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GPU Utilization Is Low Everywhere!

Device: 30%

00 Meta sm:1s% =" Microsoft 52%

Train: 40%
(more details in our paper) (Philly, ATC 2019)

€2 Alibaba 10% lit. ByteDance 26%

(AntMan, OSDI 2021) (MuxFlow, arXiv)
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Low GPU Utilization Is Costly

Throwing GPUs away wastes money and power!

3

Carnegie Me 11 ty
C Co mp t r Sci D epartment Computer Architecture A\ Operating Systems Group



What Is the Role of the OS in the GPU Era?

Mainframes GPUs
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* Expensive 2020s
19503 e Scarce

* Single-Tenant

Operating systems were invented to solve these problems!
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LithOS: An Operating System for GPUs

Fully transparent to ML stack

* No PTX, framework, compiler changes
* TPC Scheduling + Stealing

* Kernel Atomizer

* Right-size kernels to TPCs

* Transparent DVFS

Better performance

* 13x lower tail latencies vs. NVIDIA
¢ 3xlower tail latencies vs. SotA,
* 1.6x higher throughput vs. SotA,

Easy resource saving
* Right-Sizing: 25% capacity savings
* DVFS: 25% energy savings
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SotA GPU Sharing Methods Aren’t Effective

Multi-Instance GPU (MIG)
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poor utilization
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The Latency SLO vs. Throughput Trade-off

100

80

o))
o

D
o

(= Isolation)

% SLO Attainment
N
o

o

0.4 0.6 0.8 1
Throughput (= Utilization)

7

Carnegie Me ll iversity
C Co mp t r Sci D epartment Computer Architecture A\ Operating Systems Group



The Latency SLO vs. Throughput Trade-off
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The Latency SLO vs. Throughput Trade-off
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U CarBeShared-Eficiont

Sharing
Happens
Transparently

Invasive
Modifications
Required

GPU

Interposition +
Reverse
Engineering

GPU + LithOS
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Threads
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Kernel
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LithOS Interposition + Reverse Engineering

ML Application
ML Framework

CUDA Runtime

CUDA Driver
Kernel Module

Hardware
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LithOS Interposition + Reverse Engineering

Advantages

* No need to modify application
software (CUDA C++, PTX, etc.)

* Pulls kernel scheduling logic out
of closed-source software and

ML Application

ML Framework

CUDA Runtime

hardware
D * Easy to port across hardware
CU river Kernel Module and driver versions
Hardware Vision

e Software from LithOS down is

TPC Masking Prelude Kernels et Or e INisElEitae), Opiy OF

12

C Carnegie Mellon University
Computer Science Department Computer Architecture A\ Operating Systems Group



GPU Organization 101

MIG partitions on GPC boundaries

LithOS partitions on TPC boundaries

PCI Express 5.0 Host Interface

GPC
™
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LithOS TPC Scheduling Time
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LithOS TPC Scheduling Time
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LithOS TPC Scheduling Time
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LithOS TPC Scheduling Time
{g} Ollama & B

1PCs TITIT
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LithOS TPC Scheduling Time
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LithOS TPC Scheduling Time
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Kernel Runtimes Can Be Long More data in the paper!
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Transparent Kernel Atomization For Preemption
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Thread-block-level scheduling in software!
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LithOS TPC Scheduling + Atomization
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The Latency SLO vs. Throughput Trade-off

100 10} 0/
= Limits MIG (0]
é %0 TGS © 0 o
- , 0

£5 40 NSDI'23 0 e
£ O Orion REEE Priority
Z)E B 40 EuroSys ’24 OSD| ‘22 [0
=y Time slicing MPS
© 20

0)

0.4 0.6 0.8 1

Throughput (= Utilization)

C Carnegie Mellon University

Computer Science Department Computer Architecture A\ Operating Systems Group



The Latency SLO vs. Throughput Trade-off
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TPC Right-Sizing and Fine-Grained DVFS
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Check Out the Paper for More Details!

Discussion Results
* Abstractions for GPU OSes * Meta GPU fleet profiling
Mechanisms * Kernel scaling vs. compute/freq.
« Kernel/TPC Right-Sizing * Inference-Inference stacking

Inference-Training stacking
Ablation studies

* DVFS
* Online latency predictor
* Reverse engineering techniques

LithOS: An Operating System
for Efficient Machine Learning on GPUs
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LithOS: An Operating System for GPUs

Fully transparent to ML stack

* No PTX, framework, compiler changes
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Better performance Scheduler Atomizer Right-Sizing Management
* 13x lower tail latencies vs. NVIDIA GPU Device Driver
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. . GPU Hardware
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* Right-Sizing: 25% capacity savings

Memory
* DVFS: 25% energy savings
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