
Computational Thinking and Mental Models:

From Kodu to Calypso

David S. Touretzky

Computer Science Department

Carnegie Mellon University

Pittsburgh, PA, USA

dst@cs.cmu.edu

Abstract—Reasoning about programs is an important com-
ponent of computational thinking. Laws of computation give
meaning to the formalisms in which programs are expressed,
and can be used to predict or explain program behavior, or to
uncover bugs. This paper presents Calypso, a language inspired
by Microsoft’s Kodu Game Lab but designed for programming
actual mobile robots rather than characters in a virtual world.
The initial implementation of Calypso uses the Cozmo robot by
Anki.

Like Kodu, the Calypso interpreter can be described by five
key laws. An understanding of the laws and how to apply them
constitutes a mental model of computation. Calypso provides a
variety of affordances and scaffolding techniques to foster devel-
opment of effective mental models and facilitate computational
thinking.

Index Terms—Cozmo robot, mobile robots, robot program-
ming

I. INTRODUCTION

To help children learn to reason about computer programs,

we need to expose them to computational systems whose

laws are easy to grasp but rich enough to be interesting.

Programs should be short for ease of analysis, but they

must still be capable of non-trivial behavior. This means the

language primitives must not be so primitive that it takes

many instructions to accomplish anything significant. On the

other hand, primitives that are too complex will be hard to

understand. In previous work, colleagues and I have argued

that Microsoft’s Kodu Game Lab [1] occupies a good middle

ground [2].

This paper describes Calypso [3], a variant of Kodu de-

signed for programming actual mobile robots rather than

characters in a virtual world. The initial implementation of

Calypso uses the Cozmo robot by Anki. Like Kodu, Calypso

can be described by five key laws of computation. But Calypso

advances the language along several design principles: (1)

visualization of the execution process, (2) visualization of

program structure, (3) making the robot’s sensations and

internal representations transparent, (4) providing a tight con-

nection between the robot’s world map and objects in the

physical world, and (5) improved affordances in the rule editor.

Together these techniques facilitate development of effective

mental models of computation, or what du Boulay called a

“notional machine” [4].

This work was supported in part by a gift from Microsoft Research.

Fig. 1. The Cozmo robot, its three unique light cubes, and the game controller
used with Calypso.

II. HARDWARE

A. The Cozmo Robot

Cozmo (Figure 1) is a vision-based mobile manipulator

marketed by Anki as a children’s toy, but sophisticated

enough for use in robotics research. The robot weighs just

150 grams and includes motors, accelerometers, and a color

camera. Cozmo has limited on-board processing; most of the

computation is done by a smartphone or tablet running the

Cozmo app and communicating with the robot via WiFi.

Cozmo is accompanied by three light cubes that have built-

in accelerometers of their own that can sense taps or motion,

and controllable color LEDs. The cubes communicate with the

robot via a proprietary radio protocol. They also bear special

markers that allow Cozmo to visually detect them, and they

can be lifted, carried around, rolled, or stacked.

Several games are built in to the Cozmo app, and a recent

update added a small interpreter based on Scratch 3.0. Anki

has also released an open source Python SDK, on which

Calypso was built. To use the SDK, the phone or tablet running

the Cozmo app must be connected to a laptop or workstation

via a USB cable.

B. The Game Controller

One of the features that distinguishes Kodu from other

children’s programming languages is the use of the Xbox

game controller as an input device. The developers thought

a controller would offer a more comfortable interface for

young children who have played computer games but not yet



Fig. 2. Graphical display of indented rules in Calypso shows the dependency
relationship between each rule and its parent.

acquired much experience with the traditional keyboard/mouse

combination. Mouse and touchscreen input are supported, but

are more cumbersome to use.

Besides its use for menu selection, the game controller has

two other roles. It offers a comfortable way to navigate in a

3D world: the left stick translates the cursor, the right stick

orbits the camera around the cursor, and the shoulder buttons

zoom in and out. With only a little practice it becomes natural

to operate all three of these controls at once. In addition, the

controller provides a way to interact with Kodu characters,

e.g., they can be made user-driveable via one of the sticks,

or have certain behaviors initiated by one of the triggers or

ABXY buttons.

Calypso follows the same approach. With a single line of

code, the robot can be driven using the left stick while the right

stick tilts the camera and the shoulder buttons control the lift.

This allows for a kind of “guided autonomy” where users can

nudge the robot toward or away from particular objects, then

allow control to revert to the rules they’ve written. In initial

trials with several groups of children ages 8–15, they quickly

become adept at teleoperating the robot this way.

III. THE KODU/CALYPSO COMPUTATIONAL FRAMEWORK

Kodu and Calypso are rule-based languages, not procedural

languages. Other languages in the rule-based category include

AgentSheets/AgentCubes [5], [6] and Ready (formerly Kandu)

[7]. Rule-based languages also have a long history in artificial

intelligence, where they have been used in cognitive modeling

(e.g., SOAR [8]) and expert systems.

The left hand side of a Kodu or Calypso rule (the WHEN

part) contains a pattern that is matched against the world state,

possibly binding a variable called “it”. The right hand side

(the DO part) specifies an action that will be attempted if the

left hand side is satisfied. See Figure 2. Rules are organized

into pages. All the rules on the current page run repeatedly,

typically about 70 times per second for Kodu. Unlike in

procedural languages, the ordering of the rules on a page does

not determine the rule cycles in which their actions will fire,

but it does affect how rule conflicts are resolved. Figure 3

shows the Calypso interface in execution mode.

Fig. 3. The Calypso interface in execution mode. The current character (robot
icon) is shown in the top right corner of the rules panel (left half of the screen).
Button help is displayed along the left edge. The blue background of the rules
panel shows that the character is on page 1. The right half of the screen shows
the world map and camera viewer.

Beyond the elegance of the rule formalism, a second,

equally important component of Kodu’s success (and hopefully

Calypso’s) is the high level of the primitives provided. Kodu

programs make no reference to screen coordinates, distances,

or angles. Instead they refer to objects, and to natural op-

erations on those objects such as grasping an object, giving

an object to another character, or dropping or throwing the

object. The user does not have to worry about the mechanics

of how these operations are accomplished and rendered; they

are primitives. This is quite different from graphics-oriented

languages such as Scratch or Alice. Kodu is not a graphics

language; it’s a robot programming language that happens to

use simulated robots. Calypso goes a step further by using

actual robots.

A. The Laws of Kodu/Calypso

Laws of computation give meaning to the formalisms in

which programs are expressed. They can be used to predict

or explain program behavior, and to uncover bugs. The funda-

mentals of computation in Kodu/Calypso can be stated in five

laws. These have been graphically illustrated and even turned

into refrigerator magnets (see [9] for the Kodu version). Here

we briefly review the laws of both languages.

The First Law, “Each rule picks the closest matching

object”, explains how variable binding conflicts are resolved. A

rule that begins “WHEN see cube” could match any of several

cubes. The conflict is resolved by picking the cube closest to

the perceiver. When there are multiple rules looking for objects

using different patterns, each rule chooses independently.

The Second Law, “Any rule that can run, will run”, explains

why the order in which rules are written does not determine

the rule cycles in which their actions will fire. We say that a

rule “can run” if its WHEN part is satisfied. If a rule can run,

it will run, meaning it will fire (attempt) its action whether or

not the preceding rules have run. However, its action may not

be successful because actions can fail, or they can be blocked

if they conflict with another action.



The Third Law explains how action conflicts are resolved:

“When actions conflict, the earliest wins.” Rules that appear

earlier on the page have priority over rules that appear later,

so if both rules run and fire their actions, the earliest rule’s

action takes precedence.

The Fourth Law explains rule dependency, which is shown

by indentation. The Kodu version of this law states: “An

indented rule can run only if its parent can.” The parent of an

indented rule is the first rule above it that has less indentation

than the rule itself. An indented rule cannot run unless its

parent’s WHEN part is satisfied. Whether the parent’s action

succeeds, fails, or is blocked is not considered in Kodu.

In Calypso the situation is more precarious because actions

can fail even when their preconditions are satisfied. This is

discussed further in the section on Real World Actions vs.

Simulation. To accomodate this, we have modified the Fourth

Law to read: “An indented rule can run only if its parent’s

action succeeds.”

The Fifth Law explains how the effects of actions are

realized within a rule cycle: “Actions fire in order.” Most

rules on a page will have orthogonal actions unaffected by

rule ordering. But there are some cases where order matters,

such as multiple assignment statements referencing the same

variable. Perhaps the most common case is the “switch to

page” action, which short-circuits the execution of any later

actions on the current page.

The Third and Fifth laws are complementary: the Third

Law determines how action conflicts are resolved, while the

Fifth determines how side effects are realized when there is

no conflict. Variable assignment actions never conflict.

These five laws produce a rule language that can ele-

gantly express the kinds of programs common in behavior-

based robotics. Kodu’s creators explicitly cite behavior-based

robotics as one of their inspirations [1].

Although presented here all at once, the laws are not taught

to children this way. We start with just the First Law and

provide multiple activities where children can apply the law to

explain or predict behavior. The next three laws are introduced

one at a time, in order, with time provided to explore each

law’s meaning. The fifth law is new and has not yet been

tested in the classroom.

There are additional minor laws beyond the five presented

here. Two examples are “held objects aren’t seen by the

holder”, and “timers cannot nest”.

B. The Idiom Catalog

In previous work I defined a set of idioms for Kodu and

designed a curriculum around them [10]. The curriculum is

publicly available at [11]. Idioms are presented as flash cards

for easy reference, inspired by the Scratch Cards of Rusk [12].

Each idiom consists of a name, a one-sentence description, an

illustrative graphic, and sample code. Most of these idioms

translate directly to Calypso.

The relationship of idioms to laws is explained once stu-

dents have seen examples of both. Idioms are specific rules or

sets of rules that occur frequently in programming because

Fig. 4. Flash cards for the Let Me Drive, Pursue and Consume, and Default
Value idioms.

they solve problems that come up often. There are many

possible idioms. Each solves a specific problem, and a single

program may only make use of a few of them. Laws, on the

other hand, are universal. They apply to every program, and

they are what make idioms work. For example, the Default

Value idiom (Figure 4, bottom ) depends on the Third Law to

ensure that the specific cases take precedence over the default

case, which must come last.

The first idiom students learn in Calypso is the teleoperation

idiom Let Me Drive (Figure 4, top). In Kodu they start with

Pursue and Consume, discussed below, and then add Let

Me Drive. But with Calypso we introduce teleoperation first

because we may need to guide the robot to find the objects it

is to pursue.

Pursue and Consume (Figure 4, middle) is the richest

idiom in the catalog, giving rise to an entire micro-domain

of programs, bugs, symptoms of bugs, and strategies for

analyzing programs to detect pursue and consume patterns.

(This is reviewed in the section Reasoning About Calypso

Programs, and discussed more extensively in [2] and [9].)

Other idioms are more prosaic, such as Do Two Things

(compound statements), Count Actions, and Default Value.

Our notion of idioms has much in common with what Ioan-

nidou et al. colleagues have called “computational thinking

patterns” (CTPs) in AgentSheets [13]. As with idioms, some

CTPs are relatively simple, while others are more complex

and can generate interesting micro-domains to reason about.



An example of a simple CTP is Absorption, which roughly

corresponds to an “eat” or “vanish” action in Kodu, or the

“consume” half of Pursue and Consume. Two more complex

CTPs are Diffusion and Hill Climbing, which are used together

to enable characters to perceive and move toward distant

objects. Together they realize the “pursue” half of Pursue and

Consume.

Like Scratch, AgentSheets is a graphics programming lan-

guage, not a robot programming language. Scratch program-

mers work in the screen’s coordinate system, and AgentSheets

programmers work on a 3D grid. Characters in both frame-

works can perceive items adjacent to them, but not farther

away.1 The Diffusion CTP implements a wavefront algorithm

to overcome this perceptual limitation, and then Hill Climbing

exploits the results to move in the direction of the gradient.

Kodu, by contrast, has no notion of grids or coordinates. Its

primitives express relationships between objects. For example,

traveling toward a distant, possibly moving object is handled

by “move toward it”. We should note, however, that the wave-

front algorithm automatically finds paths around obstacles,

while Kodu chooses a direct path which can leave characters

stuck if there is a wall or other object in the way. But in

Calypso “move toward it” uses the RRT-connect algorithm

[14] to do probabilistic path planning, and thus can avoid

obstacles and solve mazes as easily as the wavefront algorithm.

While AgentSheets is a graphics programming language

and is domain-independent, Kodu is a robot programming

language focused on a particular domain. Kodu’s domain is

virtual 3D worlds with built-in physics (gravity, momentum,

collisions), certain kinds of pre-defined objects (apples, trees,

roads, fish, etc.), and certain predefined ways of interacting

with those objects. As a consequence, some operations that are

programmed in AgentSheets using CTPs are simply primitives

in Kodu. For example, the Absorption CTP relies on the user

to specify the graphical effect and sound effect desired. In

Kodu, built-in “eat”, “boom”, and “vanish” primitives generate

appropriate sound and graphical effects automatically. But if

one wants some other flavor of absorption, there is no way to

create it.

In summary, both idioms and computational thinking pat-

terns vary in complexity. The highest level instances generate

interesting micro-domains with a rich set of phenomena that

students can learn to reason about. But differences in the

underlying computational model (grids for AgentSheets; 3D

continuous worlds with physics for Kodu/Calypso) mean that

the micro-domains will be different.

In the following sections I discuss ways in which Calypso

differs from Kodu.

IV. VISUALIZATION OF PROGRAM EXECUTION

Rules in Kodu are only visible in the rule editor, not during

execution. Calypso displays the rules on the current page while

in execution mode, and uses several forms of annotation to

make rule interpretation transparent:

1Scratch characters can turn toward a distant sprite only if it is referenced
by name. To recognize an arbitrary object they must be touching it.

Fig. 5. Execution of the “Pursue and Consume” idiom. The robot can see a
red cube and move toward it, but is not yet bumping it, so the second rule is
dimmed.

Fig. 6. In this example “once” is used to initialize a counter that then counts
down to zero. When the “once” tile is satisfied, it receives a green checkmark
and the DO part of the rule is dimmed, indicating that the action can no longer
fire.

• If a WHEN part is not satisfied, the entire rule is dimmed

(Figure 5, second rule).

• If a WHEN part is satisfied but the DO part is blocked

(the Third Law), just the DO part is dimmed.

• If a rule contains a “once” tile and the once has been

satisfied, the DO part is dimmed (because the action will

not be repeated) and a green checkmark appears over the

“once” tile (Figure 6, first rule). When the WHEN part is

no longer satisfied and the “once” is reset, the checkmark

is removed.

Repenning implemented a similar kind of display in

AgentSheets, using color to indicate which rules (and which

predicates within a rule) are satisfied. He calls this “con-

versational programming” [15] because the user can interact

with the system by repeatedly changing the world state and

observing the effect this has on the rules. This kind of

experimentation is not currently possible in Calypso but could

perhaps be offered when Calypso is run in simulator mode.

To make variable binding transparent, Calypso uses the

same Line of Sight (LOS) indicators as Kodu to show which

objects the rules have matched. This makes it easy for students

to see the effect of the First Law. Figure 7 shows how the

variable binding of rule 1 in the Pursue and Consume program

of Figure 5 is displayed on the world map when the program

is run. Rule 1 is choosing the closest red cube.



Fig. 7. The world map display when running the rules shown in Figure 5.
The robot (black triangle) is moving toward the closest red cube, selected by
rule 1. The Line of Sight indicator (dashed line) shows the selection.

Fig. 8. Calypso automatically generates a state machine diagram from the
user’s code. The display shows the robot is currently on page 2.

V. VISUALIZATION OF PROGRAM STRUCTURE

The rules of a Kodu or Calypso program are grouped into

pages. Each page functions as a node in a state machine, and

each “switch to page” tile can be seen as a state transition

[16]. To help students see their programs as state machines,

Calypso automatically generates a state machine diagram from

user code (Figure 8). In editor mode, users can switch between

viewing the rules on a page and viewing the state machine.

During execution, if users switch to the state machine view

they will see the currently active state marked, and as the

program runs they will see activity flow through the state

diagram.

Each character in Kodu has its own rules, and thus its

own state machine. In Calypso the characters include the

Cozmo robot, its three light cubes, and its charger. Light cubes

can sense finger taps, display patterns using colored LEDs,

and communicate with other characters via shared scores

or Calypso’s “say”/“hear” primitives, so their programming

can be nontrivial. It is possible to switch characters during

execution to observe any character’s state machine or rules.

Fig. 9. A “not decorator” can be used to negate either a main predicate or
one of its modifiers. This rule will run if the robot does not see any non-blue
cubes.

Fig. 10. In Calypso, an indented rule that does not bind “it” can reference
the “it” binding of one of its ancestors.

VI. SEMANTIC ENHANCEMENTS

Kodu allows predicate arguments to appear in any order. So

the “not” tile can appear anywhere after a predicate such as

“see”, but it applies only to the predicate itself. Thus, “WHEN

see apple not blue”, “WHEN see blue not apple”, and “WHEN

see not blue apple” all mean the same thing in Kodu; they are

satisfied if the character does not see any blue apples.

Calypso expresses negation using a “not decorator” to

negate specific tiles (Figure 9). Thus, “WHEN not-see blue

cube” is satisfied if the character does not see any blue cubes,

but “WHEN see not-blue cube” is satisfied if the character sees

a cube that is not blue, and “WHEN not-see not-blue cube”

is satisfied if all the cubes the character sees are blue, i.e.,

it does not see any non-blue cubes. The not decorator alone

isn’t powerful enough to express arbitrary boolean expressions

since there is no mechanism for disjunctions, and negation

only applies to individual terms, not conjunctions of terms.

But it does handle many common cases.

Another area where Calypso extends Kodu semantics is the

scope of the “it” tile. In Kodu, “it” can only be used on the

DO side if it was bound on the WHEN side of that same rule.

In Calypso, a rule whose WHEN part does not bind “it” can

reference the “it” bound by one of its ancestors. This permits

code such as that in Figure 10, where both rules reference “it”.

VII. TRANSPARENCY

Calypso characters exist in the physical world where per-

ception is problematic due to limited camera field of view

and resolution, and the possibility of occlusion. Calypso uses

several techniques to make the robot’s perception transparent

so users will understand when the robot fails to see something.

A camera viewer window (Figure 11) shows what the robot

is currently seeing, and any identified objects, such as light

cubes or faces, are annotated in the camera image. This



Fig. 11. The camera viewer shows what the robot sees, with annotations
indicating detected objects (cubes, faces, ArUco markers, etc.) Cozmo camera
images are 320×240 grayscale; color images are also available, but at
160×240 resolution.

functionality is provided by the Cozmo SDK, but is extended

in Calypso with additional object types, such as the ArUco

markers [17] from OpenCV.

In execution mode, a world map viewer shows the robot’s

current map of the world, so it is immediately apparent what

objects the robot is aware of. When an object is seen, it is

placed on the world map and its position is continuously

updated. If it goes out of view, it remains on the map in

its last known position. Objects that are currently in view are

highlighted on the map, so users can easily tell when an object

is being tracked and when it has gone out of frame or been

occluded. The “in-frame” tile used with “see” allows a rule to

test whether an object is currently in view.

Tapping on a cube is a detectable event that can serve as

input to a program. Cube taps are depicted on the world map

by the cube briefly changing size. And when a cube changes

color due to a “glow” action, that change also occurs on the

world map.

An innovative feature of the Calypso world map is that it is

not just a passive display. Users can mouse click on a cube to

simulate a tap, which is confirmed by a tone unique to each

cube. In addition, they can right-click on a cube and change

its color on the map, which causes the physical cube to change

color as well. We use the mouse rather than the game controller

for world map interaction because the controller is dedicated

to interaction with the robot.

VIII. REAL WORLD ACTIONS VS. SIMULATION

Kodu actions never fail if their preconditions are met. The

actions where precondition failure is possible are eat, grab,

launch, give, and squash, all of which require as a precondition

that the target object is within reach. In addition, grab and

launch require the object to be movable, and give requires

that it be capable of holding something. A few other actions

can fail due to resource limits, e.g., missiles can only be fired

at a certain rate, but these failures are of little consequence

because the actions themselves are probabilistic (a missile isn’t

guaranteed to hit anything.)

In Kodu it is natural to write compound actions where a

character increments a score, grabs an object, and switches to

another page where it will transport the object somewhere. But

real-world actions can fail, so Calypso programming style is

slightly different. Although Calypso can detect failed actions

and attempt to retry them, this may not always be successful.

An example is a failed “grab” operation where the robot loses

sight of the object and cannot reacquire it (perhaps it fell off

the table). Even if the object is still in view, to prevent infinite

loops an action will eventually be abandoned if it fails multiple

retry attempts.

If an action fails outright but is still eligible to execute, it

can be reattempted on the next rule cycle. But it would be

a mistake to combine actions that can fail with other actions

that will still execute when failure occurs. This is the reason

we modified the Fourth Law to specify that if the parent

rule’s action fails, the child rules cannot run. Thus, in Calypso

programs it is important to place unreliable actions in the

parent rule, so that subsidiary actions and page switches will

be blocked if the action fails.

IX. REASONING ABOUT CALYPSO PROGRAMS

Pursue and Consume is a key idiom in both Kodu and

Calypso. The pursue rule causes the robot to travel to an object

and the consume rule operates on the object in some way such

that it is no longer pursuable. In Kodu we pursue apples and

“consume” them by eating them. In Calypso, the cubes can be

programmed to glow with a certain color and turn off when the

robot picks them up. Thus, we can use ”grab” as a consume

action provided that the pursue rule only selects cubes that are

glowing. Once the cube is grabbed and no longer glowing, the

pursue rule switches its attention to another cube and the robot

heads off to pursue that. It will drop the first cube when it goes

to pick up the next one, and it will never pick up a dropped

cube again since it only looks for ones that are glowing.

Pursue and Consume is a rich micro-domain for exploring

students’ understanding of rule interpretation [9]. For example:

given three red cubes, which one will Cozmo pursue first?

Students have no trouble citing the First Law to justify their

answer: it pursues the closest one. If we switch the order of

the pursue and consume rules, what happens? Kodu students

who hold the Sequential Procedure Fallacy2 may be confused

by this, but those who understand the Second Law realize that

the change makes no difference. Will Calypso’s visualization

of rule interpretation help students escape the Sequential

Procedure Fallacy and construct an accurate mental model of

computation? Future work will investigate this.

Figure 12 shows a more complex problem in the Pursue

and Consume micro-domain. Here we have two instances of

the Pursue and Consume idiom, one for red cubes and one

2The Sequential Procedure Fallacy is the belief that the rules on a page
must run one at a time, and in the order they are written [9].



Fig. 12. A scrambled Pursue and Consume program, used to test students’
ability to apply the Laws of Calypso.

for blue cubes, but the rule order is scrambled. If the robot is

presented with a blue cube nearby and two red cubes further

away, what will it pursue first? Answer: the closest red cube,

because the first pursue rule (rule 2) takes precedence over the

second one (rule 3) according to the Third Law. This pursue

rule will pick the closest red cube (First Law). Students who

think the two pursue rules jointly pick the closest cube are

exhibiting the Collective Decision Fallacy [9].

When will the robot grab the blue cube? Answer: only when

all the red cubes have been consumed. This is a consequence

of the Third Law.

Additional problems in this micro-domain can be con-

structed by deleting one of the four rules. If a pursue rule

has no matching consume rule, the robot will get stuck at

the object it is pursuing. If a consume rule has no matching

pursue rule, that consume rule will “starve” because the robot

will never get close enough to an object to allow it to be

consumed.

Previous studies using Kodu have shown that some children

as young as 8 years old are capable of this kind of reasoning

[9]. The additional scaffolding provided by Calypso may allow

us to improve on these results.

X. IMPROVED AFFORDANCES FOR RULE EDITING

Experience with Kodu has led to some differences in the

Calypso interface to optimize its affordances:

Novice Mode. Both Kodu and Calypso display button help

along the left side of the screen, but beginners have not yet

learned to refer to this. Until they become comfortable with

the interface, it’s easy to press a wrong button and end up

editing code for the wrong character or adding rules to the

wrong page. The problem is worse in Calypso because users

can also accidentally switch from the editor view to a state

machine view and might not know how to get back. To save

users from confusing themselves, Calypso starts out in Novice

Mode with the character switching, page switching, and view

switching functions disabled, so they can only write code for

the robot, and only on page 1.

No rule numbers. Kodu rules are numbered, making it easy

to refer to specific rules in discussions. But the language

itself does not use the numbers. In earlier work, Touretzky

et al. showed that beginning Kodu programmers often exhibit

the Sequential Procedure Fallacy [9]. Numbering the rules

seems to reinforce this misunderstanding, so Calypso rules

are unnumbered.

Current page made more salient. The Kodu rule editor

displays the current page number at the top of the screen,

and uses a different color number for each page. This can be

a bit too subtle for beginners. Calypso changes the background

color of the entire editor window to reflect the page number

(blue for page 1, pink for page 2, etc.) This same convention

is used in execution mode, where the rules are displayed on

the left hand side of the screen and the world map on the right

hand side (Figure 3). It is thus immediately apparent when a

character changes pages.

Graphic display of rule dependency relationships. An

indented rule in Kodu is dependent on its parent, but there is

nothing to visually indicate that there is a relationship between

the indented rule and a rule above it vs. a rule below it.

Calypso graphically links each rule to its parent (Figure 2).

Visually distinguishing the first argument of assignment

tiles. In Kodu, an action such as “+score red-score 1-point

blue-score” means to increment the red score by 1 point plus

the current value of the blue score. Kodu makes no visual

distinction between the first argument to an assignment tile

and the remaining arguments, although the first argument is

treated quite differently (it’s the target of the assignment).

Calypso adds a marker between the first argument and the

rest to reinforce this distinction (see Figure 2, second rule).

Sequential evaluation of rules. In Kodu, all the rules’ WHEN

parts are evaluated effectively in parallel at the start of each

rule cycle. Then, for rules whose WHEN parts are true, the

DO parts are executed sequentially, so the effects of one rule

contribute to the effects of any following rules (the Fifth Law).

However, the effects of a rule do not affect the evaluation

of any rules’ WHEN parts until the next rule cycle. This

evaluation convention is not intuitive, and gives rise to certain

bugs that are hard to explain or gracefully work around. For

example, the rule “WHEN DO set-score red-score 10 points

once” is intended to initialize a counter. If it is followed by

the rule “WHEN scored red-score = 0 points DO win”, the

program will terminate at the end of the first rule cycle even

though the red score’s value at termination is 10, not 0, because

the score was 0 when the two WHEN parts were evaluated.

In Calypso, evaluation of WHEN parts is interspersed with

the performance of DO parts, so the text of the rules accurately

describes the flow of effects of actions. In other words,

evaluation respects the affordances provided by the rules, and

the example above will work as intended. The cost of this

change is that Calypso is not fully compatible with Kodu,



but in practice Kodu programmers rarely rely on its unusual

evaluation convention.

XI. DISCUSSION

Calypso facilitates a new kind of children’s robot program-

ming where the robots maintain a rich internal representation

of the world that is transparent to and even manipulable

by the user. This representation is primarily informed by

computer vision. WHEN-DO rules match against the internal

representation rather than being driven by raw sensor data.

They fire high-level actions for navigating through the world,

manipulating objects, and communicating with other charac-

ters.

Cozmo is a complex device with interesting behavior that

children actually care about. Teaching them to carefully reason

about Calypso programs introduces them to the notion of “law-

fulness” (in the scientific sense), which is key to computational

thinking [2].

Another key feature of both Kodu and Calypso is the use

of state machines. State machines are ubiquitous in computer

science, appearing in areas such as logic design, formal lan-

guages, network protocols, game programming, and behavior-

based robotics. Much of the technology of everyday life can be

described by state machines, from traffic lights to microwave

ovens to smartphones. Yet computer languages usually provide

no direct support for state machines; programmers must cob-

ble together their own mechanisms using things like global

variables and switch statements. Explicit instruction in state

machines could allow students to construct and reason about

more complex programs. Calypso goes a step further than

Kodu by graphically displaying the state machine diagram,

which should help children grasp the concept more quickly.

XII. FUTURE WORK

Many extensions are planned for Calypso. One of the first

will be support for walls and places. The walls are constructed

from Plasticor board with doorways cut in them at known

locations. ArUco markers placed on the walls will allow the

robot to identify them and build a map of the environment

which it can then navigate through. “Places” can be defined

relative to these landmarks, and a “visit” tile can be used to

tell the robot to visit a particular place, using its path planner

to calculate the route. The point of this extension is to provide

the robot with richer internal representations which students

can then learn to reason about.

Another line of extension is the pattern matching language

used in the WHEN parts of rules. At present, patterns consist

of a main unary predicate (e.g., “see”) and some auxiliary

unary predicates, such as a category test (“cube” or “charger”)

or color test (e.g., “red”). This language could potentially

be extended to express more complex relationships between

objects, which will be especially useful when multiple robots

are considered.

Multi-robot support will allow students to explore much

more complex behaviors as robots interact with each other

in cooperative or competitive modes, as well as interacting

with humans.

In addition to these technical extensions, future work will

explore how children learn to reason about Calypso programs,

and whether its improved affordances help them grasp con-

cepts more quickly and avoid some common fallacies.

ACKNOWLEDGMENTS

Thanks to Christina Gardner-McCune for assistance with

testing Calypso and presenting it to novices, and to Christina,

Stephen Coy, Ashish Aggarwal, and the anonymous referees

for helpful comments on the manuscript.

REFERENCES

[1] M. B. MacLaurin, “The design of Kodu: A tiny visual programming
language for children on the Xbox 360,” Proc. of POPL’11, pp. 241–
246, 2011.

[2] D. S. Touretzky, C. Gardner-McCune, and A. Aggarwal, “Teaching
‘lawfulness’ with Kodu,” Proc. of SIGCSE’16, March 02–5, 2016,
Memphis, TN.

[3] Visionary Machines LLC, web site: http://calypso.software. Accessed
August 29, 2017.

[4] B. Du Boulay, T. O’Shea, and J. Monk, “The bloack box inside the glass
box: presenting computing concepts to novices,” Intl. J. Man-Machine
Studies, vol. 14, pp. 237–249, 1981.

[5] A. Repenning and T. Sumner, “Agentsheets: a medium for creating
domain-oriented visual languages”, IEEE Computer, vol. 28, no. 3, pp.
17–25, 1995.

[6] A. Repenning, “Moving beyond syntax: Lessons from 20 years of blocks
programming in AgentSheets”, Journal of Visual Languages and Sentient
Systems, 2017.

[7] Anonymous, “About Ready”, https://getready.io/about, accessed July 26,
2017.

[8] J.E. Laird, A. Newell, and P. S. Rosenbloom, “SOAR: an architecture
for general intelligence”, Artificial Intelligence 33(1):1–64, 1987.

[9] D. S. Touretzky, C. Gardner-McCune, and A. Aggarwal, “Semantic
reasoning in young programmers,” Proc. of SIGCSE’17, March 8–11,
2017, Seattle, WA.

[10] D. S. Touretzky, “Teaching Kodu with physical manipulatives,” ACM
Inroads, vol. 5, no. 4, pp. 44–51, 2014.

[11] D. S. Touretzky, “Kodu resources for teachers”,
https://www.cs.cmu.edu/˜dst/Kodu, accessed July 26, 2017.

[12] N. Rusk, “Scratch cards”, http://scratched.gse.harvard.edu/resources/scratch-
cards, June 2009.

[13] A. Ioannidou, V. Bennet, A. Repenning, K. Koh, and A. Basawapatna,
“Computational thinking patterns”, Proc. 2011 Annual Meeting of the
American Educational Research Association (AERA), New Orleans,
April 8–12, 2011.

[14] J. Kuffner and S. M. LaValle, “RRT-Connect: An efficient approach to
single-query path planning”, Proc. 2000 IEEE Int’l. Conf. on Robotics
and Automation (ICRA 2000), pp. 995–1001.

[15] A. Repenning, “Conversational programming: exploring interactive pro-
gram analysis”, Proc. of the 2013 ACM International Symposium in New
Ideas, New Paradigms, and Reflections on Programming & Software
(Indianapolis, October 2013).

[16] K. Stolee and T. Fristoe, “Expressing computer science concepts through
Kodu Game Lab,” Proc. of SIGCSE’11, pp. 99–104, 2011.

[17] S. Garrido-Jurado, R. Muñoz-Salinas, F.J. Madrid-Cuevas, and M.J.
Marı́n-Jiménez, “Automatic generation and detection of highly reliable
fiducial markers under occlusion”, Pattern Recognition, vol. 47, no. 6,
pp. 2280–2292, 2014.


