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Abstract
We combine configural and temporal difference

learning in a classical conditioning model. The model
is able to solve the negative patterning problem, dis-
criminate sequences of stimuli, and exhibit second or-
der conditioning. We have implemented the algorithm
on the Sony AIBO entertainment robot, allowing us
to interact with the conditioning model in real time.

1 Introduction
To gain insight into the workability of real-time an-

imal learning models, we implemented a classical con-
ditioning model based on temporal difference (TD)
learning on the Sony AIBO entertainment robot (Fig-
ure 1.) We also created a configural learning com-
ponent whose output served to enrich the state rep-
resentation available to the conditioning model. In
this paper we review existing models of conditioning
and describe our configural learning mechanism in de-
tail. We found the exercise of implementing a learning
model as a real-time system in the physical world leads
to a better understanding of its limitations.

2 Temporal Difference Learning
Temporal difference learning [1] arose as a real-

time generalization of the Rescorla-Wagner model
[2] of classical conditioning. Rescorla-Wagner was a
trial-level model, and although it could account for
many important effects, such as additivity, blocking,
overshadowing, and conditioned inhibition, it could
not represent effects of stimulus timing or account
for second-order conditioning. The Rescorla-Wagner
learning rule is the same as the Widrow-Hoff or LMS
(least-mean-square) rule [3] used to train neural net-
works with a single layer of weights. Hence, Rescorla-
Wagner also suffers from the usual limitations of linear
models, such as the inability to learn negative pattern-
ing (exclusive-or) tasks.

Barto and Sutton extended the Rescorla-Wagner
model into a real-time model by suggesting that stim-
ulus onset and offset events produce stimulus traces
that rise rapidly and decay gradually over time. Their

Figure 1: The Sony AIBO entertainment robot, model
ERS-210.

“y-dot” theory can thus account for some of the ef-
fects of inter-stimulus interval (ISI) on learning rate.
They went on to posit a memory representation where
time is converted to space by using an array of units
to reflect the temporal structure of a trial. This al-
lows the model to represent temporal relationships be-
tween stimuli and rewards, so that it can generate an
appropriately-timed CR (conditioned response.) This
“complete-serial-compound” representation [1] can be
implemented by a set of shift registers. Memory is or-
ganized as a fixed array of time slots, and new stimuli
enter the memory at one end and shift to the next
slot (while decaying in amplitude) with each succes-
sive clock tick.

Barto and Sutton further extended y-dot theory



into temporal difference learning [4] by requiring that
the model compute a value function V (t) based on
total expected future reward, rather than merely pre-
dicting reward at the next time step. A typical TD im-
plementation uses exponential discounting of rewards
in order to ensure that the expected total discounted
future reward converges:

V (t) = E

[ ∞∑
τ=0

γτr(t+ τ)

]
where r(t) is the reward received at time t, and γ is a
discount factor less than one. Exponential discount-
ing is favored because it leads to a simple recursive
formulation of the value function:

V (t) = r(t) + γV (t+ 1)

The reward prediction error δ(t) used to train a net-
work to predict V (t) is simply the difference between
the left and right sides of the above equation:

δ(t) = γV (t+ 1)− V (t) + r(t)

The error signal δ(t) has attracted considerable in-
terest because it appears to be a good model of the
primate dopamine system’s response to reward pre-
diction error [5, 6, 7]. This led to the suggestion that
V (t) may be computed in the striatum [5].

Daw and Touretzky [8] argue that an average re-
ward version of TD suggested by Tsitisklis [9] is prefer-
able to the exponential discounting formulation be-
cause it connects more directly with psychological the-
ories of animal choice. Animals appear to discount re-
wards hyperbolically [10], and this behavior can be ob-
tained more naturally with an average reward model.
(The same result can be achieved with exponential dis-
counting by making γ very close to 1 and running the
trials as a continuous sequence, rather than starting
each trial with an empty memory buffer as most sim-
ulations do.) In rate-based TD, the mean reward rate
is subtracted from r(t) to prevent V (t) from diverging:

δ(t) = V (t+ 1)− V (t) + [r(t)− r̄(t)]
r̄(t) is the exponentially weighted average reward re-
ceived up through time t. The average reward model
is able to account for changes in the tonic firing rates
of dopamine cells in terms of a change in r̄(t) [8].

3 Memory Representation
One problem with the complete serial compound

representation is that it does not generalize well. If a
model is trained with a constant ISI of 2 seconds, it
will be completely surprised by a reward that comes

a little too early or late. Varying the ISI across trials
slows learning because the weight for each slot in the
memory buffer is being trained separately. Another
problem that arises specifically when this representa-
tion is used for TD is that the finer the temporal reso-
lution of the memory, the greater the number of slots,
and hence the greater the number of trials required for
V (t) to propagate backwards from the time of reward
to a memory state t seconds earlier.

The spectral timing model proposed by Grossberg
and Schmajuk [11] is a continuous-time variant of the
complete serial compound representation. Spectral
timing utilizes an array of stimulus detectors with var-
ious response latencies. The breadth of the tuning
curve increases with latency. As stimuli age, activ-
ity smoothly shifts to units tuned to longer latencies.
Spectral timing models are less brittle because their
units have overlapping tuning curves with smooth
falloffs, so information learned at time t will naturally
generalize to nearby times. In our simulation, the de-
tectors are gaussian functions with preferred latency
µ and standard deviation σ = µ/3.

Although feature detectors with broad variance aid
generalization, the cost is a loss of temporal precision
in the response. When the model is trained with a
Rescorla-Wagner type learning rule (by setting γ = 0),
the result is a roughly Gaussian response centered at
the time of expected reward; see Figure 2a. This might
be taken as suggestive of a mechanism for producing
scalar timing behavior. Scalar timing, as described by
Gibbon [12], refers to the standard deviation in ani-
mals’ estimates of elapsed time scaling linearly with
the length of the interval. However, we will not pur-
sue this connection in this paper, as we are mainly
interested here in the structure of responding at short
durations (around 0.5 sec), a regime in which variabil-
ity in responding is minimal, and for which the scalar
property may not hold [12].

Blurring produced by broad variance, in combina-
tion with a value function that estimates future reward
rather than expected reward at the current timestep,
results in a response whose peak is shifted ahead of the
reward; see Figure 2b. We have experimented with a
multiscale version of spectral timing in which one set
of feature detectors uses a fixed width σ = 50 ms,
and a second set scales in proportion to the latency,
σ = µ/3. This allows the model to represent events
precisely when there is low variance in the ISI, but still
generalize over time, and acquire long latency events
quickly via the broadly-tuned detectors that “look fur-
ther ahead.” Figure 2c shows the response of this mul-
tiscale model.
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Figure 2: Models trained with 1 sec ISI. Triangles at
bottom mark stimulus events; inverted triangles at top
mark the US. (a) Rescorla-Wagner with scaled vari-
ance. σ = µ/3, γ = 0. Remaining plots use TD with
γ = 0.9. (b) TD with scaled variance. (c) TD with
multiscale representation. (d) TD with scaled variance
and explicit US representation.

Even with a multiscale representation, the model’s
prediction error will not go to zero if it is trained on a
task where the ISI varies. Figure 3a shows responses
of the model after training on ISIs of 900, 1000, and
1100 ms (200 trials each, interleaved.) The response
remains elevated after the reward at 900 ms, and falls
too soon when the reward comes at 1100 ms. However,
by adding an explicit representation of the US as a
working memory event, the model was able to produce
a response properly tailored to each of the three ISIs,
as shown in Figure 3b and also Figure 2d. The reasons
for this are discussed in the next section.

To summarize: stimulus events in our model are
stored in a working memory buffer for three seconds.
A separate set of feature detectors is supplied for each
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Figure 3: Models trained with variable ISI of 900,
1000, or 1100 ms. (a) Multiscale TD: V (t) remains
high after reward at 900 ms, falls too soon when re-
ward comes at 1100 ms. (b) Adding an explicit US
representation permits correctly-tailored responses.

event type. Each detector’s response is a Gaussian
function of the difference between its preferred latency
and the age of the working memory event closest to
that latency. Hence, if two instances of the same event
type are present in the buffer, e.g., stimulus A followed
two seconds later by a second occurrence of stimulus
A, two sets of detectors will be active, one with near
zero latencies, and one with latencies around 2 sec-
onds. The outputs of the feature detectors are the
input to the linear TD unit.

4 Responding
If a linear unit is trained to predict the CR, as

in the Rescorla-Wagner model, then the output can
be used directly to generate a conditioned response.
However, in a TD model the unit is trained to predict
V (t), which rises smoothly as the time for reward ap-
proaches, then falls back to a baseline level afterwards.
Thresholding the output in order to produce a well-
timed response would introduce additional complexity
to the model, since it’s not clear how the threshold
should be set. Furthermore, V (t) may remain high for
several time steps when a reward is imminent, yet an
extended duration CR—or a train of successive CRs—
might not be appropriate.

Some behavioral measures, such as freezing re-
sponses in fear conditioning, are sensitive to general
future predictions and not particularly sharply timed.
They could well be modeled as proportional to V (t).
But other behaviors are better timed. A paradigmatic
example is the conditioned eyeblink experiment, in
which rabbits are conditioned to a light or tone CS
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preceding a puff of air directed at the eye or a shock
to the eyelid; they time their CR to match the ISI.
Such responses should perhaps be modeled as propor-
tional to the predicted reinforcer r(t), which can be
estimated as V (t)− V (t+ 1). Thus, we should expect
reward whenever V drops by a substantial amount,
indicating that the US is expected now. (To make an
anticipatory response we would have to run the mem-
ory buffer forward a step to obtain V (t+ 1), but this
is not a problem.)

Moore et al. [13] observed that when the timing
of the US is inherently uncertain, CR topography can
vary between animals. They trained rabbits on an
eyeblink task where the ISI between the light/tone
CS and the shock US was either 300, 500, or 700 ms.
Half the animals adopted a “failsafe” strategy in which
the eye began closing at 200 ms, reached full clo-
sure by 300 ms, and remained closed past the 700 ms
point. The other half followed a “conditional expec-
tation” strategy in which the eye closed in increments
as the probability of a shock increased. Another strat-
egy, called “hedging,” was observed in an experiment
where there were only two possible times for the shock
to occur, and the difference between them was 400 ms.
In that case the animals blinked twice.

The step-like increases in eye closure seen in the
conditional expectation response are difficult to ex-
plain with the basic TD model, since the correlation
between CS onset and each of the three possible times
for US arrival is identical. Moore et al. proposed
a “marking” mechanism whereby separate cascades
of event detectors would be initiated at the 300 and
500 ms intervals, since the US had been paired with
a CS at those latencies. Hence, at 700 ms past CS
onset there will be three cascades active, and their
combined associative strengths will produce a larger
output, resulting in greater eye closure.

Our simulations suggest an alternative way to
model conditional expectation: by simply including
US events in working memory. The units encoding
US events develop negative weights that cancel the
excitation provided by CS event units, so that values
of V (t) after the US has arrived are zero. This reflects
the fact that the task involves only one US per trial. If
the US comes at 300 ms, there should be no expecta-
ton of a US at 500 or 700 ms, and our model does not
respond at those times. Now the memory unit coding
for a CS 700 ms ago has a stronger correlation with the
US than earlier units, because those trials where the
US doesn’t arrive have been accounted for. Hence the
value of V (t) will be larger if the trial reaches 700 ms
with no reward. Figure 4 shows the result.
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Figure 4: Responses in a model of the eyeblink exper-
iment of Moore et al. [13] in which the is US delivered
300, 500, or 700 ms after CS onset. γ = 0.7 in both
plots. (a) TD with multiscale representation produces
a descending response pattern. (b) TD with an ex-
plicit US representation shows the correct ascending
pattern. The leftmost curve has only one peak, and
the middle curve only two, because the memory of the
US at 300 or 500 ms (respectively) suppresses further
responding.

5 Configural Learning

A number of studies have looked at mechanisms
for recognizing configurations of cues, which could ac-
count for animals’ ability to solve the negative pattern-
ing problem. See Pearce [14] for a review. The most
general solution for a TD model would be to replace
the single linear unit with a multi-layer backpropaga-
tion network, where the input layer was the memory
buffer, the single output unit computed V (t), and one
or more hidden layers computed arbitrarily complex
functions of the current memory state. The problem
with this approach is that even small multilayer net-
works require considerable training time compared to
the number of trials needed to demonstrate basic con-
ditioning effects in animals. Unless we assume that the
animal can learn offline, by mentally rehearsing recent
trials while waiting for the next trial to begin, it will
not be possible to train a network quickly enough us-
ing backpropagation to match the animal behavioral
data.

An alternative to a general multilayer network is
to adopt a specialized rule for creating units that rec-
ognize cue configurations. Pearce [14] gave one such
rule, for configurations that consisted of a set of simul-
taneously presented stimuli. Since we are attempting
to combine configural learning with a real-time con-
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Figure 5: Configural units encoding a compound stim-
ulus and a sequence of stimuli.

ditioning model, we will take timing into account ex-
plicitly.

We employ a very simple configural unit that looks
for a conjunction of two events in working memory.
Event 1 must be a stimulus that has just arrived (zero
latency); event 2 can be either another sensory stimu-
lus, or the firing of a lower-numbered configural unit.
In this way, chains of configural units can be composed
to recognize compound stimuli and/or sequences of
stimuli.

Here are some examples of configurations that can
be learned. A pair of co-occurring stimuli (say, si-
multaneous presentation of two lights) would be en-
coded by a configural unit whose event 1 was light-1
and event 2 was light-2, with an inter-event interval of
zero. When these events both appear in working mem-
ory at about the same time, the configural unit fires.
The configural unit’s activation is recorded as another
event in working memory, with the same temporal tag
as the unit’s event 1 stimulus.

If we then want to learn a configuration consist-
ing of the two lights followed 3 sec later by a tone,
another configural unit is constructed whose event 1
is the tone, and whose event 2 is the configural unit
for the pair of lights. The inter-event interval for this
configural unit would be 3 sec. See Figure 5.

The range of acceptable intervals between events 1
and 2 for a particular configural unit is described by
a mean µ and variance σ2. We initialize µ to the time
difference between the actual events that led to the
creation of the unit. We initialize σ to µ/3, based on
scalar timing effects observed in animals [12]. Using
the fact that σ2 = E

[
(x− µ)2

]
= E[x2]− µ2, we can

adapt these parameters online.
If a constant ISI is used then σ2 will go to zero, so it

is necessary to impose a lower bound to preserve some

generalization ability. We maintain σ ≥ µ/3, and to
prevent fluctuations associated with a small sample
size, we put off adaptation until n > 5.

Due to the adaptation process, the order of presen-
tation of training trials can affect the way the model
categorizes the input. Consider two types of trials
where stimulus A is followed by stimulus B after a de-
lay. If we initially train on A-B sequences with a 1 sec
inter-stimulus interval, the configural unit for that se-
quence will have σ = 0.5 secs. Subsequent training on
A-B sequences with a 0.5 sec ISI will activate the same
configural unit. On the other hand, if the model is ini-
tially trained with the 0.5 sec ISI, then σ = 0.25 secs,
and the configural unit will not become active for A-B
sequences with 1 sec delays. Instead, a new configural
unit will be created, and the model will treat the two
sequences as distinct event types.

6 Classical Conditioning on the AIBO
The Sony AIBO is an autonomous robot with color

vision and a variety of other sensors, and sixteen de-
grees of freedom of motion. For our initial experiments
with the AIBO we used touch switches on the bottoms
of the robot’s feet, a touch switch on its back, and one
under its chin as conditioned stimuli. A touch switch
on the head sensed the reward stimulus (i.e., a “pat
on the head.”) For the conditioned response we used
either a head movement, or flashing of the LEDs that
serve as “eyes” in the robot’s face. (These colored
LEDs, with accompanying sound effects, are used by
AIBO applications to signal emotional states of the
robot.)

The robot processes events at roughly 30 Hz, which
is more than adequate temporal resolution. Initially
there was no response to the conditioned stimuli, but
by pairing them with a subsequent reward, the robot
learned to make a CR at the time a reward should be
expected. Using versions of the learning architecture
described above, we successfully demonstrated learned
inhibition, negative patterning, and second order con-
ditioning on the AIBO.

7 Summary and Conclusions
Our inability to manually deliver precisely timed

stimuli forced us to deal with the issues of spectral
timing and temporal generalization. Another problem
that arises in real-world implementations is the rich-
ness of stimuli encountered, which threatens a combi-
natorial explosion of configural units.

We are exploring heuristics to limit the number of
configural units built, or to prune units that do not
contribute significantly to reduction of prediction er-
ror. One possible heuristic would be to concentrate
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the creation of configural units on trials where the
prediction error is significant. Another is to limit the
amount of redundancy in the population. In Figure 5,
in addition to the units shown, a naive algorithm will
also create configural units for light1-tone and light2-
tone. Redundancy supports generalization by allowing
the model to respond to partial patterns, so it should
not be eliminated entirely. But some limit, perhaps
empirically determined, seems necesary

Attention is an important issue in the creation of
configural units. Ideally we would like a long memory
buffer (much longer than 3 secs) to learn long duration
sequences, or tasks involving long ISIs. But then, in
tasks with short inter-trial intervals, the buffer doesn’t
empty between trials, so the memory state is complex
and there is an explosion in the number of configural
unit candidates. Heuristics will be required to cope
with this complexity, e.g., by focusing on more recent
events in the buffer unless older ones show important
correlations with error. Touretzky and Saksida [15]
describe heuristics for judging the saliency of work-
ing memory elements when constructing conjunctive
representations.
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