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ABSTRACT 
We describe an approach to the problem of detecting the 
execution of mission plans by the unconventional side in 
asymmetric warfare.  This problem is characterized by actors who 
go to great lengths to avoid detection, while most of their actions 
are seemingly innocuous unless placed in a broader context.  The 
problem is to find threatening patterns of action in a data 
collection characterized as massive, relational, incomplete, noisy, 
and corrupt.  In this paper we describe Sibyl: a subsystem 
embodying a case-based reasoning approach to automated plan 
detection.  Sibyl features a “spanning case base” that covers the 
space of theoretical scenarios.  It uses each case in a state-space 
search algorithm by adapting case elements to the data.  A 
simulator for Russian organized crime was used to generate case 
and test data.  We describe Sibyl’s algorithm and experimental 
results used in this approach. 

Categories and Subject Descriptors 
I.2.1 [Artificial Intelligence]: Applications and Expert Systems. 

General Terms 
Algorithms, Performance, Experimentation 

Keywords 
Case-based reasoning, link discovery, plan recognition, relational 
databases 

1. INTRODUCTION 
In recent years, law enforcement and government agencies have 
displayed a growing interest in the prospect of detecting the 
activity of clandestine organizations.  Terrorist organizations and 
organized crime are two such examples where members evade 
detection wherever possible so as to avoid mitigation of their 
efforts.  Other than overtly illegal acts, most actions taken by 
members on behalf of the organization appear harmless.  Actions 
such as phone calls, bank transactions, and fertilizer purchases are 
in and of themselves innocuous, yet when linked together the 
activities could constitute a threat.  If law enforcement or 
government agencies are empowered with tools that recognize 
potential threats such as the construction of a bomb, they could 
potentially preempt a harmful plan before it comes to fruition. 

The clandestine organization and the government agencies who 
oppose them are an example of asymmetric forces.  Asymmetric 
warfare has seen increased attention in recent years, and comes in 
contrast to traditional notions of armed conflict involving force-
on-force scenarios where each opposing side can be characterized 
according to doctrine, command and control structure, force size, 

weapon assets, etc.  Opposing asymmetric forces have differing 
organization, ideology, support, and goals. 

The government agencies that oppose clandestine organizations 
typically have three operational components: (1) recognition and 
collection of data, (2) data analysis and hypothesis formation, and 
(3) operational planning and execution.  Data analysis and 
hypothesis formation is our focus here, particularly the discovery 
of a clandestine organization’s plans.  In this case, we worked in 
the domain of Russian organized crime.  As part of the DARPA 
Evidence Extraction and Link Discovery (EELD) program, we 
used a simulator that takes as input a domain theory of how 
Russian mafias operate and proceeds to generate test data.  
Hierarchical task networks were used in part to describe the 
domain theory.  Several simulation parameters are available to 
adjust quantity of data, noise, observability, corruption, and 
complexity. 

2. PROBLEM DESCRIPTION 
Other than the fact that clandestine organizations try to evade 
detection, there exist three significant obstacles any approach to 
detection will confront: 

1. Massive data:  The size of data is substantial.  It breaks down 
into primary and secondary pieces of evidence.  Primary 
evidence comes from news sources or intelligence agencies 
as relevant information.  The size of primary evidence is 
eclipsed by secondary evidence, which is latent data such as 
phone numbers, street addresses, phone calls, and bank 
transactions. 

2. Noise: Almost all secondary data is irrelevant, yet the parts 
that are relevant are absolutely necessary to recognize an 
asymmetric plan. 

3. Incomplete information: Much of what we would consider to 
be relevant data is missing.  As it is, successful mitigation of 
clandestine activity requires plan recognition before 
complete realization. 

Despite these obstacles, one important regularity we identify is 
that the organization’s behavior is ultimately goal-driven.  The 
behavior is structured, occurs over a long duration (months to 
years), and involves several people.  Thus, the behavior is the 
logical execution of a plan which motivates our approach. 

3. SCOPE 
The CBR system we developed, called Sibyl, resides within a 
bigger system called SCOPE which stands for Socio-Culturally 
Oriented Planning Environment [2].  The system seeks to improve 
upon the human analysis process by automatically linking 



evidence from a number of sources into graphs, and formulating 
hypotheses correlating these graphs to underlying plans. 
The relevant knowledge/data bases available to a SCOPE model 
(or an analyst) include:   

• A set of known facts about the current activity, mainly about 
breaks in the terrorist organization’s secrecy, and the 
relations among those facts; 

• A catalog of organizations and general information about 
each of them; 

• A set of mission plan templates (MPTs), crafted by 
intelligence analysts, that capture the invariance in the 
planning process associated with a particular domain; 

• A database of cases; and 

• A historical and theoretical knowledge about how 
organizations train, acquire financing, communicate, plan, 
and operate, as well as information concerning religious, 
ethnic, and cultural factors that may impact their operations. 

SCOPE provides mechanisms for reasoning about and combining 
these different sources of information.  The architecture used in 
SCOPE is a synthesis of cognitive modeling and CBR 
technologies.  The fundamental objects passed between the 
SCOPE modules are hypotheses about the organization’s plan.  
One SCOPE module is based on a cognitive model of an 
intelligence analyst conducting situational logic [4], which is built 
using the iGEN toolset, a blackboard-based approach to cognition 
[5].  This module acts as SCOPE’s primary controller.  It also 
encodes the information in MPTs within a set of cognitive tasks, 
and has the meta-cognitive ability to spawn and track “what if” 
hypotheses about plausible mission plans.  The cognitive model 
module reasons about how plausible hypotheses about plan 
components fit together, given the organizational and cultural 
constraints.  It will also manage the active hypotheses related to 
MPTs taking into account the uncertainty in the evidence and 
sensitivity of the hypotheses.   
The Sibyl module matches current evidence to plans in its case 
base, generating plausible hypotheses about the current plan.  By 
combining and exchanging of hypotheses between the iGEN and 
Sibyl modules, the SCOPE system takes advantage of their 
complementary strengths and weaknesses while generating 
hypotheses on mission plan execution.  Sibyl needs a bigger 
portion of the complete evidence graph, but is not sensitive to 
misconceptions an analyst may have as embodied in an MPT.  
iGEN can function with an evidence graph that instantiates a 
much smaller portion of a mission plan than Sibyl; however it is 
quite sensitive to pattern description errors that may get into an 
MPT. 
Now that we have discussed Sibyl in its broader context, we now 
focus discussion on the Sibyl domain and algorithm. 

4. APPLICATION DESCRIPTION 
Because the traditional CBR approach of computing a feature 
vector from the input data does not suggest an obvious 
representation for our problem, our strategy was to form a 
spanning case base covering the full range of possible plans.  
Using a domain theory and simulator, we generate nearly all of 
the mission plans for activity possible in the domain.  Detecting 
plans in the evidence data amounts to a search through the case 
memory for the case that is consistent with a subset of data.  We 
match the entire case base against evidence.  Hence, the CBR 
phase of adaptation is paramount while retrieval is secondary; in 
fact, there is no indexing.  This approach is the core technology 
basis for Sibyl. 

The immediate consequence of employing a spanning case base is 
a massive case base.  To make our approach practical, we used the 
Cyc ontology to reduce the case size by abstracting event types.  
For example, sending an email could be equivalent to a phone 
conversation.  By abstracting case elements, it was possible to 
condense millions of cases into hundreds. 

Having reduced the case base size, we focused on the creation of 
fast mapping techniques.  We match a stored case against the 
evidence taking into account that (i) actors in the case are not the 
same as in the evidence (e.g., people in the case are different from 
people in the evidence), (ii) events in a case can be fulfilled by 
different events in the evidence (e.g., a meeting and a phone call 
can have the same purpose), and (iii) not all the relationships in 
the case have to be known in the evidence (i.e., evidence is 
incomplete). 

For the rest of this section we describe the simulator and how it 
was used to generate the case base.  This is followed by a 
description of our representation and algorithm. 

4.1 Simulator 
The domain theory for the simulator consists of task descriptions 
that specify how to populate a world with people, relationships 
between people, mafias, companies, geographical regions, etc.  
More importantly, it specifies how the world works; e.g., how a 
murder event comes to fruition, starting with (say) a mafia gang 
war.  One low-level task might be an exchange of money.  This 
can happen through a bank wire or a cash exchange.  The goal of 
exchanging money between a middleman and hitman could be 
accomplished by either method, chosen at random according to 
specified simulation parameters.  Likewise, many other tasks can 
be accomplished through multiple methods. 

Note the simulator is a black box.  Because we had neither access 
to simulator source code, nor the inclination to re-create it, we 
used the simulator to help us generate a case base because it could 
also report the ground truth; i.e., what really happened in the 
world as opposed to reported events.  We ran the simulator 
several thousand times with differing random seeds until we 
converged on a nearly complete case base, discarding duplicate 
cases. 

According to the domain theory, there could be over three million 
potential cases.  Through abstraction, we narrowed cases down to 
1,500. 
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4.2 Case and Evidence Representation 
A case describes how a particular event (e.g., contract-kill, phone 
call, wire transfer) took place.  Events are described in terms of 
subevents and properties associated with the event. Every object 
in the representation (e.g., events, event property values) has a 
type, and types are organized by the Cyc ontology.  Events are 
linked by subevent relationships and by common actors (e.g., the 
same person making a bank deposit and a phone call). Events 
have associated spatio-temporal properties: where and when they 
occurred. The value of these properties admits various degrees of 
uncertainty (e.g., a murder event happened somewhere in Europe 
on May 2000). We can think of a case as a directed graph where 
nodes represent objects in the case (e.g., events, people, telephone 
numbers, bank accounts) and edges represent relationships 
between objects. 

Figure 1 shows a partial example of a case involving a 
murderForHire case (UID6166). A hit contractor (UID5312) 
made a phone call (UID6136) to a middleman (UID5317) to 
arrange a murder. Then the contractor paid (UID6141) by doing a 
wire transfer (UID6139) from his account (UID5306) to the 
middleman’s bank account (UID5294). The middleman eventually 
hires the perpetrator (UID5321), who observed (UID6151) the 
victim (UID5160) before performing the murder (UID6153). 

The evidence is a database of reported events. In general this 
database is incomplete. For example, a murder event can be 
reported where the killer is not known. A PlanningToDo-
Something event can be reported without reporting its subevents: 
whether the persons planning to do something met or talked on 
the phone.  

4.3 Search Algorithm 
For each case, we use a best-first search algorithm to match the 
case against the evidence.  A search state is a tuple <c,r,m> where 
c is the case, r is a list of edges in c that need to be considered for 
a match, and m is a set of pairs, each pair consisting of a graph 
node in c and a node in the evidence.  Let fm be a one-to-one 
function for node pairs in m such that fm(a)= a’ where a is a node 
in c and a’ is a node in evidence.  The set of pairs has an 
associated weight indicating node similarities.  A heuristic 
evaluation function F assesses the quality of the mapping m by 
assigning m a real number, where higher values of m are better. 

The initial states of the search have the form <c,ec,Ø> where ec is 
a list of all the edges appearing in case c.  The initial order in ec is 
important for the performance of the algorithm as Sibyl processes 
edges sequentially (we later present our heuristic to order ec). The 
basic best-first search algorithm we use is as follows: 

1. Let initial states H = {<c0,ec0,Ø>, <c1,ec1,Ø>, 
<c2,ec2,Ø>, …, <cn,ecn,Ø>} where n is the number of 
cases in the case base.  

2. Identify best hypothesis h = <c,r,m> from H. 
3. If r is empty, h is the best hypothesis.  Stop. 
4. Generate successors S from h. 
5. Let H = H – {h} ∪ S. 
6. Go to 2. 
 
We derive the successors of a state <c,r,m> by considering the 
first edge e in r.  Either m already pairs the two nodes in e, or 
pairings for those nodes need to be generated and added to m.  
Each directed edge is a tuple <s,d,l> where s is the source, d is 
the destination, and l is the label.  Here is the procedure for 

Figure 1: A partial case from the case base. 



generating successors. 

Procedure GENERATE-SUCCESSORS (state <c,r,m>) 
 Let the first of r be edge <a,b,l> 
 if (a and b are in the domain of fm) 
 { 
  if edge <fm(a),fm(b),l> is inconsistent with evidence 
   return Ø 
  else 
   return { <c, r – {<a,b,l>}, m> } 
 } 
 else 
 { 
  Let r’ = r – { <a,b,l> } 
  Let s = { <c,r’,m> } 
  For each edge <a’,b’,l> in evidence matching <a,b,l> 
  {  
   Let m’ be a new copy of m with 
    fm’(a) = a’ and fm’(b) = b’ 
   s = s ∪  { <c,r’,m’> }  
        }  
  return s 
 } 
 

Since the evidence is generally incomplete (e.g., usually the 
perpetrator in a murder is not known), not all the edges in a case 
require a counterpart in the evidence.  The state <c,r’,m> is a 
possible successor for <c,r,m>.  In this case, the edge <a,b,l> is 
not required to hold in the evidence. The heuristic evaluation 
function will penalize this state but the state will remain in the 
search queue.   

Next we describe the main aspects of the above algorithm: 
detecting inconsistent mappings, evaluating the goodness of a 
state, generating match candidates, and pruning the search space. 

4.4 Inconsistent Mappings 
Since the evidence is incomplete, we cannot generally check 
whether an arbitrary relationship is false (i.e., it does not hold in 
the evidence) or is missing from the evidence. There are, however, 
instances where an edge <fm(a),fm(b),l> could not exist in the 
evidence, allowing mapping m to be deemed inconsistent.  For 
example, the victim of a murder is always unique and usually 
identified, and so it is possible to consider a mapping inconsistent 
if it posits a second victim for the same murder.  In contrast, the 
attendees of a meeting are not unique and usually unidentified 
(i.e., a report can indicate that a meeting took place but the report 
may not indicate all the participants).  In these instances, it is not 
possible to decide whether a mapping is inconsistent. 

4.5 State Evaluation Function 
Our state value heuristic is a function of the number and similarity 
of matches. The function is made up of the following parameters 
associated with a state <c,r,m>: 

• u is the number of case edges not matched to evidence; i.e., 
there is no analog in the evidence 

• v is the number of case edges matched to evidence 

• n (= u+v+|r|) is the number of edges in case graph c 

• w is the average pair similarity in m 

• α and β respectively weigh how much importance is given to 
the quality of the matches associated with the evidence 
explored so far and how much importance is given to the 
search progress so far 

The form of the state evaluation function is: 

( )
n
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4.6 Generating Match Candidates 
Generating match candidates always occurs in the context of 
explaining the case edge associated with a state <c,r,m>. The 
candidates for a case node are evidence nodes of the same exact 
type that preserve a given set of labels to m: A match m preserves 
a label l if for each case edge <a,b,l> if an edge <fm(a),fm(b),l> 
holds in the evidence, whenever fm(a) and fm(b) are defined in the 
evidence. Nodes in a pairwise mapping must be of the same type, 
thus there will also exist edges <a,t1,isa>, <fm(a),t1,isa>, 
<b,t2,isa>, and <fm(b),t2,isa> where t1 and t2 are types such as 
Person or EmailSending, and the isa label denotes the type 
relationship. The set of labels that must be preserved include 
subEvent, accountHolder, agentPhoneNumber, and to-generic.   
Not all the edges in a case must be preserved, since evidence is in 
general incomplete. 

Consider the problem of matching case node UID1 representing an 
email sending event as edge <UID1, EmailSending, isa>.  
Suppose in addition that it is known that UID1 is a subevent of a 
planningToDoSomething event UID2 (edges <UID1, UID2, 
subEvent> and <UID2, planningToDoSomething, isa>).  
Moreover, it is the case that UID2 has already been mapped: 
fm(UID2) exists.  Since we want to preserve the subEvent 
relationship, the match candidates for UID1 will be all evidence 
nodes x such that edges <x, fm(UID2), subEvent> and <x, 
EmailSending, isa> exist in the evidence. 

4.7 Pruning Heuristics 
The size of the match candidate set determines the branching 
factor of the search. The smaller the set the better.  As early as 
possible, it is important to prune search paths leading to 
inconsistent hypotheses.  In addition to preserving a certain link, 
other pruning heuristics include: 

• Mappings are one-to-one relationships: remove from 
candidates those evidence nodes already in the range of fm. 

• Matching should preserve temporal constraints: if event #1 
occurs before event #2 in the case, then fm(event #1) should 
occur before fm(event #2) in the evidence. 

4.8 Temporal Reasoning 
Each event e has an interval [lb(e), ub(e)] where lb is lower 
bound, ub is upper bound, delimiting when the event must have 
occurred.  A subevent of e occurs in the time window of his 
parent: if e1 is subevent of e2, then [lb(e1), ub(e1)] ⊆ [lb(e2), 
ub(e2)]. A mapping m is consistent if it preserves all temporal 
relationships between events known in a case.  If case events e1 
and e2 have a relationship R where [lb(e1), ub(e1)] R [lb(e2), 
ub(e2)], and fm(e1) and fm(e2) are defined, then the evidence must 
have the same relationship [lb(fm(e1)), ub(fm(e1))] R [lb(fm(e2)), 
ub(fm(e2))]. 



Sibyl uses the above condition to prune the set of match 
candidates for events in a case. For example, suppose the 
following: 

• <meeting32, planning35, subEvent> 

• <meeting33, planning35, subEvent> 

• ub(meeting32) < lb(meeting33) 

• ub(meeting33) < ub(planning35) 

• fm(planning35) and fm(meeting32) are defined 

A candidate evidence node x for meeting33 must satisfy 

ub(fm(meeting32)) < lb(x) and ub(x) < ub(fm(planning35)) 

In practice, as the matching process maps additional related 
events, the temporal constraints become much more stringent. 

4.9 Ordering the Case Evidence  
Recall that the initial states of the search have the form <c,ec,∅> 
where ec is a list of all the edges comprising case c.  During the 
search, the list is explored sequentially. The initial order of edges 
is important for the performance of the algorithm.  For example, it 
would be unwise to start the search matching a phone call event, 
which will have a massive number of possible matches in the 
evidence, rather than to start the search matching a murder event, 
which has fewer possible matches and provides more information 
about the key actors in the case (e.g., the victim or the person 
following the victim before the murder). 

In our current application, the user manually specifies a partial 
order in which events in a case should be considered, with key 
events types having highest priority.  These events offer tend to 
constrain the number of viable match candidates.  The algorithm 
“grows” a single connected graph by continually selecting 

immediate edges based on the user’s specification. The order in 
which edges are added to the graph is the order of ec. 

4.10 Abstracting the Case Representation 
So far for the case-matching algorithm, a case node must be 
matched to an evidence node of the same type. This turns out to 
be too restrictive as the number of distinct cases would be in the 
millions.  Two cases could be identical except for one single 
event, perhaps a phone call in one, and an email in the other.  To 
shrink the size of the case base, we abstracted events using the 
“isa” relationship in Cyc.  Edge labels were renamed to be 
abstracted types.  Thus, a phone call and email would be renamed 
to be a generic “contact” event. 

4.11 Matching a Case Base to the Evidence 
Earlier in Section 4.3, we discussed the search procedure and 
method for generating new states.  When applied with a case base, 
we want to let all cases have an opportunity to match against the 
evidence.  We therefore employ a round-robin timeout approach 
such that during a round Sibyl uses the best state originating from 
each case in the case base.  For each state chosen, either a match 
is found, or, more frequently, a time limit halts the search for the 
time being until the next round. 

After a round ends, the time limit for the next round is increased 
and the parameters of the heuristic functions are changed: α 
(representing the quality of the match) is decreased and β 
(representing the depth of the search) is increased.  The term β/α 
is proportional to the number of case edges that are allowed to be 
skipped before backtracking.  When no matches have been found, 
our round-robin policy attributes the situation to a lack of 
evidence supporting edges in a case.  Consequently, the policy 
increments β/α to increase chances of finding a match. 

After a match is found, Sibyl subtracts the matching evidence 
from the evidence body.  The process then repeats until no more 
cases match and the ratio exceeds an empirically adjusted 
threshold. 

5. Evaluation 
We evaluated SCOPE system as part of DARPA’s EELD year 
2002 evaluation.  The evaluation software was available to all 
participants.  A total of fourteen evidence databases were used 
(see Table 1), each with a Bayesian and task network generated 
version.  Because we imported the task-based simulator data 
directly into the case base, and because the iGEN portion used the 
task network for knowledge engineering purposes, we only tested 
SCOPE on the task network datasets.  In Table 1, Size refers to 
the number of valid threats in the evidence. A threat is a “valid” 
behavior pattern that is present in the evidence. Observability 
refers to how complete the evidence is. Connectivity measures the 
degree up to which the same people/events are part of different 
threats.  Corruption refers to how accurate the evidence is; e.g., 
whether middleman and killer roles are swapped for two people.  
Noise refers to evidence that might be useful, but are not. 

 

 

For each dataset, the output of our application was fed into a 
scoring program where the output was assigned a number 
representing the overall match quality. The scoring program 
employs a metric incorporating the notion of social cost.  This 
cost can be thought of as the amount of effort involved in either 
investigating a false positive, or ignoring a true positive.  An 
output correctly capturing all threat events with no false positives 
will have zero social cost while an output either having false 
positives or not having true positives will have greater than zero 
cost. 

The program scores an output by comparing it to the “answer key” 
which contains all the threat events.  It uses a greedy heuristic to 
pair threat events for comparison (although users may elect to 

Table 1: Test data set characterization.

 



exhaustively pair threats).  From there, the program uses an edit 
distance algorithm to compare two graphs.  An “edit” is the 
addition/deletion of a node/edge.  A series of edits will transform 
one graph into a duplicate of the other.  The sum of all the edits is 
the edit distance.  The algorithm was specialized to use 
ontological distance between two nodes/edges as part of the cost 
of an edit.  Examples could be changing simple dollar amounts, 
dates, or terms in the Cyc ontology.  More complex examples 
could be editing high-level events with differing sub-events. 

Relating edit distance to social cost, a completely correct 
hypothesis has zero edits and zero social cost, while any necessary 
edits will incur a positive social cost.  This metric was normalized 
such that the output of the scoring program was a real number 
between 0.0 and 1.0, the smaller the better. 

Only the iGEN scores were submitted for formal evaluation.  For 
our own evaluation purposes, Sibyl and iGEN were separately 
tested.  Figure 2 shows the scoring results for our application, 
broken into Sibyl and iGEN scores.  On the normalized social cost 
metric, Sibyl scored zero on three of the fourteen datasets 
provided, indicating a perfect mapping, and scored greater than 
zero and less than 0.05 on four others, indicating a near-perfect 
mapping.  iGEN scored zero on three, and greater than zero and 
less than 0.05 on five others. 

In general, the lower the dataset’s observability, or the higher the 
corruption, the harder it is to detect a plan in the evidence; cf, 
datasets 3, 4, 10 and 11.  Sibyl’s pruning heuristics and the order 
of a case’s edges favor high-level events (e.g., planning a murder) 
over low-level events (e.g., making a phone call).  The heuristics 
will prune valid search paths in the presence of high-level noise.  
Figure 2 suggests how SCOPE can benefit from threat hypotheses 
generated using Sibyl (e.g., datasets 3 and 8). When integrated 
with iGEN, Sibyl will contribute as a hypothesis generation 
module, and iGEN will manage hypotheses from modules like 
Sibyl.  
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In summary, although the evaluation does not allow one to draw 
any general conclusions regarding relative overall rankings of the 
performers or technologies, we nevertheless feel our results are 
promising. 

6. Related Work 
There has been increasing work in CBR that uses graph-based 
representations.  Perhaps the most closely related is the Caper 
system [7] which searches for subgraphs within a semantic 
network.  Similar to Sibyl, there is no a priori indexing, or 
construction of a feature vector. 

Bergman & Stahl [1] use object-oriented “class hierarchies” to 
model the similarity and differences between objects.  Because 
this method relies on objects being thought of as distinct entities, 
it is unclear how it applies to our problem as, for example, a 
person in a case has several relationships to other persons and 
events.  Indeed, a person’s relevance is a product of the person’s 
actions and relationships to other people.  It is simply not possible 
to judge similarity through a myopic lens.  The myriad 
connections among associated people and events must be 
considered. 

Messmer & Bunke [6] detail an algorithm that constructs a 
decision tree to determine subgraph isomorphism in polynomial 
time.  The approach will not scale with our problem as the tree is 
exponential in the size of the input in worst case.  As well, the 
matching is a form of exact matching. 

Gentner & Forbus [3] describe the MAC/FAC system which is a 
model of analogical reminding.  Matches are made between 
structurally similar concepts and verified in the SME portion of 
FAC.  Wolverton & Hayes-Roth [8] also explore analogical 
retrieval, but focus on successive revision of heuristics to guide 
search. 

Though Sibyl shares a graph representation similar to all of the 
above work, Sibyl’s differences with all these approaches is 
driven by the nature of input data.  Because of the novel nature of 
the data, the search mechanism must work by adapting its cases to 
the data.  This is in contrast to the related systems that handle 
small amounts of input data to search over a larger case base or 
semantic network. 

7. Conclusion 
We have described a CBR approach to plan detection that handles 
input data characterized as relational, massive, noisy, incomplete, 
and corrupted. The nature of the data demanded a new perspective 
on case retrieval and adaptation.  Case retrieval, typically 
emphasized in the literature, was non-existent in Sibyl as cases 
were never indexed.  Indexing would have required some 
processing on the input to construct a feature vector.  This is an 
untenable task for two reasons.  First, any fragment of evidence 
could be somehow relevant, but to determine its relevance, more 
evidence must be considered.  What is important here is the 
relationship between fragments.  Only together can they form a 
threatening pattern.  Second, considering all input evidence is out 
of the question. 

Case adaptation was our focus.  We started with a strong domain 
theory of mission plan execution, and concentrated on mapping 
complete cases to the evidence.  Because no case is preferred over 
another initially, the case base needed to be condensed from 
millions into hundreds.  This was achieved by abstraction of isa 
types using the Cyc ontology.  Cases were mapped using a search 
heuristic that traded off mapping quality with search progress.  
Pruning heuristics, such as temporal ordering, were used to limit 
the search space. 

Figure 2: Evaluation results for task-based datasets 



The combination of AI search techniques and domain dependent 
pruning heuristics made our case adaptation algorithm effective 
for DARPA’s EELD year 1 evaluation. 
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