LithOS: An Operating System
for Efficient Machine Learning

on GPUs

Patrick H. Coppock, Brian Zhang, Eliot H. Solomon,
Vasilis Kypriotis, Leon Yang’, Bikash Sharma”, Dan Schatzberg’,
Todd C. Mowry, and Dimitrios Skarlatos

SOSP 2025

*
C Carnegie Mellon University m M
Computer Science Department eta

Computer Architecture A\ Operating Systems Group

GPU Utilization Is Low Everywhere!

Device: 30%

00 Meta sm:1s% =" Microsoft 52%

Train: 40%
(more details in our paper) (Philly, ATC 2019)

€2 Alibaba 10% lit. ByteDance 26%

(AntMan, OSDI 2021) (MuxFlow, arXiv)

2

Carnegie Me ll iversity
C Co mp t r Sci D epartment Computer Architecture A\ Operating Systems Group

Low GPU Utilization Is Costly

Throwing GPUs away wastes money and power!

3

Carnegie Me 11 ty
C Co mp t r Sci D epartment Computer Architecture A\ Operating Systems Group

What Is the Role of the OS in the GPU Era?

Mainframes GPUs

0\ ° ‘w

makeagif.com

* Expensive 2020s
19503 e Scarce

* Single-Tenant

Operating systems were invented to solve these problems!

4

C Carnegie Mellon University
Computer Science Department Computer Architecture A\ Operating Systems Group

LithOS: An Operating System for GPUs

Fully transparent to ML stack

* No PTX, framework, compiler changes
* TPC Scheduling + Stealing

* Kernel Atomizer

* Right-size kernels to TPCs

* Transparent DVFS

Better performance

* 13x lower tail latencies vs. NVIDIA
¢ 3xlower tail latencies vs. SotA,
* 1.6x higher throughput vs. SotA,

Easy resource saving
* Right-Sizing: 25% capacity savings
* DVFS: 25% energy savings

C Carnegie Mellon University
Computer Science Department

Llama DLRM
Unmodified B
Applications, “E=@EW=" () PyTorch 4
Frameworks, - ™
& Binaries LibLithOS LibLithOS LibLithOS
LithOS
TPC Kernel Hardware Power
Scheduler Atomizer Right-Sizing Management

GPU Device Driver

GPU Hardware
TPC TPC TPC TPC TPC TPC TPC TPC

TPC TPC TPC TPC TPC TPC TPC TPC

Memory

5

Computer Architecture A\ Operating Systems Group

SotA GPU Sharing Methods Aren’t Effective

Multi-Instance GPU (MIG)

D,
- D
m 3
Cs Y D,
Wasted !
Capacity! |

Coarse-grained, fixed partitions =2
poor utilization

6
C Carnegie Mellon University

Computer Science Department Computer Architecture A\ Operating Systems Group

The Latency SLO vs. Throughput Trade-off

100

80

o))
o

D
o

(= Isolation)

% SLO Attainment
N
o

o

0.4 0.6 0.8 1
Throughput (= Utilization)

7

Carnegie Me ll iversity
C Co mp t r Sci D epartment Computer Architecture A\ Operating Systems Group

The Latency SLO vs. Throughput Trade-off

100 [0

MIG
80

o))
o

D
o

(= Isolation)

MPS

N
o

% SLO Attainment

o

0.4 0.6 0.8 1
Throughput (= Utilization)

8

Carnegie Me ll iversity
C Co mp t r Sci D epartment Computer Architecture A\ Operating Systems Group

The Latency SLO vs. Throughput Trade-off

100 10} 0/
Desired Solutions

= 30 Limits MIG (o)
2 — TGS 0 O
S E Orion REEfE Priority
< O , ‘ :
g © 40 EuroSys 24 OSDI ‘22 (0
=y Time slicing MPS
© 20

0)

0.4 0.6 0.8 1

Throughput (= Utilization)

C Carnegie Mellon University

Computer Science Department Computer Architecture A\ Operating Systems Group

U CarBeShared-Eficiont

Sharing
Happens
Transparently

Invasive
Modifications
Required

GPU

Interposition +
Reverse
Engineering

GPU + LithOS

C Carnegie Mellon University
Computer Science Department

Threads
Scheduled to
Specific Cores

No Control of
Where Kernels
Execute

TPC Scheduling

Preemption

No Preemption

Kernel
Atomization

10

Computer Architecture A\ Operating Systems Group

LithOS Interposition + Reverse Engineering

ML Application
ML Framework

CUDA Runtime

CUDA Driver
Kernel Module

Hardware

C Carnegie Mellon University
Computer Science Department

11

Computer Architecture A\ Operating Systems Group

LithOS Interposition + Reverse Engineering

Advantages

* No need to modify application
software (CUDA C++, PTX, etc.)

* Pulls kernel scheduling logic out
of closed-source software and

ML Application

ML Framework

CUDA Runtime

hardware
D * Easy to port across hardware
CU river Kernel Module and driver versions
Hardware Vision

e Software from LithOS down is

TPC Masking Prelude Kernels et Or e INisElEitae), Opiy OF

12

C Carnegie Mellon University
Computer Science Department Computer Architecture A\ Operating Systems Group

GPU Organization 101

MIG partitions on GPC boundaries

LithOS partitions on TPC boundaries

PCI Express 5.0 Host Interface

GPC
™

!

£NBH

H

CWEH

s
8
S
E
3
o
)
s
=
@
=
s
°
=
c
S
Q
2
-]
E
o
=
5
8
e
S
o
=)
S
E
@
=
k3
g
5
£
S
o
[
-]
E
]
=
7
L
]
=
~
S
o
2
)
E
]
=
2
°
S
c
[
(5]
[~
]
E
@
=

3 Streaming Multiprocessor (SM) &

Bl CUDA Core
= 16,896x

i

H

132x

Jajjosjuon Kioway || Jajonuod Alowal | Jajjonuod Kiowal | iajonuon Aloway | Jajjonuo) Aloway

12jj0nuo) Aloway

23 H 23
NVLink | NVLink NVLink

NVLink

LithOS TPC Scheduling Time

H Ollama /LLM

\4

14
C Carnegie Mellon University
Computer Science Department Computer Architecture A\ Operating Systems Group

LithOS TPC Scheduling Time

-+ 0
JLULLELLL

\4

15

C Carnegie Mellon University
Computer Science Department Computer Architecture A\ Operating Systems Group

LithOS TPC Scheduling Time

TPCs

TPC
Resources
|dle!
TPC
Stealing!

C Carnegie Mellon University
Computer Science Department Computer Architecture A\ Operating Systems Group

\4

16

LithOS TPC Scheduling Time
{g} Ollama & B

1PCs TITIT

\4

17

C Carnegie Mellon University
Computer Science Department Computer Architecture A\ Operating Systems Group

LithOS TPC Scheduling Time
{g} Ollama & B

1PCs TITIT

SRNNRENNNT s

\4

18

C Carnegie Mellon University
Computer Science Department Computer Architecture A\ Operating Systems Group

LithOS TPC Scheduling Time
{g} Ollama & B

1PCs TITIT

SRNNRRNNNT s

= 100

T e

'@ Latency Hit!

\4

19

C Carnegie Mellon University
Computer Science Department Computer Architecture A\ Operating Systems Group

Kernel Runtimes Can Be Long More data in the paper!

Llama 3 GPT-J
B Small ® Medium B Large

ol

NN

w

N

—_—

Pgog Kernel Latency (ms)
o

* DynamoLLM trace - Microsoft Azure

C Carnegie Mellon University
Computer Science Department Computer Architecture A\ Operating Systems Group

20

Transparent Kernel Atomization For Preemption

_

Kernel Grid
(Latency ~ms)
p
(0,0) (0,1) (0,2)
EEEE E&EE EXXS
(1,0) (1,1) (1,2)
E&EE E&EE EXXS
(2,0) (2,1) (2,2)
€&E&¢ €&E&¢E §&EE

J

C Carnegie Mellon University
Computer Science Department

Thread Block (1,2)

(Latency ~us)

(0,0)
3

\\ (1 ’0)
S E

(0,1) |

g

(1,1)
3

\ Atom

(Latency ~100us)

Prelude

Atom

Prelude

| Prelude
| Prelude

Atom

Prelude

Atom

Thread-block-level scheduling in software!

Computer Architecture A\ Operating Systems Group

\

L Time

TPC
Resources
|dle!

TPC
Stealing!

\4

22
C Carnegie Mellon University
Computer Science Department Computer Architecture A\ Operating Systems Group

i
TPCs i

\4

23

C Carnegie Mellon University
Computer Science Department Computer Architecture A\ Operating Systems Group

i
TPCs i

—+ 3

C Carnegie Mellon University
Computer Science Department Computer Architecture A\ Operating Systems Group

\4

24

LithOS TPC Scheduling + Atomization

Time Time
1l | 1liiaanne |
11800011101 1100011100

—— 1 - 1

1L T
—— D - 2
1L T
X T 3 T°
T1HHT 111101
'@ Latency Hit!
-+ 100
& i
\ 4 \ 4
Without Atomization With Atomization

25

C Carnegie Mellon University
Computer Science Department Computer Architecture A\ Operating Systems Group

The Latency SLO vs. Throughput Trade-off

100 10} 0/
= Limits MIG (0]
é %0 TGS © 0 o
- , 0

£5 40 NSDI'23 0 e
£ O Orion REEE Priority
Z)E B 40 EuroSys ’24 OSD| ‘22 [0
=y Time slicing MPS
© 20

0)

0.4 0.6 0.8 1

Throughput (= Utilization)

C Carnegie Mellon University

Computer Science Department Computer Architecture A\ Operating Systems Group

The Latency SLO vs. Throughput Trade-off

100 o IS @ LithOS
= Limits MIG (0]
c 80
> TGS © 0
€56 a0 NSDI '23 0 ©
E ES Orion REEg Priority
g B 40 EuroSys ’24 OSD| ‘22 [0
=y Time slicing MPS
© 20

0)
0.4 0.6 0.8 1

Throughput (= Utilization)

C Carnegie Mellon University

Computer Science Department Computer Architecture A\ Operating Systems Group

TPC Right-Sizing and Fine-Grained DVFS

4 4 Latency Slip N

Right-Sizing 3| -k

Speedup
Ly
:
|
[
[
v

25% capacity savings

N TPCs)
. 4 Latency Slip \

DynamIC VOltage % _I ———————————— _—————

. ol
Frequency Scaling g.g/*'
(7))
0 :

25% energy savings —— »/

28
C Carnegie Mellon University
Computer Science Department Computer Architecture A\ Operating Systems Group

Check Out the Paper for More Details!

Discussion Results
* Abstractions for GPU OSes * Meta GPU fleet profiling
Mechanisms * Kernel scaling vs. compute/freq.
« Kernel/TPC Right-Sizing * Inference-Inference stacking

Inference-Training stacking
Ablation studies

* DVFS
* Online latency predictor
* Reverse engineering techniques

LithOS: An Operating System
for Efficient Machine Learning on GPUs

29

C Carnegie Mellon University Patrick H. Coppock, Brian Zhang, Eliot H. Solomon, Vasilis Kypriotis, Leon Yang', Bikash Sharma’,
Computer Science Department Dan Schatzberg, Todd C. Mowry, and Dimitrios Skarlatos /N A\ Operating Systems Group

LithOS: An Operating System for GPUs

Fully transparent to ML stack

* No PTX, framework, compiler changes

J Sifiod Llama DLRM
. . nmodifie B
TPC Scheduyng + Stealing Applications, t=@N=" ¢, PyTorch
* Kernel Atomizer Frameworks, T o — _‘,"-'x
* Right-size kernels to TPCs & Binaries LibLithOS LibLithOS LibLithOS
* Transparent DVFS LithOS
TPC Kernel Hardware Power
Better performance Scheduler Atomizer Right-Sizing Management
* 13x lower tail latencies vs. NVIDIA GPU Device Driver
* 3xlower tail latenciesvs. SOtA; TTTTTTTTTTToTTTmTooooooomoTooomooooooooooooooomomoooooooooes
. . GPU Hardware
1.6x higher throughput vs. SotA, TPC TPC TPC TPC TPC TPC TPC ~TPC
Easy resource saving TPC TPC TPC TPC TPC TPC TPC TPC

* Right-Sizing: 25% capacity savings

Memory
* DVFS: 25% energy savings

., Carnegie Mellon University T h an kS ! A ny q ue Sti on S?

30
Computer Science Department

Computer Architecture A\ Operating Systems Group

	Slide 1: LithOS: An Operating System for Efficient Machine Learning on GPUs
	Slide 2: GPU Utilization Is Low Everywhere!
	Slide 3: Low GPU Utilization Is Costly
	Slide 4: What Is the Role of the OS in the GPU Era?
	Slide 5: LithOS: An Operating System for GPUs
	Slide 6: SotA GPU Sharing Methods Aren’t Effective
	Slide 7: The Latency SLO vs. Throughput Trade-off
	Slide 8: The Latency SLO vs. Throughput Trade-off
	Slide 9: The Latency SLO vs. Throughput Trade-off
	Slide 10: GPUs Can’t Be Shared Efficiently
	Slide 11: LithOS Interposition + Reverse Engineering
	Slide 12: LithOS Interposition + Reverse Engineering
	Slide 13: GPU Organization 101
	Slide 14: LithOS TPC Scheduling
	Slide 15: LithOS TPC Scheduling
	Slide 16: LithOS TPC Scheduling
	Slide 17: LithOS TPC Scheduling
	Slide 18: LithOS TPC Scheduling
	Slide 19: LithOS TPC Scheduling
	Slide 20: Kernel Runtimes Can Be Long
	Slide 21: Transparent Kernel Atomization For Preemption
	Slide 22: LithOS TPC Scheduling + Atomization
	Slide 23: LithOS TPC Scheduling + Atomization
	Slide 24: LithOS TPC Scheduling + Atomization
	Slide 25: LithOS TPC Scheduling + Atomization
	Slide 26: The Latency SLO vs. Throughput Trade-off
	Slide 27: The Latency SLO vs. Throughput Trade-off
	Slide 28: TPC Right-Sizing and Fine-Grained DVFS
	Slide 29: Check Out the Paper for More Details!
	Slide 30: LithOS: An Operating System for GPUs
	Slide 31
	Slide 32: Why GPU Utilization Is So Low
	Slide 33: Meta Inference Traffic
	Slide 34: Meta Model Size/Frequency Distributions
	Slide 35: GPU Architecture Trends
	Slide 36: Kernel Latency vs. Training Batch Size
	Slide 37: Right-Sizing and DVFS Scaling Curves
	Slide 38: LithOS Design
	Slide 39: Methodology
	Slide 40: Methodology: Inference
	Slide 41: Methodology: Training
	Slide 42: Inference-Inference Goodput
	Slide 43: Inference-Inference Tail Latencies
	Slide 44: Inference-Training Latency and Throughput
	Slide 45: Right-Sizing Capacity Savings
	Slide 46: DVFS Energy Savings
	Slide 47: Inference-Training Ablation
	Slide 48: Impact of Atomization

