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Virtual Memory and Page Tables

O Virtual memory is an essential technique in modern computing systems
O Memory virtualization
O Process isolafion

O Virtual memory performance depends on the page table organization
O Radix page tables - slow and not scalable

O Hashed page tables — memory inefficient



Radix Page Tables:

Memory-Efficient Multi-Level Trees

L1- PGD L2- PUD L3- PMD L4- PTE




Radix Page Walk:

Expensive Pointer Chase

x86-64 Radix Page Tables

Virtual Address
47 ... 39 38 ...30 29 ... 21 20 ... 12 11...0
Address A 9-bits 9-bits 9-bits 9-bits Page Offset

CR3




Hashed Page Tables

Q Page walk requires a single memory access

PGD PUD PMD PITE

\ ’ Hashed
Page Table



Hashed Page Tables

Q Hash collisions

PGD PUD PMD PTE-A

Hashed

Page Table




Hashed Page Tables:
Recent Advances Make Them Compelling

Elastic Cuckoo Page Tables (ECPTs)
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Hashed Page Tables:

Recent Advances Make Them Compelling
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Ouvutline of this talk

O Problem: Contiguous Memory Requirements of Hashed Page Tables
O ME-HPTs: Memory-Efficient Hashed Page Tables

O ME-HPTs Design

O ME-HPTs Key Results

O Conclusion



Hashed Page Tables:

Large Contiguous Memory Chunks

O With hashed page tables — unity of allocation is one way of the page table
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Hashed Page Tables:

Large Contiguous Memory Chunks

O With hashed page tables — unity of allocation is one way of the page table

r
Pqj With large memory applications, e
size of a way can be 10s-100s of MBs!

e.g., GUPS, SysBench 64MB per way




Hashed Page Tables:

Contiguity is Expensivel

O Finding large configuous memory chunks is expensive in busy fragmented servers
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Hashed Page Tables:

Contiguity is Expensivel

O Finding large configuous memory chunks is expensive in busy fragmented servers

"1 Applications need to stall for millions

' of cycles for allocation!

p—

Linux server
2GHz
With higher fragmentation, the system | 0.7 FMFI

even fails to allocate 64MB chunks!

o

1
4 16 64 256 1024 4096 16384 65536
Chunk Size (KB)

Allocation Time (Kcycles)



Contributions

O Four novel architectural techniques to provide Memory-Efficient Hashed Page Tables (ME-HPTs)
O Reduced memory contiguity requirement by 92%

O Sped-up applications by 9% on average
O Allow large-memory applications to run at high performance on highly fragmented servers
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O Problem: Contiguous Memory Requirements of Hashed Page Tables
O ME-HPTs: Memory-Efficient Hashed Page Tables

O ME-HPTs Design

O ME-HPTs Key Results

O Conclusion



Memory-Efficient Hashed Page Tables:

ME-HPTs Design Overview

O Memory-Efficient Hashed Page Tables (ME-HPTs): Four novel architectural techniques
O Directly minimizing configuity requirements

O Logical-to-Physical (L2P) Table

O Dynamically Changing Chunk Size
O Indirectly minimizing contiguity requirements by minimizing memory consumption

O In-place Page Table Resizing

O Per-way Page Table Resizing



Memory Efficient Hashed Page Tables:
Logical-to-Physical (L2P) Table

HPT Way




Memory Efficient Hashed Page Tables:

Logical-to-Physical (L2P) Table
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Memory Efficient Hashed Page Tables:

Logical-to-Physical (L2P) Table
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Memory Efficient Hashed Page Tables:

Dynamically Changing Chunk Sizes

L2P

Chunk

Chunk

Chunk

Chunk

L2P is fixed in size!
What if the application needs
more memaorye
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Dynamically Changing Chunk Sizes
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Memory Efficient Hashed Page Tables:

Design Overview

O ME-HPTs: Four novel architectural tfechniques
O Directly minimizing configuity requirements
O Logical-to-Physical (L2P) Table
O Dynamically Changing Chunk Size
O Indirectly minimizing contiguity requirements by minimizing memory consumption
O In-place Page Table Resizing
O Per-way Page Table Resizing



Baseline Page Table Resizing
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Baseline Page Table Resizing

Deall t
S tebial Until the old table s

deadllocated, we keep both
tables in memory!




Memory Efficient Hashed Page Tables:

In-Place Page Table Resizing

O Keep both tables in
shared memory space
O Same hash function =

1dH PIO

for both tables

O On rehash, some
entries stay in the
same chunk, others
move to new chunks

New HPT
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Memory Efficient Hashed Page Tables:

In-Place Page Table Resizing

O Keep both tables in PPN
shared memory space

O Same hash function
for both tables

O Onrehash, some
entries stay in the
same chunk, others

move to new chunks ‘l
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Memory Efficient Hashed Page Tables:

In-Place Page Table Resizing

New HPT
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Memory Efficient Hashed Page Tables:

In-Place Page Table Resizing

New HPT
I ] apm—
PPN
Always consume max(old, new) Q
instead of sum(old, new)! T
Old HPT , ~ B
Save energy by moving only half of
the enftries! PPN

= (=

Old + New Max(Old, New)




Baseline Page Table Resizing

Way 0 Way 1 Way 2



Baseline Page Table Resizing

Often
memory
underutilized!

Way 0 Way 1 Way 2




Memory Efficient Hashed Page Tables:
Per Way Page Table Resizing

Memory much
better utilized!

Need to care:
where to insert |
new element
and which
way to upsize!

Way 1 Way 2




ME-HPTs Implementation:

Hiding the L2P Table Access Latency

O Elastic Cuckoo Page Tables (ECPTs) use
O Cuckoo walk caches (CWCs) to prune the number of parallel requests
O Rehash Pointers to decide if a new or old HPT needs to accessed

O Access L2P table in parallel and later choose the needed address
=

L2P Table :/T/AJ > Right chunk
>
CWC

Rehash
Pointers




Ouvutline of this talk

O Page Table Organizations

O Hashed Page Tables Memory Requirements

O ME-HPTs: Memory-Efficient Hashed Page Tables
O ME-HPTs Design
O ME-HPTs Key Results

O Conclusion



Significant Memory Contiguity Savings
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Significant Memory Contiguity Savings
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Improved Application Performance
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Improved Application Performance

1.4 - 9% speedup

% o.;, ME-HPTs outperform ECPTs by 3-18%
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O Four novel architectural techniques to provide Memory-Efficient Hashed Page Tables
O L2P Table
O Dynamically Changing Chunk Sizes

O In-Place Page Table Resizing
O Per-Way Page Table Resizing
O Reduced memory contiguity requirement by 92%
O Sped-up applications by 9% on average
O Allow large-memory applications to run at high performance on highly fragmented servers
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ME-HPTs Key Results:

Significant Memory Contiguity Savings
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ME-HPTs Key Results:

Significant Memory Contiguity Savings
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ME-HPTs Key Results:

Memory Consumption Reduction
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Fig. 10: Reduction in page table memory attained by ME-HPT
over the ECPT baseline. The number on top of each bar is the
absolute reduction in Mbytes.



ME-HPTs Key Results:

Number of L2P Table Entries Used per App
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Fig. 14: Number of L2P table entries used per application.



ME-HPTs Other Use Cases

O Techniques applicable to various hash table designs beyond HPTs
O Scalable Secure Directories
O Directories as set-associative structures
O Efficient resizing required
O Memory Indexing
O Hash tables commonly used to implement memory indices of databases, file systems...
O Dynamic resizing key operation: in-place resizing useful
O Key-value Stores
O Dynamic structures whose size is unknown ahead of time



