT 
In this research, we compare and contrast the salient features of 
illicit group information with legitimate group data. We describe 
how the graph-based knowledge discovery system, SUBDUE, 
when run in unsupervised discovery mode, finds structural 
patterns embedded within social network data. We also illustrate 
how SUBDUE, in supervised mode, learns distinguishing patterns 
between legitimate and covert groups, based only on the 
communication activities of the group members. 
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1. INTRODUCTION 
Data Mining has emerged as a novel field of research and has 
valuable applications in the real world. In the early days, data was 
predominantly stored in the relational format, where each row 
represented an instance of a class or maybe one transaction. 
However, the advent of data stored in HTML/XML texts, 
ordered/unordered trees, symbolic sequences etc. provided 
impetus to the study of data mining on semi-structured data [11]. 
Research on data mining and machine learning of symbolic 
sequences [10] and ordered tree structures [20] also gained 
momentum. Multi-relational data mining whose main scope is to 
find patterns in expressive logical and relational languages from 
complex, multi-relational and structured data has also picked up 
greatly [12]. 

The need for mining structured data was apparent to the research 
community and one such approach focused on the topological 
view of data structures. Since the graph has a generic topological 
structure and is one of the most thoroughly researched data 
structures in Computer Science and Discrete Mathematics, state- 
of-the-art techniques in graph-based data mining (GDM) have 
had profound influence. GDM has tremendous utility because 
graph-structured data occur widely in practical fields like biology, 
chemistry, material science and communication networking [16].  

 

Identifying illicit groups has become an important challenge for 
homeland security. Relationships (e.g., communications) among 
members of legitimate and illicit groups are another domain that 
can be easily represented as a graph. We accept the overhead of 
converting existing datasets to graphs and then do graph-based 
data mining on them to discover interesting and novel concepts. 
The world is drowning in data and security analysts face the stiff 
challenge of sifting through a plethora of data and zeroing in on 
the few suspicious bits of information. Hence, effective 
techniques of social network analysis (SNA) are critical to 
alleviate the problem of information overload. This is the main 
motivation of this paper. The communication patterns that we are 
looking for in this research are not big graphs, involving lots of 
actors, but small ones, that discriminate well between threat and 
non-threat groups and give us a lead on which networks to put 
under scrutiny. These kinds of signature patterns do not require 
knowledge of the entire terrorist network; hence the patterns that 
we found (described later) may be tested on data with varied 
levels of “observability”. In the absence of real data, we have 
trained on well-researched, simulated data, with appropriate levels 
of observability, corruption and noise. 

We focus on applying GDM to SNA, where participating actors 
are represented as vertices and communication links between 
actors as edges (see Figure 8). We brief the reader on social 
networks, SNA, graph-based representational techniques and how 
social networks of legitimate groups differ from those of illicit 
ones. We review the theoretical bases of GDM: a paradigm, of 
which the graph-based knowledge discovery system, SUBDUE 
[2, 3], is an implementation. We discuss two of the key data 
mining techniques implemented in SUBDUE: unsupervised 
pattern discovery and supervised concept learning. We illustrate, 
with examples and experiments, how we identify patterns within 
social network data represented as labeled graphs with the help of 
SUBDUE. We bring forth the concepts that SUBDUE learns to 
discriminate legitimate groups from illicit ones, based only on the 
communication patterns of the group members. Finally, we 
conclude and discuss avenues for future research. 

2. SOCIAL NETWORKS  
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2.1 Social Network data 
Social Network data focuses on the representation of actors and 
the relationships (or ties) between them. This kind of data, instead 
of revolving around a single actor, highlights the dynamics 
between groups of actors. This data is a shade different from 
conventional data, in databases and spreadsheets, which focuses 
primarily on individual actors and their attributes [14, 17]. 

 



2.2 Social Network Analysis (SNA)  
SNA is the mapping and measuring of relationships and flows 
between people, groups, organizations or other 
information/knowledge processing entities. SNA uses attributed 
relational graphs (ARGs) where vertices represent people, 
organizations or any other object, edges represent relationships 
between objects and attributes store the details of each vertex and 
edge [14, 17].  

2.3 Representing Social Networks 
Formal methods are necessary to represent social networks 
because of their ability to depict huge datasets succinctly and 
systematically. Graphs and matrices are the most popular 
techniques because they lay down their own protocols which help 
us depict with ease and lead us to discern patterns in our data 
which would not have been possible to describe with words. They 
also allow the dull and repetitive workload to be shared by 
computers.  

Both graphs and matrices have their own pros and cons. For this 
research, we have chosen graphs to represent our social networks 
for their ease of visualization and also because a graph can be 
easily represented as an adjacency matrix if required. Sociologists 
borrowed relevant graphical concepts from mathematicians and 
coined these graphics as “sociograms” [5]. 

Sociograms may be classified based on the different levels of 
measurements of the ties [5], as described below:- 

A binary sociogram is one where the only thing that matters is 
whether a tie is present. An arrow represents the existence of a tie 
whereas its absence signifies no relationship whatsoever.  

A signed sociogram uses signs on its ties; a plus (+) on the arrow 
indicates a positive choice whereas a minus (-) indicates its 
opposite.  

A valued sociogram takes this concept a bit further by allowing 
us to put a measure of the strength of the relationship on the 
arrow.  

Sociograms may again be classified based on the kinds of ties 
between actors [5], as described below:- 

A simplex sociogram is one which depicts a single kind of 
relation between actors. 

In a multiplex sociogram, there are multiple kinds of ties between 
actors. 

In our research, we have opted for binary, simplex, “labeled” 
sociograms to depict communication patterns between actors. 
Figure 8 is an apt example. 

3. CONTRASTING THREAT GROUP 
DATA WITH LEGITIMATE NETWORK 
DATA 
Covert networks remain mingled with socially-oriented networks 
(like families, organizations etc.) in the real world. The buzz word 
for covert networks is “secrecy” and hence to discover such 
networks (technically, to discern distinctive patterns in the 
activities and communications of such illegitimate groups) can be 
very tricky and often misleading due to unavailability of authentic 

data or in some cases availability of “doctored” data. This issue 
has especially blown up in the recent past and after the September 
11, 2001 tragedy, it has been in the limelight so much so that it is 
worthwhile to take a close look at the distinguishing properties of 
such networks. 

(1)  Social network graphs depicting covert threat groups may be 
incomplete due to missing actors (vertices) and links (edges) that 
investigators may fail to uncover [8]. 

(2) The difficulty in deciding who to include and who not to 
include is not a problem in legitimate networks like families and 
organizations. But in terrorist networks this may be a problem due 
to the secrecy maintained by the entire network of people. This is 
referred to as the “Fuzzy Boundary” problem [8]. 

(3) In legitimate networks, actors who are highly central are 
typically the most important ones. On the contrary, peripheral 
players (or “boundary spanners” as they are typically called) may 
be huge resources to a terrorist group although they receive very 
low network centrality scores. This is because they are well-
positioned to be innovators, since they have access to ideas and 
information flowing in other clusters. Similarly, in an 
organization, these peripheral employees are in a position to 
combine different ideas and knowledge into new products and 
services. They may be contractors or vendors who have their own 
network outside of the company, making them very important 
resources for fresh information not available inside the company 
[5, 8]. 

(4)  Terrorist networks are not static as new members are added to 
fortify the group and members are removed / killed / captured / 
compromised which shrinks the group size [8]. Most 
organizational networks are also dynamic but this is hardly the 
case with families. 

(5) Covert networks trade efficiency for secrecy. A strategy for 
keeping cell members distant from each other, and from other 
cells, minimizes damage to the network if a cell member is 
captured or otherwise compromised [8]. Hence the shortest path 
in the social network graph is not usually the path taken for 
communication. 

(6) Relationships between members belonging to a terrorist 
network and those not belonging to terrorist networks are rare and 
infrequent. Terrorists seldom make friends outside the trusted 
circle because eliminating boundary-spanning ties reduces the 
visibility into the network, and chances of leaks out of the 
network [8]. 

In the transcript (U.S. Department of Defense, 2001) Osama bin 
Laden’s comment [8] about the September 11, 2001 attack is: 

"Those who were trained to fly didn't know the others. One group 
of people did not know the other group." 

Strong ties between previous contacts, which were formed years 
ago in school, college dormitories and training camps, keep the 
members linked. Yet, unlike normal social networks, these strong 
ties remain mostly dormant and therefore hidden to outsiders. In a 
covert network, because of their low frequency of activation, 
strong ties may appear to be weak ties. The less active the 
network, the more difficult it is to discover [8]. Legitimate 
networks, on the other hand, have a lot of incoming and outgoing 
ties as one might expect. 



(7) Despite the need for secrecy, covert networks have goals to 
accomplish. Cell members must optimize between stealth and the 
need for intense task-based communication. It is during these 
periods of heightened activity, that these networks may shorten 
and become susceptible to discovery [8].  

(8) More often than not, only one of the terrorists (may not be the 
group leader always) would speak for the whole group. Choosing 
somebody other than the leader to be the speaker makes sense just 
in case the leader is exposed. So we may find a 
multicast/broadcast from one particular person to the entire group 
or maybe to terrorists who spearhead other groups. These 
multicasts are often noticeable during terrorist activities and make 
the group vulnerable to discovery. 

(9) The role of a “broker” [8] is a very powerful role in a social 
network as it ties two hitherto unconnected constituencies/groups 
together but of course, it is a single-point of failure. These broker-
type roles are often seen in terrorist networks. Such nodes are also 
referred to as “cutpoints” [5].  

We are aware of graph-based technologies being used for 
intelligence analysis by a research team at 21st Century 
Technologies in Austin, TX [1]. Graph-based algorithms enable 
security analysts to extract from a deluge of information a small 
subset that has suspicious characteristics. In this research, 
intelligence analysis relies on the fact that legitimate and 
illegitimate groups tend to exhibit different SNA metric values 
like geodesics, redundancy, small world phenomena, betweenness 
centrality, closeness centrality, clustering coefficient, node 
degree, diameter, girth etc. These metrics, combined with 
statistical pattern classification, arm the analyst with a tool for 
automatically pinpointing threatening group activities within a 
huge body of evidence.  

Our approach is different in that we believe legitimate groups 
have different communication styles from illegitimate groups. 
Hence our research is based solely on the communication 
evidence of group members of social networks, without 
considering the network metric values and statistical patterns. We 
train on well-investigated, simulated intelligence analysis data to 
find discriminating patterns between threat and non-threat groups. 

4. GRAPH-BASED DATA MINING (GDM) 
4.1  Theoretical Bases of GDM 
We briefly review the five theoretical bases of GDM [16].  

(1) Sub-graph Categories: Sub-graphs are categorized into 
various classes (namely general sub-graphs, induced sub-graphs, 
connected sub-graphs, ordered trees, unordered trees and paths) 
and the approaches of graph-based data mining strongly depend 
on the targeted class. 

(2) Sub-graph Isomorphism: Sub-graph isomorphism is the 
mathematical basis of substructure matching and/or counting. 

(3)  Graph Invariants: Graph invariants are the quantities (like 
the number of vertices, the degree of each vertex and the number 
of cyclic loops) to characterize the topological structure of a 
graph and they help to efficiently reduce the search space of the 
targeted graph structures. If two graphs are topologically 
identical, i.e., isomorphic, they also have identical graph 
invariants, though the reverse property does not hold.  

(4)  Mining Measures: These are various measures, similar to 
those in conventional data mining, to mine substructures in the 
graph, whose selection depends on the objective and the 
constraints of the mining approach. Some popular mining 
measures are support, information entropy, information gain, gini-
index and minimum description length (MDL). 

(5) Solution Methods: Approximately five types of search 
methods are used to solve the sub-graph isomorphism problem 
amidst a number of graphs. They are categorized into (1) heuristic 
search methods and (2) complete search methods, in terms of the 
completeness of the search. They are also classified under (1) 
direct and (2) indirect matching methods, in terms of the sub-
graph isomorphism matching problem. The five types of search 
methods are: (1) conventional greedy search [3, 19], (2) inductive 
logic programming [13], (3) inductive database [6], (4) complete 
level-wise search and (5) support vector machine (SVM) [15].  

4.2 Why we chose SUBDUE 
Several approaches to GDM exist based on the task of identifying 
frequently occurring sub-graphs in graph transactions, i.e., those 
sub-graphs meeting a minimum level of support.  

The FSG system (part of the PAFI system, University of 
Minnesota) [9] finds all frequent sub-graphs in large graph 
databases. FSG starts by finding all frequent single and double 
edge sub-graphs. Then, in each iteration, it generates candidate 
sub-graphs by expanding the sub-graphs found in the previous 
iteration by one edge. In each iteration the algorithm checks how 
many times the candidate sub-graph occurs within an entire 
graph. The candidates, whose frequency is below a user-defined 
level, are pruned. The algorithm returns all sub-graphs occurring 
more frequently than the given level. 

gSpan (University of Illinois at Urbana-Champaign) [18] 
combines depth-first search and lexicographic ordering to find 
frequent sub-graphs. Their algorithm starts from all frequent one-
edge graphs.  The labels on these edges together with labels on 
incident vertices define a code for every such graph. Expansion of 
these one-edge graphs maps them to longer codes. Since every 
graph can map to many codes, the codes in the tree structure are 
not unique.  If there are two codes in the code tree that map to the 
same graph and one is smaller than the other, the branch with the 
smaller code is pruned during the depth-first search traversal of 
the code tree. Only the minimum code uniquely defines the graph. 
Code ordering and pruning reduces the cost of matching frequent 
sub-graphs in gSpan.  

The Apriori-based Graph Mining (AGM) system [7] searches the 
space of frequent sub-graphs in a bottom-up fashion, beginning 
with a single vertex, and then continually expanding by a single 
vertex and one or more edges. AGM also employs a canonical 
coding of graphs in order to support fast sub-graph matching. 
AGM returns association rules satisfying user-specified levels of 
support and confidence. 

Few graph-based relational learning (GBRL) approaches have 
been developed to date. Two specific tools, SUBDUE and GBI 
[19], take a greedy approach to finding sub-graphs maximizing an 
information theoretic measure. SUBDUE searches the space of 
sub-graphs by extending candidate sub-graphs by one edge.  Each 
candidate is evaluated using a minimum description length metric 
(discussed later), which measures how well the sub-graph 



compresses the input graph if each instance of the sub-graph were 
replaced by a single vertex.  GBI continually compresses the 
input graph by identifying frequent triples of vertices, some of 
which may represent previously-compressed portions of the input 
graph.  Candidate triples are evaluated using a measure similar to 
information gain.   

To summarize, we chose SUBDUE mainly due to two reasons. 
Firstly, we see that all the three approaches just mentioned: FSG, 
gSpan and AGM, find frequent substructures in a graph data set. 
SUBDUE, on the other hand, finds sub-graphs that compress the 
input data set well but which may not be frequent. We believe 
sub-graphs that compress well may reveal novel concepts in a 
database, whereas frequent sub-graphs may not always be 
interesting. 

Secondly, all these three systems are based on graph transactions. 
SUBDUE does support graph transactions but on top of that, can 
also mine one large graph for interesting patterns.  

4.3 Brief Introduction to SUBDUE 
(http://ailab.uta.edu/subdue) 

The Knowledge Discovery System SUBDUE [2] has been a 
pioneering work in the field of greedy search-based graph mining 
(Point 5, Solution Methods in Section 4.1). Structural data, 
represented as a labeled graph, serves as the input to SUBDUE, 
which writes out substructures, again as labeled graphs. A 
substructure is a connected sub-graph within the input graph 
(Point 1, Sub-graph Categories in Section 4.1). The found sub-
graph can be considered a concept. An instance of a substructure 
in an input graph is a set of vertices and edges from the input 
graph, which match, graph-theoretically, to the graphical 
representation of the substructure. This algorithm is based on a 
computationally-constrained beam search.  

For each unique vertex label, a substructure is defined as a vertex 
with that label and whose instances are all the vertices in the input 
graph with that label. A substructure is extended in all possible 
ways by a single edge and a vertex, or by only a single edge if 
both vertices are already in the sub-graph. At each expansion, 
candidate substructures are rated according to one of the three 
evaluation techniques, given below. The substructures are kept on 
a queue and are ordered based on their values, defined below. The 
search terminates upon reaching a user-specified limit on the 
number of substructures extended, or upon exhaustion of the 

search space. SUBDUE has been applied successfully to 
databases in domains like Image analysis, CAD circuit analysis, 
Chinese character databases, program source code, chemical 
reaction chains etc.  

The value of a substructure S, in an input graph G, denoted by 
value(S, G), may be calculated according to any one of the 
following three evaluation techniques:- 

(1) Minimum Description Length (MDL)  
This is the default evaluation method used by SUBDUE (see 
Point 4, Mining Measures in Section 4.1). The MDL principle 
states that the best theory to describe a dataset is the one that 
minimizes the description length of the entire set of data. 
SUBDUE has implemented this principle in the context of 
compressing the input graph with the discovered substructure.   

Once the search terminates and SUBDUE returns the list of best 
substructures found, the graph can be compressed using the best 
substructure. The compression procedure replaces all instances of 
the substructure in the input graph by single vertices, which 
represent the substructure definition. Incoming and outgoing 
edges to and from the replaced instances will point to, or originate 
in the new vertex that represents the instance. The SUBDUE 
algorithm may be invoked again (termed iteration) on this 
compressed graph. 

Here, value(S, G) = DL(G) / (DL(S) + DL(G|S)), where DL(G) is 
the number of bits (description length) required to encode the 
input graph G, DL(S) is the number of bits required to encode the 
discovered substructure S and DL(G|S) is the number of bits 
required to encode the input graph G after it has been compressed 
using substructure S. 

In supervised concept learning (see Section 4.5), value(S, Gp, Gn) 
= [DL(Gp) + DL(Gn)] / [DL(S) + DL(Gp|S) + DL(Gn) - 
DL(Gn|S)], where Gp and Gn are the positive and negative graphs 
respectively. 

(2) Size 

The size measure is faster to compute than the MDL measure but 
is less consistent.  

Here, value(S, G) = size(G) / (size(S) + size(G|S)), where size(G) 
= (#vertices(G) + #edge(G)), and (G|S) is G compressed with S.  

In supervised concept learning (see Section 4.5), value(S, Gp, Gn) 

  Figure 1. An organization chart showing the company hierarchy (produced using AT&T Graphviz). 



= [size(Gp) + size(Gn)] / [size(S) + size(Gp|S) + size(Gn) - 
size(Gn|S)].  

(3) Set Cover 

The value of a substructure S is computed as the number of 
positive examples containing S plus the number of negative 
examples not containing S, this quantity divided by the total 
number of examples.  

If this evaluation method is chosen, then the compression done at 
the end of each iteration in the MDL approach is replaced by just 
removing all positive examples containing S. The SUBDUE 
algorithm may be invoked again (i.e., iterated) on this reduced 
graph.  

In our experiments, we have mostly relied on the MDL and the set 
cover approaches.  The size measure has not been used in our 
research. Among the key features implemented in SUBDUE, we 
shall be applying the unsupervised pattern discovery and 
supervised concept learning techniques to this research. 

4.4 Unsupervised Pattern Discovery 
Knowledge is discovered in structural data by identifying 
common substructures (concepts represented as graphs) within the 
data (see Section 4.3) [2].  

Figure 1 shows the hierarchy of an organization, which after 
being converted to a labeled graph, is fed to SUBDUE. Figure 2 
shows the best substructure reported by SUBDUE in unsupervised 
discovery mode using the MDL evaluation technique discussed in 
Section 4.3. This substructure has been reported to have three 
instances in the input graph, which implies that, every manager, in 
the organization shown in Figure 1, supervises at least a developer 
and a secretary.  

In the input graph in Figure 1, we see that a manager in this 
company may also supervise a designer or a tester but since it is 
not a pattern reported by SUBDUE, we suspect that some 
developers in this company are made to multiplex as designers or 
testers according to managerial wishes. 

 
 
 
 
 
 
 
 
 
 
 

4.5 Supervised Concept Learning 
SUBDUE has been extended to incorporate supervised graph-
based concept learning [2, 4], which focuses on the two-class 
scenario. The inclusion of a negative graph enables SUBDUE to 
learn by example rather than by observation. Substructures that 

occur often in the positive graph, but not often in the negative 
graph, are more likely to represent the target concept.  

The negative information may come in two forms. First, the data 
may be in the form of small graphs, or graph transactions, each 
labeled either positive or negative. Second, data may be 
composed of two large graphs: one positive and one negative. 

The first scenario is closest to the standard supervised learning 
problem in that we have a set of clearly defined examples. Figure 
3 shows a set of positive examples, denoted by G+ and Figure 4 
shows a set of negative examples, denoted by G-. 

One approach to supervised learning, namely the set-covering 
approach, is to find a sub-graph that appears often in the positive 
graphs, but not in the negative graphs. This amounts to replacing 
the information-theoretic measure with simply an error-based 
measure. This approach will lead the search towards a small sub-
graph that discriminates well. However, such a sub-graph does 
not necessarily compress well, nor represent a characteristic 
description of the target concept. We can bias the search towards 
a more characteristic description by using the information-
theoretic measure to look for a sub-graph that compresses the 
positive examples, but not the negative examples. This is the 
MDL approach and will lead the search towards a larger sub-
graph that characterizes the positive examples, but not the 
negative examples.  

 
   Figure 3. Set of positive examples, denoted by G+, for 

supervised learning  

 

 

 

 

 

 

 

  Figure 2. Best substructure reported by 
SUBDUE in Unsupervised Discovery Mode. 

  Figure 4. Set of negative examples, denoted by G-, for 
supervised learning 



In our example, the best substructure reported by SUBDUE using 
both these approaches is incidentally the same and is shown in 
Figure 5. This “Manager supervises Developer” pattern is present 
in all the positive examples in Figure 3 but not once in the set of 
negative examples in Figure 4. This sub-graph discriminates best 
as well as compresses the best. 

Finally, this process can be iterated in a set-covering approach to 
learn a disjunctive hypothesis. If using the error measure, then 
any positive example containing the learned sub-graph would be 
removed from subsequent iterations. If using the information-
theoretic measure, then instances of the learned sub-graph in both 
the positive and negative examples (even multiple instances per 
example) are compressed to a single vertex. Please see [4] for 
more information on graph-based supervised learning. 

 
 
 
 
 
 
 
 
 
 
 
 
 

5. LEARNING STRUCTURAL PATTERNS 
EMBEDDED IN SOCIAL NETWORKS 
5.1 The concept of a clique 
Structural analysts are very interested in substructures, like dyads, 
triads and ego-centered groups, which may be present in the 
network. The solidarity and connections of large social structures 
can be built up out of such small, tight components in a bottom-up 
approach.  

A clique is a maximal complete sub-graph expanded to include as 
many actors as possible, in which every actor has a direct tie with 
each and every other member [5].   

5.2 Relaxations of the clique definition 
N-clique – Since the strict definition of a clique may be too 
strong to capture the meaning of the concept, it may be relaxed a 
bit to include an actor as a member of a clique if he/she is 
connected to every other member of a group at a distance greater 
than one. Usually the path distance of two is used. This 
corresponds to the “Friend of a friend (FoaF)” concept. This 
approach to defining substructures is called N-clique, where N 
stands for the length of the path allowed to make a connection to 
all other members. The problem with the N-clique approach is 
that it tends to find long and stringy groupings rather than the 
tight and discrete ones of the maximal approach. Sometimes, N-
cliques can be found with a property that is undesirable for many 
purposes - the members of the N-clique get connected by actors 
who are not, themselves, members of the clique [5].  

N-clan – An N-clan is a restricted form of N-clique which forces 
all ties between members of an N-clique to occur by way of the 

other members of the N-clique. This sometimes has an important 
bearing on sociological data [5].  

K-plexes – The strong assumptions of a “maximal complete sub-
graph” may also be relaxed by allowing actors to be members of 
cliques even if they have ties to all but K other members [5].  

K-cores – A K-core is a maximal group of actors, all of whom are 
connected to K other members of the group. To be included in a 
K-plex, an actor must be tied to all but K other actors in the 
group. The K-core approach is more relaxed, allowing actors to 
join the group if they are connected to K members, regardless of 
how many other members they may not be connected to.  

5.3 Unsupervised Discovery of K-plexes 
We shall be concentrating on K-plexes for our experiments with 
the belief that if SUBDUE can successfully find K-plex 
structures, it can be used to mine for other such salient patterns 
embedded in social network data.  

We introduce a couple of different classes of K-plex graphs:- 

1) KPlex_Inexact - A class of K-plex graphs where each instance 
of the K-plex does not have the same structural pattern embedded.  
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  Figure 5. Best substructure learned by SUBDUE in 

Supervised Concept Learning mode 2
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Figure 6. A KPlex_Inexact communication graph showing two 
instances of a 2-plex (Instance 1 on top, Instance 2 in bottom) 
(Vertex Label: “Actor” and Edge Label: “Communication”) 



2) KPlex_Exact - A class of K-plex graphs that has the same 
structural pattern embedded in all the instances of the K-plexes. 

Each class may of course have a number of sub-classes.  

5.3.1 Unsupervised Discovery of KPlex_Inexact 
Communication graphs of KPlex_Inexact will be more common 
in the real world where there is hardly any structure. 

Actor 1 communicates with all (Actors 2 and 4) but two members 
(Actors 3 and 5) in Instance 1 (top graph in Figure 6); similarly 
for the other actors, thus making it a 2-plex. Again in Instance 2 
(bottom graph in Figure 6), Actor 6 communicates with all 
(Actors 7 and 8) but 2 members (Actors 9 and 10); similarly for 
the other actors, thus making it another 2-plex. A self-connection 
is not considered a valid connection. This graph is a member of 
class KPlex_Inexact since each instance has different structural 
patterns, which means that Actor 6 in Instance 2 has different 
connections from Actor 1 in Instance 1, Actor 7 from Actor 2… 
and Actor 10 from Actor 5. 

When the communication graph shown in Figure 6 was fed to 
SUBDUE, the best substructure, shown in Figure 7, was reported. 
Since the input graph is a member of KPlex_Inexact, SUBDUE, 
in its unsupervised discovery mode, finds neither the 2-plex of 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Instance 1 nor the 2-plex of Instance 2 but is able to find a 
common sub-graph of both. The significance of this result may 
not be so obvious in the trivial example graph that we have used 
for demonstration purposes, but in huge datasets the discovered 
concept may be of great value.  
This shows that SUBDUE is able to discover possibly interesting 
patterns/concepts in social network data. 

5.3.2 Unsupervised Discovery of KPlex_Exact 
When a communication graph of class KPlex_Exact is input, 
SUBDUE is able to discover all the instances of the entire K-plex 
pattern embedded. 

5.4 Supervised Concept Learning  
K-Plex communication graphs similar to the one shown in Figure 
6 have been fed as positive examples and non K-plex graphs as 
negative examples to SUBDUE, which then runs in supervised 
concept learning mode. The goal is to be able to distinguish a K-
plex pattern from other varieties strewn in a big graph. If the 
SUBDUE concept learner is able to discern the K-plex pattern, we 
believe it will be able to discover other kinds of patterns also in 
social network data. 

Much consideration has been given into choosing a negative 
example for this experiment because choosing any random graph 
may lead a negative example to be a super-graph of the positive 
example K-plex, which may cause SUBDUE to report not-so-
discriminating substructures. Hence the negative examples have 
been built by removing one edge from the positive K-plex 
examples. We term these negative graphs (K – 1)-plexes, as they 
are just one edge short of a K-plex. For example, in Figure 6, the 
communication edge between Actors 1 and 2 may be removed in 
Instance 1 and the edge between Actors 6 and 7 may be removed 
in Instance 2, to build the negative examples for this experiment. 

The SUBDUE concept learner discriminated all the instances of 
the entire K-plex when the MDL evaluation technique is used. 
However, when the set cover approach is used, discrimination is 
perfect just like the MDL approach but the entire K-plex structure 
is not discovered. This is because the set cover approach tends to 
discover smaller substructures that discriminate well but may not 
compress as well. Please see Section 4.5 for relevant information. 

6. DISTINGUISHING THREAT FROM 
NON-THREAT GROUPS 

6.1 Description of the input data 
The data originates from a simulator built by Information 
Extraction Technologies (IET) for the Evidence Assessment, 
Grouping, Linking, and Evaluation (EAGLE) program. This 
simulator builds a domain to simulate the evidence available 
about terrorist groups and their plans prior to their execution. The 
data is output in Lisp format.  

The domain consists of threat and non-threat actors, threat and 
non-threat groups, targets, exploitation modes, capabilities, 
resources, communications, visits to targets and transfer of 
resources between actors, groups and targets. These events 
involve various forms of communication and transfer of assets.  

Figure 7. Best substructure reported by SUBDUE from the 
KPlex_Inexact communication graph shown in Figure 6. 

We tweaked different simulator parameters to control the number 
of groups, the number of transactions etc. to generate various 
types of datasets for our experiments. 

6.2 Data Extraction and Preparation 
Instead of taking all available evidence from the data written by 
the simulator, we attempt to learn patterns distinguishing threat 
groups from non-threat groups based only on the communications 
activities between various actors. 



Intra-group communication information was isolated as separate 
labeled graphs in two passes of the Lisp data. The first pass scans 
the ground truth to record all the threat and non-threat groups 
while the second pass records communication events which have 
taken place between actors belonging to the same group. 

Communication networks easily lend themselves to a graphical 
representation as shown in the attributed relational graph in 
Figure 8. Hence, we were motivated to convert the dataset to a 
graph and do graph-based data mining on it. Each Actor (vertex) 
participates as the initiator (edge) or the respondent (edge) to a 
communication event (vertex), the latter having an attribute 
TwoWayCommunication (vertex). 

6.3 Why Supervised Concept Learning and 
not Unsupervised Discovery 
Finding interesting patterns in terrorist network datasets is a boon 
for society since the occurrence of similar patterns in other social 
networks might lead us to put the latter networks under scrutiny. 

But there is always the outside possibility of this interesting 
threatening pattern appearing in a legitimate network.  

 

 

 

 

 

 

 

 

 

 
 
 
 
Hence, the goal of this research is to find patterns that can 
distinguish threat groups from non-threat groups using the 
SUBDUE supervised concept learner. Discovery of such signature 
patterns in other social networks will implicate the latter groups 
more convincingly. 

6.4 Choice of Evaluation Technique 
SUBDUE’s default evaluation method is based on the MDL 
principle, which essentially says that the best pattern (or 
substructure) is the one that best trades off the size of the pattern 
and the size of the input graph after compressing away all the 
instances of the pattern. If there are negative graphs in the input, 
then the best pattern is the one that best compresses the positive 
graphs, but least compresses the negative graphs. This approach 
tends to prefer patterns that compress well, even though they may 
not discriminate well.  

Thus, to distinguish threat from non-threat groups, we have 
chosen the set cover evaluation method. This method looks for 
patterns that discriminate well, which is the main objective in the 
threat group task, without regard for how well the patterns 
compress (see Sections 4.3 and 4.5 for relevant information). 

6.5 Learning the signature pattern with 
SUBDUE concept learner 
Each of the intra-group graphs (see Section 6.2) was fed to 
SUBDUE as an example, i.e., each threat-group communication 
graph was presented as a positive example whereas each non-
threat group communication graph was presented as a negative 
example. The positive examples/threat-group graphs are marked 
by “XP” and the negative examples/non-threat group graphs are 
marked by “XN” in the labeled input graph fed to SUBDUE, as 
shown in the excerpts in Figure 9.  The entry “v 1 
Communication” indicates a vertex with id 1 and label 
“Communication” and the entry “v 2 TwoWayCommunication” 
indicates another vertex with id 2 and label 
“TwoWayCommunication”. The entry “d 1 2 CommType” 
indicates a directed edge between vertices 1 and 2 with label 
“CommType”. SUBDUE, when run in supervised concept 
learning mode, learns by example rather than by observation to 
find communication patterns that will distinguish threat from non-
threat groups. 
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  Figure 8. An attributed relational graph (ARG) to 
depict communication events between actors. 
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communication pattern/substructure that has four instances in the 
positive graphs and none in the negative graph. This substructure 
has been visualized in Figure 10. The value of this substructure is 
1 (see Section 4.3), meaning that it perfectly discriminates 
between the positive and negative group graphs. In other words, 
this substructure shows up only in positive graphs and not in 
negative graphs. 

A linear chain of communication is apparent in Figure 10 where 
we find the communication initiated by the rightmost actor. The 
message is passed on in a linear chain-like fashion to the leftmost 
actor in the figure. This pattern discriminates a threat group from 
a non-threat group even intuitively because in the latter we may 
expect to find almost completely connected communication 
graphs, rather than chains. 

The pattern that we discovered, shown in Figure 10, is evident in 
the map shown in Figure 11. This map, which has been 
reproduced with the kind permission of its owner Valdis E. Krebs, 
shows the pre-US ties between the terrorists, who were involved 
in the September 11, 2001 tragedy [8]. Each vertex in this map 
depicts a terrorist and each edge an old link between two 
terrorists, maybe in their training camp or college dorm days. 

We reproduce a comment by the author of this article [8]: 

“The network self-organized (via a network layout algorithm) into 
the shape of a serpent - how appropriate, I thought.” 

Since the ties in Figure 11 are “trusted”, the author suspects that 
these links may have been used in connection to the terrorist 
attacks in the US to pass sensitive information and resources. But 
of course, in times of such heightened activity, this sparse map 
may fold over and connect to shorten the path lengths for brief 
periods of time (see Section 3, Point 7). 

A lot of cell members in terrorist groups behave as mere 
“transmitters”, i.e., they just send out the information that they 
receive without contributing much to the overall activity of that 
network (see Point 9 in Section 3). In our case, the actor in the 

 

 

 

 

 

 

 

 

 

 
  Table 1. Size and performance statistics of three experimental datasets, generated by the EAGLE Simulator 

 

 

 

 

Threat 
Groups 

Non-Threat 
Groups 

Total 
Vertices Total Edges Training 

Accuracy 
Learning Time 

(seconds) 
5 20 3,723 4,152 100% 17 

15 85 10,447 12,351 96% 147 

20 85 7,411 8,889 92% 35 
 

middle may be one of these “broker” species. This re-emphasizes 
the fact that in terrorist networks, communication does not take 
place via the shortest path (see Section 3, Point 5). For example, 
the rightmost actor in Figure 10, instead of communicating 
directly with the leftmost actor, did so via the actor in the middle. 

7. CONCLUSIONS AND FUTURE WORK 
In this paper, we have discussed how semi-structured data 
necessitated the advent of graph-based data mining.  Since graphs 
lend a topological structure to data and since communication 
networks lend themselves to a graphical representation, we have 
chosen to represent our social networks as labeled graphs and then 
do graph-based data mining on them to discover novel and 
interesting concepts. We have talked about social network data 
and how the data of legitimate groups differ from that of covert 
ones. The various representations of social networks have been 
touched upon and the significance of SNA for homeland security 
has been emphasized.  
We have discussed the graph-based knowledge discovery system 
SUBDUE, along with its unsupervised pattern discovery and 
supervised concept learning approaches. We have shown the 
effectiveness of SUBDUE in discovering patterns embedded 
within social network data and also in learning concepts to 
discriminate legitimate groups from illicit ones, based only on the 
communication patterns of the group members. We have 
discussed a similar kind of research, involving identifying threat 
group activities, albeit with a different approach, being pursued 
by a research team in 21st Century Technologies.  

Incorrect input data occur mostly in threat-group domains due to 
missing actors and links that investigators may fail to unearth and 
also due to the “Fuzzy Boundary” problem. Please see Section 3, 
Points 1 and 2, for a discussion of these issues. In the future, we 
may handle fuzzy groups, where an actor can belong to the group 
with a membership value in [0, 1], where 0 would mean that the 
actor does not belong to the group, 1 would mean that the actor 
surely belongs to the group and anything in between would mean 

 

 

 

 

 

 

 

 

Figure 10. Graphical depiction of best substructure discovered by SUBDUE concept learner. 



that the actor belongs to the group with a certain probability. We 
may also have to address the issue of identifying disconnected 
examples, where we would have one big graph, parts of which are 
designated as a part of a positive or negative concept. This big 
graph is called a “supervised graph”, which is more realistic of a 
social network, where we have threat and non-threat groups inter-
mingled. It annotates each graph component with its degree of 
participation in threat and non-threat groups.  

Currently we take a snapshot of static terrorist data, convert it to a 
labeled graph and feed it to SUBDUE. But for networks as 
dynamic as terrorist groups, this approach may not yield the most 
interesting concepts (see Section 3, Point 4). An incremental 
version of SUBDUE is being built that can update the best 
substructures based on new data, without rerunning from scratch. 

Ties between terrorists are kept under cover, and when unearthed, 
importance should be attached to the strength of the tie. Strong 
ties may lead to more interesting concepts than medium/weak 
ones. Hence, we plan to incorporate signed and valued 
sociograms besides the binary ones that we are using (see Section 
2.3). 

In future, we will run more experiments and learn on data with 
different levels of observability, corruption and noise.  
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