CNBC Matlab Mini-Course

David S. Touretzky
September 2019

Day 1: Essentials
What Is Matlab?

• Product of The Mathworks, Inc.

 http://www.mathworks.com

• Runs on Linux, Windows, and Macs.
• Student version just $49 (plus toolboxes).
• Latest release is Matlab R2019b.
• “Interactive” interface like BASIC, Python, Lisp, etc. Type in expressions and see the result.
What Is Matlab? (cont.)

- Full programming language.
- Strong on matrix manipulation and graphics.
- Optional toolboxes for statistics, image processing, signal processing, etc.
- Interfaces with C, Fortran, and Java.
- Can create stand-alone executable files.
 - HHsim, a Hodgkin-Huxley simulator developed by Dave Touretzky with help from Jon Johnson, is distributed as a stand-alone executable. (Source is also available.)
Why Should You Learn Matlab?

• Data analysis:
 • Much more versatile than a spreadsheet.
 • Extensive statistics toolbox.
 • SPM uses Matlab.

• Graphics:
 • Many ways to visualize your data – even animations!
 • Produce great figures for your papers.

• Modeling and simulation:
 • Best choice for neural net simulations.
Getting Started

- Log in to a workstation.
- Go to the menu bar at the top of your screen and select:

 Applications
 > Education
 > MATLAB
Variable Creation

\[a = 5 \]

\[a = 6 ; \]

\[b = 'penguins love herring' \]

Click on the Workspace tab for a graphical version of whos.
Matrix Creation

\[x = [1 \ 2 \ 3 \ ; \ 9 \ 8 \ 7] \]

zeros(3, 5)
zeros(5)
zeros(5)
zeros(5, 1) \quad \text{column vector}
zeros(1, 5) \quad \text{row vector}

ones, rand, randn, eye

What does eye do?
Colon Creates Row Vectors

1 : 5

1 : 3 : 15

10 : -1 : 0

pts = 0 : pi/20 : 4*pi;
Size of a Matrix

whos pts

size(pts)

length(pts)
Subscripting

V = [10 20 30 40 50];

V(3) \quad \text{index from 1, not 0}

M = [1 2 3; 4 5 6; 7 8 9]

M(2,2)

M(2) \quad \text{access in \textbf{column-major} order}

M(6)
Matrix Slices

\(V(2:4) \)

\(V(2:\text{end}) \)

\(M(1:2, 2:3) \)

\(M(:) \)

\(M(:, :) \)
Expanding a Matrix

\[a = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix} \]

\[a = \begin{bmatrix} a & 4 \end{bmatrix} \]

\[a(7) = 5 \]

\[a(\text{end}+1) = 6 \]

\[b = [a ; a.^2] \]

Efficiency tip:

Use \texttt{ZEROS(rows,cols)} to preallocate large arrays instead of growing them dynamically.
Reshaping a Matrix

\[M = \text{reshape}(1:15, 5, 3) \]

\[M' \]

\[M' \ or \ (M')' \]
Exercise

- Create the following matrix using only the colon, reshape, and transpose operators.

\[
\begin{pmatrix}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9 \\
10 & 11 & 12 \\
13 & 14 & 15
\end{pmatrix}
\]
Adding Rows vs. Columns

\[M = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \]

\[M = \begin{bmatrix} M \\ 5 & 6 \end{bmatrix} \]

\[V = \begin{bmatrix} 10 & 20 & 30 \end{bmatrix} \]

\[M = [M \ V] \]

\[M = [M [99; 98; 97]] \]
Deleting Rows or Columns

\[M(:, 3) = [] \]

\[M(2, :) = [] \]

\[\text{size}([]) \]
Command Line Editing

- Arrow keys work like you expect
- Basic Emacs commands also work:
 - Forward/back char: ^F / ^B
 - Left/right word: alt-F / alt-B
 - Beginning/end of line: ^A / ^E
 - Delete forward/back char: ^D / backspace
 - Clear line: ^U
 - Kill to end of line: ^K
 - Undo: ^_

- Environ. > Preferences > Keyboard > Shortcuts for a list, or to switch to Windows conventions.
Command Line History

• Scrolling through the command history:
 Move to previous command ↑
 Move to next command ↓

• Can also double click (or click and drag) on an item in the Command History window

• Command/function completion:
 cle<tab>

• Interrupt execution: ^C
Editing Files in Matlab

New > Script

Put $3+5$ on the first line

Put $m = \text{magic}(5)$ on the second line

Save the file as \texttt{foo.m} in the current directory.

Type \texttt{foo} in the Command Window
Basic Plotting

pts = 0 : pi/20 : 4*pi;
plot(sin(pts))
plot(pts, sin(pts))

axis off / on
grid on / off
box off / on
whitebg(gcf, [0 0 0])
clf
clf reset
Plot Labeling

plt^P

xlabel('Angle \theta')

ylabel('y = \sin(\theta)')

title('The Sine Function')
Multiple Plots

clf

hold on

plot(pts, sin(pts))
plot(pts, cos(pts), 'm')
plot(pts, cos(pts), 'go')

legend('sin', 'cos', 'pts')

Click and drag to position the legend.
Summary of Plot Options

- Colors: r, g, b, w, c, m, y, k
- Symbols: . o x + * s(square) d(diamond) etc.
- Line type: - (solid), -- (dashed), : (dotted), -. (dash-dot)

help plot
Printing

• On the **File** pulldown menu, select **Print**.
• Or type `^P` in the figure window.

• Printing to a file:

 print -djpeg myfig.jpg
 print -depsc -r300 myfig.ps
 print -dtiff myfig.tiff

• To learn more: **help print**
Plotting With Error Bars

clf

y = sin(pts);

e = rand(1, length(y)) * 0.4;

errorbar(pts, y, e)
Multiple Figures

figure

bar3(abs(peaks(7)))

figure(5)

delete(2)

Or type ^W in a figure window to close it.
Histograms

dat = randn(10000, 1);

hist(dat)

hist(dat, 50)

b = hist(dat, 6)

bar(b)
Writing Your Own Functions

New > Function

function [y] = parabola(x)
% PARABOLA Computes a quadratic.
% Y = parabola(X) May be called with a vector.
y = x .^ 2;

Save as parabola.m

Try: parabola(5)
 help parabola
 clf, plot(parabola(-10 : 10),'r--s')

parabola ← Gives an error message. Why?
Scripts vs. Functions

- **Scripts** take no input arguments and produce no return values.

- Scripts operate in the workspace of their caller.

- If called from the command line, scripts operate in the **base workspace**.

- If called from within a function, scripts operate in the function's **local workspace** and can see and modify its local variables.
Scripts vs. Functions

- **Functions** can take zero or more arguments and return zero or more values.

- Functions operate in their own local workspace.

- Variables created inside a function are local to that function.

- Local variables disappear when the function returns.
Logical Operations

Operators: == ~= < > <= >=

Logical values:
0 means "false"
1 (or any non-zero number) means "true"

a = (3 >= 1 : 5) What are the type and size of a?

Can't use != as in Java or C
Boolean Subscripting

V = [1 2 3 4 5];
V(logical([1 0 1 1 0]))

V(V >= 3)
V(V >= 3) = 0

S = 'banana cabana'
S(S == 'a') = []
The IF Statement

```plaintext
if x >= 3
    y = x;
else
    y = x + 3;
hadHelp = true;
end
```

Differences from C/C++/Java:
- No () parens around the condition expression.
- No { } braces around the then/else clauses.
- Requires `end` keyword.

Short form – use commas or semicolons:
```
if x>3, y=x; else y=x+3; hadHelp=true; end
```
Control Structure: FOR Loops

\begin{verbatim}
for i = 1 : 5
 [i i^2]
end

clf, hold on
for x = pts
 plot(x, cos(x), 'kd')
 pause(1)
end
\end{verbatim}

(you can use ^C to terminate the loop)
Control Structure: WHILE Loops

How quickly can a random accumulator reach 5?

accum = 0; steps = 0;
while accum < 5
 steps = steps + 1;
 accum = accum + rand(1);
end

steps, accum
Element-Wise Arithmetic

Element-wise operators: + − .* ./ .^

\[M = \text{rand}(5,3) \]
\[M + 100 \]
\[M .* 5 \quad \text{same as} \quad M * 5 \]
\[M .* M \quad \text{not same as} \quad M * M \]
\[M ./ M \]
\[M .^ 2 \]
Matrix Arithmetic

\[m_1 = \text{rand}(5,3) \]
\[m_2 = \text{rand}(3,5) \]

\[m_1 \times m_2 \quad (5\times3) \times (3\times5) \rightarrow (5\times5) \]
\[m_2 \times m_1 \quad (3\times5) \times (5\times3) \rightarrow (3\times3) \]
\[m_1 \times m_1 \quad \text{Error! Shapes don't fit.} \]
\[m_1 / m_2 \quad \text{Error! Shapes don't fit.} \]
\[m_1' / m_2 \]
\[\text{pinv}(m_1) \quad (5\times3) \rightarrow (3\times5) \]
Exercise: Data Plotting Script

```matlab
x = 0 : pi/20 : 5*pi ;
y = sin(x) + x/3 + randn(1,length(x))/4;
z = smooth(y,20) ;
clf, hold on
plot(x, y, 'bo--')
plot(x, z, 'm', 'LineWidth', 3)
```

Save as mydata.m and run it several times.
Now add these additional lines:

```matlab
maxL = [1, z(2:end) > z(1:end-1)] ;
maxR = [z(1:end-1) > z(2:end), 1];
localMax = maxL & maxR;  % true if point is local maximum
px = x(localMax); px(2,:)=0; px(3,:)=NaN;
pz = z(localMax); pz(2,:)=z(localMax); pz(3,:)=NaN;
plot(px, pz, 'r')
```

For homework: figure out how it works.
Reduction Operators

M = rand(5, 3)

sum(M)

sum(M, 2) \text{ sum along } 2^{\text{nd}} \text{ dimension}

sum, prod, min, max, mean, var

min(min(M))

min(M(:))
Expanding with REPMAT

- REPMAT is often used to expand a vector to fit the shape of a matrix.
- Example: adjusting a dataset to have zero mean.

\[
M = \text{rand}(5, 3) \\
\text{avgs} = \text{mean}(M) \\
\text{Mavgs} = \text{repmat}(\text{avgs}, 5, 1) \\
\text{Mzero} = M - \text{Mavgs} \\
\text{sum}(\text{Mzero})
\]
Exercise

• Suppose we want the rows of M to sum to zero, instead of the columns.

• How would you do this, without using the transpose operator?
help cos
doc cos
clf, peaks
click on rotate3D icon
which peaks
edit peaks

Yes!
You CAN see our source code!

lookfor rotate
Browsing Online Documentation

• Press F1 to bring up the Documentation Browser

• In the documentation browser:
 > Statistics and Machine Learning Toolbox
 > Probability Distributions
 > Continuous Distributions
 > Beta Distribution
 > (Concepts) Beta Distribution
MATLAB Primer, 8th ed.
Timothy A. Davis
CRC Press

$10.86 at Amazon

Handy pocket reference.
Examines a variety of neuroscience applications, with examples.
Ways To Learn Matlab

- Three more days of this mini-course.
- Tutorial videos at mathworks.com
- Built-in demos: doc demo
- Browse the online documentation
- Dozens of books: Amazon.com reports 7,900 search results!
- Matlab Central: user community site http://www.mathworks.com/matlabcentral
- Questions to support@mathworks.com