Carnegie

ILLINOIS Mellon

AAAAAA T University

ME-HPTs:

Memory-Efficient Hashed Page Tables

HPCA 2023

Jovan Stojkovic, Namrata Mantri, Dimitrios Skarlatos*, Tianyin Xu, Josep Torrellas

University of lllinois at Urbana-Champaign
*Carnegie Mellon University




Virtual Memory and Page Tables

O Virtual memory is an essential technique in modern computing systems
O Memory virtualization
O Process isolafion

O Virtual memory performance depends on the page table organization
O Radix page tables - slow and not scalable

O Hashed page tables — memory inefficient



Radix Page Tables:

Memory-Efficient Multi-Level Trees

L1- PGD L2- PUD L3- PMD L4- PTE




Radix Page Walk:

Expensive Pointer Chase

x86-64 Radix Page Tables

Virtual Address
47 ... 39 38 ...30 29 ... 21 20 ... 12 11...0
Address A 9-bits 9-bits 9-bits 9-bits Page Offset

CR3




Hashed Page Tables

Q Page walk requires a single memory access

PGD PUD PMD PITE

\ ’ Hashed
Page Table



Hashed Page Tables

Q Hash collisions

PGD PUD PMD PTE-A

Hashed

Page Table




Hashed Page Tables:
Recent Advances Make Them Compelling

Elastic Cuckoo Page Tables (ECPTs)

F B
C
A G
Hashed Hashed Hashed
Page Table Page Table Page Table

Way 0 Way 1 Way 2



Hashed Page Tables:

Recent Advances Make Them Compelling

Insert E
Cuckoo Hashing
D
F B
C
A G
Hashed Hashed Hashed
Page Table Page Table Page Table

Way 0 Way 1 Way 2



Hashed Page Tables:

Recent Advances Make Them Compelling

Insert E
Cuckoo Hashing
N\
‘?\Q@
D
F B
C
A G
Hashed Hashed Hashed
Page Table Page Table Page Table

Way 0 Way 1 Way 2



Hashed Page Tables:

Recent Advances Make Them Compelling

Insert E

Cuckoo Hashing

B
C
A G
Hashed Hashed Hashed
Page Table Page Table Page Table

Way 0 Way 1 Way 2



Hashed Page Tables:

Recent Advances Make Them Compelling

Cuckoo Hashing

D
F E B
C
A G
Hashed Hashed Hashed
Page Table Page Table Page Table

Way 0 Way 1 Way 2



Hashed Page Tables:

Recent Advances Make Them Compelling

Insert F
Cuckoo Hashing
D
E B
C
A G
Hashed Hashed Hashed
Page Table Page Table Page Table

Way 0 Way 1 Way 2



Hashed Page Tables:

Recent Advances Make Them Compelling

Insert F
Cuckoo Hashing
23/
%

D
E B

C

A G

Hashed Hashed Hashed
Page Table Page Table Page Table

Way 0 Way 1 Way 2



Hashed Page Tables:

Recent Advances Make Them Compelling

Insert F
Cuckoo Hashing
23/
%

D
E

C

A

Hashed Hashed Hashed
Page Table Page Table Page Table

Way 0 Way 1 Way 2



Hashed Page Tables:

Recent Advances Make Them Compelling

Cuckoo Hashing

D
E B
C
A F G
Hashed Hashed Hashed
Page Table Page Table Page Table

Way 0 Way 1 Way 2



Hashed Page Tables:

Recent Advances Make Them Compelling

Insert G
Cuckoo Hashing
D
E B
C
A G
Hashed Hashed Hashed
Page Table Page Table Page Table

Way 0 Way 1 Way 2



Hashed Page Tables:

Recent Advances Make Them Compelling

Insert G
Cuckoo Hashing
lH] (G)
D
E B
C
A G
Hashed Hashed Hashed
Page Table Page Table Page Table

Way 0 Way 1 Way 2



Hashed Page Tables:

Recent Advances Make Them Compelling

Cuckoo Hashing

D G
E B
C
A G
Hashed Hashed Hashed
Page Table Page Table Page Table

Way 0 Way 1 Way 2



Ouvutline of this talk

O Problem: Contiguous Memory Requirements of Hashed Page Tables
O ME-HPTs: Memory-Efficient Hashed Page Tables

O ME-HPTs Design

O ME-HPTs Key Results

O Conclusion



Hashed Page Tables:

Large Contiguous Memory Chunks

O With hashed page tables — unity of allocation is one way of the page table

Hashed Hashed Hashed
Page Table Page Table Page Table
Way 0 Way 1 Way 2




Hashed Page Tables:

Large Contiguous Memory Chunks

O With hashed page tables — unity of allocation is one way of the page table

r
Pqj With large memory applications, e
size of a way can be 10s-100s of MBs!

e.g., GUPS, SysBench 64MB per way




Hashed Page Tables:

Contiguity is Expensivel

O Finding large configuous memory chunks is expensive in busy fragmented servers

1000000
B 100000
O
%)
< 10000
o
£ 1000
|_
(-
9 100
O
O
O 10
<

1

16

64

256 1024
Chunk Size (KB)

4096

16384

65536

Linux server
2GHz
0.7 FMF]



Hashed Page Tables:

Contiguity is Expensivel

O Finding large configuous memory chunks is expensive in busy fragmented servers

"1 Applications need to stall for millions

' of cycles for allocation!

p—

Linux server
2GHz
With higher fragmentation, the system | 0.7 FMFI

even fails to allocate 64MB chunks!

o

1
4 16 64 256 1024 4096 16384 65536
Chunk Size (KB)

Allocation Time (Kcycles)



Contributions

O Four novel architectural techniques to provide Memory-Efficient Hashed Page Tables (ME-HPTs)
O Reduced memory contiguity requirement by 92%

O Sped-up applications by 9% on average
O Allow large-memory applications to run at high performance on highly fragmented servers



Ouvutline of this talk

O Problem: Contiguous Memory Requirements of Hashed Page Tables
O ME-HPTs: Memory-Efficient Hashed Page Tables

O ME-HPTs Design

O ME-HPTs Key Results

O Conclusion



Memory-Efficient Hashed Page Tables:

ME-HPTs Design Overview

O Memory-Efficient Hashed Page Tables (ME-HPTs): Four novel architectural techniques
O Directly minimizing configuity requirements

O Logical-to-Physical (L2P) Table

O Dynamically Changing Chunk Size
O Indirectly minimizing contiguity requirements by minimizing memory consumption

O In-place Page Table Resizing

O Per-way Page Table Resizing



Memory Efficient Hashed Page Tables:
Logical-to-Physical (L2P) Table

HPT Way




Memory Efficient Hashed Page Tables:

Logical-to-Physical (L2P) Table
H
7N\
/ o

| LEESTEL o —— v |
> +

DIV-VPN 4




Memory Efficient Hashed Page Tables:

Logical-to-Physical (L2P) Table

L2P

MOD-VPN

DIV-VPN 4
| *H
+ 1 5
1 =

L2P Base >




Memory Efficient Hashed Page Tables:

Dynamically Changing Chunk Sizes

L2P

Chunk

Chunk

Chunk

Chunk

L2P is fixed in size!
What if the application needs
more memaorye




Memory Efficient Hashed Page Tables:

Dynamically Changing Chunk Sizes

L2P

Chunk

Chunk




Memory Efficient Hashed Page Tables:

Design Overview

O ME-HPTs: Four novel architectural tfechniques
O Directly minimizing configuity requirements
O Logical-to-Physical (L2P) Table
O Dynamically Changing Chunk Size
O Indirectly minimizing contiguity requirements by minimizing memory consumption
O In-place Page Table Resizing
O Per-way Page Table Resizing



Baseline Page Table Resizing

New HPT

Chunk
Old HPT

Chunk
Chunk Chunk
Chunk Chunk




Baseline Page Table Resizing

New HPT

Old HPT

N
RS




Baseline Page Table Resizing

New HPT

Old HPT
PPN

j—
RS




Baseline Page Table Resizing

New HPT

Old HPT




Baseline Page Table Resizing

New HPT

Old HPT




Baseline Page Table Resizing

New HPT

Old HPT




Baseline Page Table Resizing

Deall t
S tebial Until the old table s

deadllocated, we keep both
tables in memory!




Memory Efficient Hashed Page Tables:

In-Place Page Table Resizing

O Keep both tables in
shared memory space
O Same hash function =

1dH PIO

for both tables

O On rehash, some
entries stay in the
same chunk, others
move to new chunks

New HPT




Memory Efficient Hashed Page Tables:

In-Place Page Table Resizing

O Keep both tables in
shared memory space

O Same hash function
for both tables

O On rehash, some
entries stay in the
same chunk, others
move to new chunks

1dH PIO

New HPT




Memory Efficient Hashed Page Tables:

In-Place Page Table Resizing

O Keep both tables in PPN
shared memory space

O Same hash function
for both tables

O On rehash, some
entries stay in the
same chunk, others
move to new chunks

1dH PIO

New HPT




Memory Efficient Hashed Page Tables:

In-Place Page Table Resizing

O Keep both tables in PPN
shared memory space

O Same hash function
for both tables

O On rehash, some
entries stay in the
same chunk, others
move to new chunks

1dH PIO

New HPT




Memory Efficient Hashed Page Tables:

In-Place Page Table Resizing

O Keep both tables in PPN
shared memory space

O Same hash function
for both tables

O Onrehash, some
entries stay in the
same chunk, others

move to new chunks ‘l

1dH PIO

PPN

New HPT




Memory Efficient Hashed Page Tables:

In-Place Page Table Resizing

New HPT

PPN

1dH PIO

Old HPT 5PN

e
—

Old + New Max(Old, New)

New HPT




Memory Efficient Hashed Page Tables:

In-Place Page Table Resizing

New HPT
I ] apm—
PPN
Always consume max(old, new) Q
instead of sum(old, new)! T
Old HPT , ~ B
Save energy by moving only half of
the enftries! PPN

= (=

Old + New Max(Old, New)




Baseline Page Table Resizing

Way 0 Way 1 Way 2



Baseline Page Table Resizing

Often
memory
underutilized!

Way 0 Way 1 Way 2




Memory Efficient Hashed Page Tables:
Per Way Page Table Resizing

Memory much
better utilized!

Need to care:
where to insert |
new element
and which
way to upsize!

Way 1 Way 2




ME-HPTs Implementation:

Hiding the L2P Table Access Latency

O Elastic Cuckoo Page Tables (ECPTs) use
O Cuckoo walk caches (CWCs) to prune the number of parallel requests
O Rehash Pointers to decide if a new or old HPT needs to accessed

O Access L2P table in parallel and later choose the needed address
=

L2P Table :/T/AJ > Right chunk
>
CWC

Rehash
Pointers




Ouvutline of this talk

O Page Table Organizations

O Hashed Page Tables Memory Requirements

O ME-HPTs: Memory-Efficient Hashed Page Tables
O ME-HPTs Design
O ME-HPTs Key Results

O Conclusion



Significant Memory Contiguity Savings

60
50

40
64X reduction 64X reduction

BC BFS CcC DC

DFS GUPS MUMmer PR SSSP SysBench  TC  Average

¥ Elostic Cuckoo Page Tables B Memory-Efficient Hashed Page Tables

30

20

1

Required Contiguous Memory [MB]
(@)

(@]



Significant Memory Contiguity Savings

60 u

(O3]
(@)

N
o

ME-HPTs reduce configuity of ECPTs 64X reduction
by up to 64X, with 92% average!

Ll Tl L

GUPS  MUMmer SSSP SysBench TC  Average

¥ Elostic Cuckoo Page Tables B Memory-Efficient Hashed Page Tables

w
(@)

N
(@)

Required Contiguous Memory [MB]
o

(@



Improved Application Performance

1.6
1.4 9% speedup
1.2

o 1

-

9 08

O

g 06
0.4
0.2
0

DFS GUPS MUMmer PR SSSP SysBench TC  Average

B Radix B Flastic Cuckoo Page Tables B Memory-Efficient Hashed Page Tables



Improved Application Performance

1.4 - 9% speedup

% o.;, ME-HPTs outperform ECPTs by 3-18%
S 06 with an average of 9%
0.4
0.2
1IN TN TIR NN 0O TOR AR O

BC BFS cC DC DFS GUPS MUMmer PR SSSP SysBench  TC  Average

B Radix B Elastic Cuckoo Page Tables B Memory-Efficient Hashed Page Tables




O Four novel architectural techniques to provide Memory-Efficient Hashed Page Tables
O L2P Table
O Dynamically Changing Chunk Sizes

O In-Place Page Table Resizing
O Per-Way Page Table Resizing
O Reduced memory contiguity requirement by 92%
O Sped-up applications by 9% on average
O Allow large-memory applications to run at high performance on highly fragmented servers



Carnegie

ILLINOIS Mellon

AAAAAA T University

ME-HPTs:

Memory-Efficient Hashed Page Tables

HPCA 2023

Jovan Stojkovic, Namrata Mantri, Dimitrios Skarlatos*, Tianyin Xu, Josep Torrellas

University of lllinois at Urbana-Champaign
*Carnegie Mellon University




ME-HPTs Key Results:

Significant Memory Contiguity Savings

64
20
[aa]
=18
216
9] .
E 1y 92% reduction
= > without THP
5
S10
O
T 8
o)
O 6
o)
O 4
o)
“ 0 [ ]| | ] | ] | ] | [ ] | ™ | ] | ] | ™ | IIII -
DFS GUPS  MUMmer SSSP SysBench TC Average

WECPT ®WECPTTHP ®ME-HPT ™ ME-HPT THP



ME-HPTs Key Results:

Significant Memory Contiguity Savings

64
20
[aa]
=18
216
14
12
)
S10
O
T 8
S ¢
e 89% reduction
% 4 with THP
g 2
“ 0 [ ]| | ] | ] | ] | [ ] | ™ | ] | ] | IIII I
DFS GUPS  MUMmer SSSP SysBench Average

WECPT ®WECPTTHP ®ME-HPT ™ ME-HPT THP



ME-HPTs Key Results:

Memory Consumption Reduction

(o))
o

[ Per-way [ In-place -Zfer—way IA—IP Il In-place THP

w
o

32 32 32 32 32 32 32 32 32 32 4 4

N w »
o o o

Reduction in Page Table Memory (%)

o

BC BFS €C DC DFS GUPS MUMmer PR SSSP SysBench TC  Average

Fig. 10: Reduction in page table memory attained by ME-HPT
over the ECPT baseline. The number on top of each bar is the
absolute reduction in Mbytes.



ME-HPTs Key Results:

Number of L2P Table Entries Used per App

[ No THP [ THP 192102 135195 192 102

[e)]
o

8]
o

e
o

w
o

Numger of L2P entries
|
|

fury
o

I

0
BC BFS CcC DC DFS GUPS MUMmer PR SSSP SysBench TC  Average

Fig. 14: Number of L2P table entries used per application.



ME-HPTs Other Use Cases

O Techniques applicable to various hash table designs beyond HPTs
O Scalable Secure Directories
O Directories as set-associative structures
O Efficient resizing required
O Memory Indexing
O Hash tables commonly used to implement memory indices of databases, file systems...
O Dynamic resizing key operation: in-place resizing useful
O Key-value Stores
O Dynamic structures whose size is unknown ahead of time



