CNBC Matlab Mini-Course

David S. Touretzky
October 2023

Day 2: More Stuff
Scientific Functions

Trig: sin, cos, tan, asin, acos, atan
sinh, cosh, tanh, asinh, acosh, ...

Rounding: floor, ceil, round, fix

Modular: rem, mod

Exponential: exp, log, log2, log10, sqrt

Primes: factor, primes

Polynomials: roots, polyfit, polyval
Matrix Functions

Determinant: det

Inverse: inv, pinv

Eigenvalues: eig, svd

Fourrier: fft

And many, many more...
Inf and NaN

3/0 returns Inf

0/0 returns NaN

3+Inf

Inf/Inf

-Inf, -NaN
Complex Numbers

\[\sqrt{-16} \]

3.5i

2 - 3.5i

\[(2+3i) \times (4+5i) \]
Predicates

isreal(3)
isprime(1:13)
isnumeric([2 3 5])
isempty([])
isinf(Inf)
isnan(NaN)
islogical(1 == 1)
ischar('a')
isequal('foo', 'aardvark')

What percentage of the first 1000 integers is prime?
mean(isprime(1:1000))
Return Values

Functions can return multiple values:

\[
A = \text{rand}(5, 3);
\]

\[
s = \text{size}(A)
\]

\[
[\text{rows, cols}] = \text{size}(A)
\]
Optional Return Values

Functions can choose whether to return values, depending on if the user is asking for values.

```
plot([1 2 3], [3 1 2])  \hspace{1cm} \text{no return value}

h = plot([1 2 3], [3 1 2])
set(h, 'LineStyle', '--')
set(h, 'LineWidth', 8)  \hspace{1cm} \text{single return value}
```
Variable Number of Arguments

Some functions accept a variable number of arguments:

peaks

peaks(10)
Variable In and Out

```python
hist(randn(2000,1))

hist(randn(2000,1), 50)

counts = hist(randn(2000,1), 5)

[counts, centers] = hist(randn(2000,1), 5)
```
nargin and nargout

Inside a function, **nargin** is the number of input arguments supplied with the call.

nargout is the number of output arguments requested with the call.
function [x,y,z] = nargtest(p,q,r,s,t)
 if nargin >= 1
 x = 50;
 if nargin >= 2
 y = 'foo';
 if nargin >= 3
 z = 3:7;
 end
 end
 end
end
end
whos % show the local workspace
end

Try:
a = nargtest(5,6,7)
[a, b] = nargtest(3)
[a, ~, c] = nargtest(9,8)
Name Spaces

• **Base workspace:** variables created outside of any function exist in the base workspace.

• **Local workspaces:** each function executes in a separate local workspace holding the arguments, return variables, and any local variables created by the function.

Functions cannot access variables of the base workspace.
Name Spaces (cont.)

- **Global workspace**: variables declared global by a function are accessed in the global workspace.

It's a good idea to also declare the variable global in the base workspace.
Global Variables

global pts
pts = 0 : pi/20 : 2*pi ;

function h = circ(x,y)
 % draws a circle centered on (x,y)
 global pts
 hh = plot(x+cos(pts), y+sin(pts));
 if nargout > 0
 h = hh; % return h only if requested
 end
end
Scripts Called By Functions

- Scripts do not have their own workspaces.

- A script called from the keyboard executes in the base workspace.

- A script called from within a function executes in the function's local workspace.
Resetting Variables

`clear x` removes variable x and undoes any global declaration

You can also click on a variable in the workspace pane and hit the Delete key, or right-click on the variable and choose from the menu.

`clear all` clears everything

`clear global` clears global declarations

`whos global` shows all global variables
Handle Graphics

Root = 0

Figure = 1, 2, ...

Axes

Line Text Image Surface
Taking Apart A Figure

clf, plot(rand(5, 3))

ax = get(gcf, 'Children')
get(ax)

lines = get(gca, 'Children')
get(lines(1))
Multiple Axes: Subplot

clf

subplot(2,2,1), plot(rand(5, 5))
subplot(2,2,2), bar3(rand(5, 3))
subplot(2,2,3), a=rand(15, 1); pie(a, a > 0.7)
subplot(2,2,4), polar(cos(0:150))

set(gca, 'Position', [0.32 0.1 0.4 0.4])
Exploring Graphics Objects

set(gca,'Units')

set(gca)

propedit(gca)

\textit{click on “More Properties”}

Matlab online documentation:

Help pulldown menu or '?' icon:

> Documentation

> MATLAB

> Graphics

> Graphics Objects
3D Graphics

peaks

rotate3d on

or put mouse in figure area and click on the 3D rotation arrow in the toolbar

set(gca, 'CameraViewAngleMode', 'manual')

or right-click in the figure, select Rotate Options, then select Fixed Aspect Ratio Axes
Plotting Surfaces

[x, y, z] = peaks;

surf(x, y, z, z)

surf(x, y, z, x)

surf(x, y, z, rand(length(x)))
Plotting in 3D

Don't type all this in! Download this file:
 www.cs.cmu.edu/~dst/Tutorials/Matlab/helix.m
 or cd /afs/andrew/usr/dst/matlab

function helix
 pts = 0 : pi/20 : 4*pi;
 x1 = cos(pts); y1 = sin(pts);
 x2 = cos(pts+pi); y2 = sin(pts+pi);
 z = pts/(2*pi);

 clf, whitebg(gcf, [0 0 0]), hold on
 plot3(x1, y1, z, 'y')
 plot3(x2, y2, z, 'w')
 axis([-3 3 -3 3 0 2])
 view(95, 9)
end
colors = 'rgbm';

for i = 4 : 4 : length(pts)-4
 plot3([x1(i) x2(i)], [y1(i) y2(i)], z([i i]), ...
 colors(ceil(rand(1)*length(colors))), 'LineWidth', 3)
end

axis off
set(gcf, 'Color', 'k')
set(gca, 'CameraViewAngleMode', 'manual')

az = -180;

while true
 view(az, 9), pause(0.05)
 az = az + 5;
end
clf reset, peaks, colorbar
m = colormap;
whos m
colormap(spring)
brighten(0.5)
colormap(jet)
colormap(parula)
colormap(bone)
colormap(hot)
colormapeditor

Northern parula
2D Data

[x, y] = meshgrid(-2 : 0.05 : 2) ;
z = sin(x) .* cos(y);
contour(z, 20)
imagesc(z)
colormap(hot)
imagesc(x(:), y(:), z)
surf(z), colormap(jet)
surfc(z)
Surface Objects

sphere

\[[x, y, z] = \text{sphere}(20); \]
\[x(1 : 5 : 21*21) = \text{NaN}; \]
\[\text{surf}(x, y, z) \]
\[\text{alpha}(0.7) \]

Use the rotate tool to rotate the sphere; set Fixed Aspect Ratio Ratio Axes first.

surf(x, y, z, rand(size(x))))
shading interp, grid off, axis off
set(gcf, 'Color', 'w')
Data From Files

Create a file temps.txt:
 Use the “New Script” button.

Enter this data:
 38 50
 42 53
 33 57
 45 56
 44 46
 41 40

Save the file as temps.txt

load temps.txt

plot(temps)
Importing Data From Files

• You can import data from Excel (and many other file formats) using the Import Data button.

 Select the file you want to import; the wizard will guide you through the rest.

• There are also built-in functions specifically for dealing with Excel files:

  ```
  doc xlsread
  doc xlswrite
  ```
Curve Fitting for Extrapolation

\[
x = \text{randn}(1, 2000);
y = \sin(x) + 0.2 * \text{randn}(1, 2000);
\text{clf, hold on, plot}(x, y, '.');
\]
\[
c = \text{polyfit}(x, y, 3)
\]

Example polynomial representation:
\[
c = [5 -1 4 3]
5x^3 - x^2 + 4x + 3
\]

\[
\text{pts} = \text{min}(x) : \text{range}(x)/100 : \text{max}(x);
\text{plot}(\text{pts}, \text{polyval}(c, \text{pts}), 'r', 'LineWidth', 3)
\]
clear all
a = 'aardvark'
[x, y, z] = sphere(5);
save stuff.mat
clear all
whos -file stuff.mat
load stuff.mat

save junk.dat x y -ascii
type junk.dat
General Operating System Stuff

pwd
cd
dir
ls *.m
delete stuff.mat
!ps -a
Debugging

Poor man's debugger:
Remove semicolons from assignments. Add 'quoted strings' in appropriate places. Add a call to keyboard. (Use return to return from keyboard input mode.)

```matlab
function y = buggy(vec)
    p = vec > 5
    'got this far'
    keyboard
    z = p * vec
    y = sin(z); 
end
```

Try: buggy([4 6])
Type 'return' to exit keyboard mode and continue.
The Matlab Debugger

dbtype helix

dbstop helix 5

helix
dbstep
dbstep 7

whos

Look at the Stack pulldown menu in the toolbar.
dbstep 30
dbquit
dbclear helix
doc debug
for i = 1 : 10
 fprintf('The square root of %2d is %f \n', ...
 i, sqrt(i))
end

doc fprintf

title(sprintf('f(x) over range %g to %g', ...
 -3.5, 5.125))